// Copyright 2008 the V8 project authors. All rights reserved. // Copyright 1996 John Maloney and Mario Wolczko. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // This implementation of the DeltaBlue benchmark is derived // from the Smalltalk implementation by John Maloney and Mario // Wolczko. Some parts have been translated directly, whereas // others have been modified more aggresively to make it feel // more like a JavaScript program. /** * A JavaScript implementation of the DeltaBlue constrain-solving * algorithm, as described in: * * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver" * Bjorn N. Freeman-Benson and John Maloney * January 1990 Communications of the ACM, * also available as University of Washington TR 89-08-06. * * Beware: this benchmark is written in a grotesque style where * the constraint model is built by side-effects from constructors. * I've kept it this way to avoid deviating too much from the original * implementation. */ /* --- O b j e c t M o d e l --- */ Object.prototype.inheritsFrom = function (shuper) { function Inheriter() { } Inheriter.prototype = shuper.prototype; this.prototype = new Inheriter(); this.superConstructor = shuper; } function OrderedCollection() { this.elms = new Array(); } OrderedCollection.prototype.add = function (elm) { this.elms.push(elm); } OrderedCollection.prototype.at = function (index) { return this.elms[index]; } OrderedCollection.prototype.size = function () { return this.elms.length; } OrderedCollection.prototype.removeFirst = function () { return this.elms.pop(); } OrderedCollection.prototype.remove = function (elm) { var index = 0, skipped = 0; for (var i = 0; i < this.elms.length; i++) { var value = this.elms[i]; if (value != elm) { this.elms[index] = value; index++; } else { skipped++; } } for (var i = 0; i < skipped; i++) this.elms.pop(); } /* --- * * S t r e n g t h * --- */ /** * Strengths are used to measure the relative importance of constraints. * New strengths may be inserted in the strength hierarchy without * disrupting current constraints. Strengths cannot be created outside * this class, so pointer comparison can be used for value comparison. */ function Strength(strengthValue, name) { this.strengthValue = strengthValue; this.name = name; } Strength.stronger = function (s1, s2) { return s1.strengthValue < s2.strengthValue; } Strength.weaker = function (s1, s2) { return s1.strengthValue > s2.strengthValue; } Strength.weakestOf = function (s1, s2) { return this.weaker(s1, s2) ? s1 : s2; } Strength.strongest = function (s1, s2) { return this.stronger(s1, s2) ? s1 : s2; } Strength.prototype.nextWeaker = function () { switch (this.strengthValue) { case 0: return Strength.WEAKEST; case 1: return Strength.WEAK_DEFAULT; case 2: return Strength.NORMAL; case 3: return Strength.STRONG_DEFAULT; case 4: return Strength.PREFERRED; case 5: return Strength.REQUIRED; } } // Strength constants. Strength.REQUIRED = new Strength(0, "required"); Strength.STONG_PREFERRED = new Strength(1, "strongPreferred"); Strength.PREFERRED = new Strength(2, "preferred"); Strength.STRONG_DEFAULT = new Strength(3, "strongDefault"); Strength.NORMAL = new Strength(4, "normal"); Strength.WEAK_DEFAULT = new Strength(5, "weakDefault"); Strength.WEAKEST = new Strength(6, "weakest"); /* --- * * C o n s t r a i n t * --- */ /** * An abstract class representing a system-maintainable relationship * (or "constraint") between a set of variables. A constraint supplies * a strength instance variable; concrete subclasses provide a means * of storing the constrained variables and other information required * to represent a constraint. */ function Constraint(strength) { this.strength = strength; } /** * Activate this constraint and attempt to satisfy it. */ Constraint.prototype.addConstraint = function () { this.addToGraph(); planner.incrementalAdd(this); } /** * Attempt to find a way to enforce this constraint. If successful, * record the solution, perhaps modifying the current dataflow * graph. Answer the constraint that this constraint overrides, if * there is one, or nil, if there isn't. * Assume: I am not already satisfied. */ Constraint.prototype.satisfy = function (mark) { this.chooseMethod(mark); if (!this.isSatisfied()) { if (this.strength == Strength.REQUIRED) alert("Could not satisfy a required constraint!"); return null; } this.markInputs(mark); var out = this.output(); var overridden = out.determinedBy; if (overridden != null) overridden.markUnsatisfied(); out.determinedBy = this; if (!planner.addPropagate(this, mark)) alert("Cycle encountered"); out.mark = mark; return overridden; } Constraint.prototype.destroyConstraint = function () { if (this.isSatisfied()) planner.incrementalRemove(this); else this.removeFromGraph(); } /** * Normal constraints are not input constraints. An input constraint * is one that depends on external state, such as the mouse, the * keybord, a clock, or some arbitraty piece of imperative code. */ Constraint.prototype.isInput = function () { return false; } /* --- * * U n a r y C o n s t r a i n t * --- */ /** * Abstract superclass for constraints having a single possible output * variable. */ function UnaryConstraint(v, strength) { UnaryConstraint.superConstructor.call(this, strength); this.myOutput = v; this.satisfied = false; this.addConstraint(); } UnaryConstraint.inheritsFrom(Constraint); /** * Adds this constraint to the constraint graph */ UnaryConstraint.prototype.addToGraph = function () { this.myOutput.addConstraint(this); this.satisfied = false; } /** * Decides if this constraint can be satisfied and records that * decision. */ UnaryConstraint.prototype.chooseMethod = function (mark) { this.satisfied = (this.myOutput.mark != mark) && Strength.stronger(this.strength, this.myOutput.walkStrength); } /** * Returns true if this constraint is satisfied in the current solution. */ UnaryConstraint.prototype.isSatisfied = function () { return this.satisfied; } UnaryConstraint.prototype.markInputs = function (mark) { // has no inputs } /** * Returns the current output variable. */ UnaryConstraint.prototype.output = function () { return this.myOutput; } /** * Calculate the walkabout strength, the stay flag, and, if it is * 'stay', the value for the current output of this constraint. Assume * this constraint is satisfied. */ UnaryConstraint.prototype.recalculate = function () { this.myOutput.walkStrength = this.strength; this.myOutput.stay = !this.isInput(); if (this.myOutput.stay) this.execute(); // Stay optimization } /** * Records that this constraint is unsatisfied */ UnaryConstraint.prototype.markUnsatisfied = function () { this.satisfied = false; } UnaryConstraint.prototype.inputsKnown = function () { return true; } UnaryConstraint.prototype.removeFromGraph = function () { if (this.myOutput != null) this.myOutput.removeConstraint(this); this.satisfied = false; } /* --- * * S t a y C o n s t r a i n t * --- */ /** * Variables that should, with some level of preference, stay the same. * Planners may exploit the fact that instances, if satisfied, will not * change their output during plan execution. This is called "stay * optimization". */ function StayConstraint(v, str) { StayConstraint.superConstructor.call(this, v, str); } StayConstraint.inheritsFrom(UnaryConstraint); StayConstraint.prototype.execute = function () { // Stay constraints do nothing } /* --- * * E d i t C o n s t r a i n t * --- */ /** * A unary input constraint used to mark a variable that the client * wishes to change. */ function EditConstraint(v, str) { EditConstraint.superConstructor.call(this, v, str); } EditConstraint.inheritsFrom(UnaryConstraint); /** * Edits indicate that a variable is to be changed by imperative code. */ EditConstraint.prototype.isInput = function () { return true; } EditConstraint.prototype.execute = function () { // Edit constraints do nothing } /* --- * * B i n a r y C o n s t r a i n t * --- */ var Direction = new Object(); Direction.NONE = 0; Direction.FORWARD = 1; Direction.BACKWARD = -1; /** * Abstract superclass for constraints having two possible output * variables. */ function BinaryConstraint(var1, var2, strength) { BinaryConstraint.superConstructor.call(this, strength); this.v1 = var1; this.v2 = var2; this.direction = Direction.NONE; this.addConstraint(); } BinaryConstraint.inheritsFrom(Constraint); /** * Decides if this constratint can be satisfied and which way it * should flow based on the relative strength of the variables related, * and record that decision. */ BinaryConstraint.prototype.chooseMethod = function (mark) { if (this.v1.mark == mark) { this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength)) ? Direction.FORWARD : Direction.NONE; } if (this.v2.mark == mark) { this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength)) ? Direction.BACKWARD : Direction.NONE; } if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) { this.direction = Strength.stronger(this.strength, this.v1.walkStrength) ? Direction.BACKWARD : Direction.NONE; } else { this.direction = Strength.stronger(this.strength, this.v2.walkStrength) ? Direction.FORWARD : Direction.BACKWARD } } /** * Add this constraint to the constraint graph */ BinaryConstraint.prototype.addToGraph = function () { this.v1.addConstraint(this); this.v2.addConstraint(this); this.direction = Direction.NONE; } /** * Answer true if this constraint is satisfied in the current solution. */ BinaryConstraint.prototype.isSatisfied = function () { return this.direction != Direction.NONE; } /** * Mark the input variable with the given mark. */ BinaryConstraint.prototype.markInputs = function (mark) { this.input().mark = mark; } /** * Returns the current input variable */ BinaryConstraint.prototype.input = function () { return (this.direction == Direction.FORWARD) ? this.v1 : this.v2; } /** * Returns the current output variable */ BinaryConstraint.prototype.output = function () { return (this.direction == Direction.FORWARD) ? this.v2 : this.v1; } /** * Calculate the walkabout strength, the stay flag, and, if it is * 'stay', the value for the current output of this * constraint. Assume this constraint is satisfied. */ BinaryConstraint.prototype.recalculate = function () { var ihn = this.input(), out = this.output(); out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); out.stay = ihn.stay; if (out.stay) this.execute(); } /** * Record the fact that this constraint is unsatisfied. */ BinaryConstraint.prototype.markUnsatisfied = function () { this.direction = Direction.NONE; } BinaryConstraint.prototype.inputsKnown = function (mark) { var i = this.input(); return i.mark == mark || i.stay || i.determinedBy == null; } BinaryConstraint.prototype.removeFromGraph = function () { if (this.v1 != null) this.v1.removeConstraint(this); if (this.v2 != null) this.v2.removeConstraint(this); this.direction = Direction.NONE; } /* --- * * S c a l e C o n s t r a i n t * --- */ /** * Relates two variables by the linear scaling relationship: "v2 = * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain * this relationship but the scale factor and offset are considered * read-only. */ function ScaleConstraint(src, scale, offset, dest, strength) { this.direction = Direction.NONE; this.scale = scale; this.offset = offset; ScaleConstraint.superConstructor.call(this, src, dest, strength); } ScaleConstraint.inheritsFrom(BinaryConstraint); /** * Adds this constraint to the constraint graph. */ ScaleConstraint.prototype.addToGraph = function () { ScaleConstraint.superConstructor.prototype.addToGraph.call(this); this.scale.addConstraint(this); this.offset.addConstraint(this); } ScaleConstraint.prototype.removeFromGraph = function () { ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this); if (this.scale != null) this.scale.removeConstraint(this); if (this.offset != null) this.offset.removeConstraint(this); } ScaleConstraint.prototype.markInputs = function (mark) { ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark); this.scale.mark = this.offset.mark = mark; } /** * Enforce this constraint. Assume that it is satisfied. */ ScaleConstraint.prototype.execute = function () { if (this.direction == Direction.FORWARD) { this.v2.value = this.v1.value * this.scale.value + this.offset.value; } else { this.v1.value = (this.v2.value - this.offset.value) / this.scale.value; } } /** * Calculate the walkabout strength, the stay flag, and, if it is * 'stay', the value for the current output of this constraint. Assume * this constraint is satisfied. */ ScaleConstraint.prototype.recalculate = function () { var ihn = this.input(), out = this.output(); out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); out.stay = ihn.stay && this.scale.stay && this.offset.stay; if (out.stay) this.execute(); } /* --- * * E q u a l i t y C o n s t r a i n t * --- */ /** * Constrains two variables to have the same value. */ function EqualityConstraint(var1, var2, strength) { EqualityConstraint.superConstructor.call(this, var1, var2, strength); } EqualityConstraint.inheritsFrom(BinaryConstraint); /** * Enforce this constraint. Assume that it is satisfied. */ EqualityConstraint.prototype.execute = function () { this.output().value = this.input().value; } /* --- * * V a r i a b l e * --- */ /** * A constrained variable. In addition to its value, it maintain the * structure of the constraint graph, the current dataflow graph, and * various parameters of interest to the DeltaBlue incremental * constraint solver. **/ function Variable(name, initialValue) { this.value = initialValue || 0; this.constraints = new OrderedCollection(); this.determinedBy = null; this.mark = 0; this.walkStrength = Strength.WEAKEST; this.stay = true; this.name = name; } /** * Add the given constraint to the set of all constraints that refer * this variable. */ Variable.prototype.addConstraint = function (c) { this.constraints.add(c); } /** * Removes all traces of c from this variable. */ Variable.prototype.removeConstraint = function (c) { this.constraints.remove(c); if (this.determinedBy == c) this.determinedBy = null; } /* --- * * P l a n n e r * --- */ /** * The DeltaBlue planner */ function Planner() { this.currentMark = 0; } /** * Attempt to satisfy the given constraint and, if successful, * incrementally update the dataflow graph. Details: If satifying * the constraint is successful, it may override a weaker constraint * on its output. The algorithm attempts to resatisfy that * constraint using some other method. This process is repeated * until either a) it reaches a variable that was not previously * determined by any constraint or b) it reaches a constraint that * is too weak to be satisfied using any of its methods. The * variables of constraints that have been processed are marked with * a unique mark value so that we know where we've been. This allows * the algorithm to avoid getting into an infinite loop even if the * constraint graph has an inadvertent cycle. */ Planner.prototype.incrementalAdd = function (c) { var mark = this.newMark(); var overridden = c.satisfy(mark); while (overridden != null) overridden = overridden.satisfy(mark); } /** * Entry point for retracting a constraint. Remove the given * constraint and incrementally update the dataflow graph. * Details: Retracting the given constraint may allow some currently * unsatisfiable downstream constraint to be satisfied. We therefore collect * a list of unsatisfied downstream constraints and attempt to * satisfy each one in turn. This list is traversed by constraint * strength, strongest first, as a heuristic for avoiding * unnecessarily adding and then overriding weak constraints. * Assume: c is satisfied. */ Planner.prototype.incrementalRemove = function (c) { var out = c.output(); c.markUnsatisfied(); c.removeFromGraph(); var unsatisfied = this.removePropagateFrom(out); var strength = Strength.REQUIRED; do { for (var i = 0; i < unsatisfied.size(); i++) { var u = unsatisfied.at(i); if (u.strength == strength) this.incrementalAdd(u); } strength = strength.nextWeaker(); } while (strength != Strength.WEAKEST); } /** * Select a previously unused mark value. */ Planner.prototype.newMark = function () { return ++this.currentMark; } /** * Extract a plan for resatisfaction starting from the given source * constraints, usually a set of input constraints. This method * assumes that stay optimization is desired; the plan will contain * only constraints whose output variables are not stay. Constraints * that do no computation, such as stay and edit constraints, are * not included in the plan. * Details: The outputs of a constraint are marked when it is added * to the plan under construction. A constraint may be appended to * the plan when all its input variables are known. A variable is * known if either a) the variable is marked (indicating that has * been computed by a constraint appearing earlier in the plan), b) * the variable is 'stay' (i.e. it is a constant at plan execution * time), or c) the variable is not determined by any * constraint. The last provision is for past states of history * variables, which are not stay but which are also not computed by * any constraint. * Assume: sources are all satisfied. */ Planner.prototype.makePlan = function (sources) { var mark = this.newMark(); var plan = new Plan(); var todo = sources; while (todo.size() > 0) { var c = todo.removeFirst(); if (c.output().mark != mark && c.inputsKnown(mark)) { plan.addConstraint(c); c.output().mark = mark; this.addConstraintsConsumingTo(c.output(), todo); } } return plan; } /** * Extract a plan for resatisfying starting from the output of the * given constraints, usually a set of input constraints. */ Planner.prototype.extractPlanFromConstraints = function (constraints) { var sources = new OrderedCollection(); for (var i = 0; i < constraints.size(); i++) { var c = constraints.at(i); if (c.isInput() && c.isSatisfied()) // not in plan already and eligible for inclusion sources.add(c); } return this.makePlan(sources); } /** * Recompute the walkabout strengths and stay flags of all variables * downstream of the given constraint and recompute the actual * values of all variables whose stay flag is true. If a cycle is * detected, remove the given constraint and answer * false. Otherwise, answer true. * Details: Cycles are detected when a marked variable is * encountered downstream of the given constraint. The sender is * assumed to have marked the inputs of the given constraint with * the given mark. Thus, encountering a marked node downstream of * the output constraint means that there is a path from the * constraint's output to one of its inputs. */ Planner.prototype.addPropagate = function (c, mark) { var todo = new OrderedCollection(); todo.add(c); while (todo.size() > 0) { var d = todo.removeFirst(); if (d.output().mark == mark) { this.incrementalRemove(c); return false; } d.recalculate(); this.addConstraintsConsumingTo(d.output(), todo); } return true; } /** * Update the walkabout strengths and stay flags of all variables * downstream of the given constraint. Answer a collection of * unsatisfied constraints sorted in order of decreasing strength. */ Planner.prototype.removePropagateFrom = function (out) { out.determinedBy = null; out.walkStrength = Strength.WEAKEST; out.stay = true; var unsatisfied = new OrderedCollection(); var todo = new OrderedCollection(); todo.add(out); while (todo.size() > 0) { var v = todo.removeFirst(); for (var i = 0; i < v.constraints.size(); i++) { var c = v.constraints.at(i); if (!c.isSatisfied()) unsatisfied.add(c); } var determining = v.determinedBy; for (var i = 0; i < v.constraints.size(); i++) { var next = v.constraints.at(i); if (next != determining && next.isSatisfied()) { next.recalculate(); todo.add(next.output()); } } } return unsatisfied; } Planner.prototype.addConstraintsConsumingTo = function (v, coll) { var determining = v.determinedBy; var cc = v.constraints; for (var i = 0; i < cc.size(); i++) { var c = cc.at(i); if (c != determining && c.isSatisfied()) coll.add(c); } } /* --- * * P l a n * --- */ /** * A Plan is an ordered list of constraints to be executed in sequence * to resatisfy all currently satisfiable constraints in the face of * one or more changing inputs. */ function Plan() { this.v = new OrderedCollection(); } Plan.prototype.addConstraint = function (c) { this.v.add(c); } Plan.prototype.size = function () { return this.v.size(); } Plan.prototype.constraintAt = function (index) { return this.v.at(index); } Plan.prototype.execute = function () { for (var i = 0; i < this.size(); i++) { var c = this.constraintAt(i); c.execute(); } } /* --- * * M a i n * --- */ /** * This is the standard DeltaBlue benchmark. A long chain of equality * constraints is constructed with a stay constraint on one end. An * edit constraint is then added to the opposite end and the time is * measured for adding and removing this constraint, and extracting * and executing a constraint satisfaction plan. There are two cases. * In case 1, the added constraint is stronger than the stay * constraint and values must propagate down the entire length of the * chain. In case 2, the added constraint is weaker than the stay * constraint so it cannot be accomodated. The cost in this case is, * of course, very low. Typical situations lie somewhere between these * two extremes. */ function chainTest(n) { planner = new Planner(); var prev = null, first = null, last = null; // Build chain of n equality constraints for (var i = 0; i <= n; i++) { var name = "v" + i; var v = new Variable(name); if (prev != null) new EqualityConstraint(prev, v, Strength.REQUIRED); if (i == 0) first = v; if (i == n) last = v; prev = v; } new StayConstraint(last, Strength.STRONG_DEFAULT); var edit = new EditConstraint(first, Strength.PREFERRED); var edits = new OrderedCollection(); edits.add(edit); var plan = planner.extractPlanFromConstraints(edits); for (var i = 0; i < 100; i++) { first.value = i; plan.execute(); if (last.value != i) alert("Chain test failed."); } } /** * This test constructs a two sets of variables related to each * other by a simple linear transformation (scale and offset). The * time is measured to change a variable on either side of the * mapping and to change the scale and offset factors. */ function projectionTest(n) { planner = new Planner(); var scale = new Variable("scale", 10); var offset = new Variable("offset", 1000); var src = null, dst = null; var dests = new OrderedCollection(); for (var i = 0; i < n; i++) { src = new Variable("src" + i, i); dst = new Variable("dst" + i, i); dests.add(dst); new StayConstraint(src, Strength.NORMAL); new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED); } change(src, 17); if (dst.value != 1170) alert("Projection 1 failed"); change(dst, 1050); if (src.value != 5) alert("Projection 2 failed"); change(scale, 5); for (var i = 0; i < n - 1; i++) { if (dests.at(i).value != i * 5 + 1000) alert("Projection 3 failed"); } change(offset, 2000); for (var i = 0; i < n - 1; i++) { if (dests.at(i).value != i * 5 + 2000) alert("Projection 4 failed"); } } function change(v, newValue) { var edit = new EditConstraint(v, Strength.PREFERRED); var edits = new OrderedCollection(); edits.add(edit); var plan = planner.extractPlanFromConstraints(edits); for (var i = 0; i < 10; i++) { v.value = newValue; plan.execute(); } edit.destroyConstraint(); } // Global variable holding the current planner. var planner = null; function deltaBlue() { chainTest(100); projectionTest(100); } for (var i = 0; i < 155; ++i) deltaBlue();