/* * Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CodeBlock.h" #include "BytecodeGenerator.h" #include "Debugger.h" #include "Interpreter.h" #include "JIT.h" #include "JSActivation.h" #include "JSFunction.h" #include "JSStaticScopeObject.h" #include "JSValue.h" #include "UStringConcatenate.h" #include <stdio.h> #include <wtf/StringExtras.h> #define DUMP_CODE_BLOCK_STATISTICS 0 namespace JSC { #if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING) static UString escapeQuotes(const UString& str) { UString result = str; size_t pos = 0; while ((pos = result.find('\"', pos)) != notFound) { result = makeUString(result.substringSharingImpl(0, pos), "\"\\\"\"", result.substringSharingImpl(pos + 1)); pos += 4; } return result; } static UString valueToSourceString(ExecState* exec, JSValue val) { if (!val) return "0"; if (val.isString()) return makeUString("\"", escapeQuotes(val.toString(exec)), "\""); return val.toString(exec); } static CString constantName(ExecState* exec, int k, JSValue value) { return makeUString(valueToSourceString(exec, value), "(@k", UString::number(k - FirstConstantRegisterIndex), ")").utf8(); } static CString idName(int id0, const Identifier& ident) { return makeUString(ident.ustring(), "(@id", UString::number(id0), ")").utf8(); } CString CodeBlock::registerName(ExecState* exec, int r) const { if (r == missingThisObjectMarker()) return "<null>"; if (isConstantRegisterIndex(r)) return constantName(exec, r, getConstant(r)); return makeUString("r", UString::number(r)).utf8(); } static UString regexpToSourceString(RegExp* regExp) { char postfix[5] = { '/', 0, 0, 0, 0 }; int index = 1; if (regExp->global()) postfix[index++] = 'g'; if (regExp->ignoreCase()) postfix[index++] = 'i'; if (regExp->multiline()) postfix[index] = 'm'; return makeUString("/", regExp->pattern(), postfix); } static CString regexpName(int re, RegExp* regexp) { return makeUString(regexpToSourceString(regexp), "(@re", UString::number(re), ")").utf8(); } static UString pointerToSourceString(void* p) { char buffer[2 + 2 * sizeof(void*) + 1]; // 0x [two characters per byte] \0 snprintf(buffer, sizeof(buffer), "%p", p); return buffer; } NEVER_INLINE static const char* debugHookName(int debugHookID) { switch (static_cast<DebugHookID>(debugHookID)) { case DidEnterCallFrame: return "didEnterCallFrame"; case WillLeaveCallFrame: return "willLeaveCallFrame"; case WillExecuteStatement: return "willExecuteStatement"; case WillExecuteProgram: return "willExecuteProgram"; case DidExecuteProgram: return "didExecuteProgram"; case DidReachBreakpoint: return "didReachBreakpoint"; } ASSERT_NOT_REACHED(); return ""; } void CodeBlock::printUnaryOp(ExecState* exec, int location, Vector<Instruction>::const_iterator& it, const char* op) const { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] %s\t\t %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data()); } void CodeBlock::printBinaryOp(ExecState* exec, int location, Vector<Instruction>::const_iterator& it, const char* op) const { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] %s\t\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); } void CodeBlock::printConditionalJump(ExecState* exec, const Vector<Instruction>::const_iterator&, Vector<Instruction>::const_iterator& it, int location, const char* op) const { int r0 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] %s\t\t %s, %d(->%d)\n", location, op, registerName(exec, r0).data(), offset, location + offset); } void CodeBlock::printGetByIdOp(ExecState* exec, int location, Vector<Instruction>::const_iterator& it, const char* op) const { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); it += 4; } void CodeBlock::printPutByIdOp(ExecState* exec, int location, Vector<Instruction>::const_iterator& it, const char* op) const { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); it += 5; } #if ENABLE(JIT) static bool isGlobalResolve(OpcodeID opcodeID) { return opcodeID == op_resolve_global || opcodeID == op_resolve_global_dynamic; } static bool isPropertyAccess(OpcodeID opcodeID) { switch (opcodeID) { case op_get_by_id_self: case op_get_by_id_proto: case op_get_by_id_chain: case op_get_by_id_self_list: case op_get_by_id_proto_list: case op_put_by_id_transition: case op_put_by_id_replace: case op_get_by_id: case op_put_by_id: case op_get_by_id_generic: case op_put_by_id_generic: case op_get_array_length: case op_get_string_length: return true; default: return false; } } static unsigned instructionOffsetForNth(ExecState* exec, const Vector<Instruction>& instructions, int nth, bool (*predicate)(OpcodeID)) { size_t i = 0; while (i < instructions.size()) { OpcodeID currentOpcode = exec->interpreter()->getOpcodeID(instructions[i].u.opcode); if (predicate(currentOpcode)) { if (!--nth) return i; } i += opcodeLengths[currentOpcode]; } ASSERT_NOT_REACHED(); return 0; } static void printGlobalResolveInfo(const GlobalResolveInfo& resolveInfo, unsigned instructionOffset) { printf(" [%4d] %s: %s\n", instructionOffset, "resolve_global", pointerToSourceString(resolveInfo.structure).utf8().data()); } static void printStructureStubInfo(const StructureStubInfo& stubInfo, unsigned instructionOffset) { switch (stubInfo.accessType) { case access_get_by_id_self: printf(" [%4d] %s: %s\n", instructionOffset, "get_by_id_self", pointerToSourceString(stubInfo.u.getByIdSelf.baseObjectStructure).utf8().data()); return; case access_get_by_id_proto: printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(stubInfo.u.getByIdProto.baseObjectStructure).utf8().data(), pointerToSourceString(stubInfo.u.getByIdProto.prototypeStructure).utf8().data()); return; case access_get_by_id_chain: printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(stubInfo.u.getByIdChain.baseObjectStructure).utf8().data(), pointerToSourceString(stubInfo.u.getByIdChain.chain).utf8().data()); return; case access_get_by_id_self_list: printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_self_list", pointerToSourceString(stubInfo.u.getByIdSelfList.structureList).utf8().data(), stubInfo.u.getByIdSelfList.listSize); return; case access_get_by_id_proto_list: printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_proto_list", pointerToSourceString(stubInfo.u.getByIdProtoList.structureList).utf8().data(), stubInfo.u.getByIdProtoList.listSize); return; case access_put_by_id_transition: printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(stubInfo.u.putByIdTransition.previousStructure).utf8().data(), pointerToSourceString(stubInfo.u.putByIdTransition.structure).utf8().data(), pointerToSourceString(stubInfo.u.putByIdTransition.chain).utf8().data()); return; case access_put_by_id_replace: printf(" [%4d] %s: %s\n", instructionOffset, "put_by_id_replace", pointerToSourceString(stubInfo.u.putByIdReplace.baseObjectStructure).utf8().data()); return; case access_get_by_id: printf(" [%4d] %s\n", instructionOffset, "get_by_id"); return; case access_put_by_id: printf(" [%4d] %s\n", instructionOffset, "put_by_id"); return; case access_get_by_id_generic: printf(" [%4d] %s\n", instructionOffset, "op_get_by_id_generic"); return; case access_put_by_id_generic: printf(" [%4d] %s\n", instructionOffset, "op_put_by_id_generic"); return; case access_get_array_length: printf(" [%4d] %s\n", instructionOffset, "op_get_array_length"); return; case access_get_string_length: printf(" [%4d] %s\n", instructionOffset, "op_get_string_length"); return; default: ASSERT_NOT_REACHED(); } } #endif void CodeBlock::printStructure(const char* name, const Instruction* vPC, int operand) const { unsigned instructionOffset = vPC - m_instructions.begin(); printf(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).utf8().data()); } void CodeBlock::printStructures(const Instruction* vPC) const { Interpreter* interpreter = m_globalData->interpreter; unsigned instructionOffset = vPC - m_instructions.begin(); if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id)) { printStructure("get_by_id", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) { printStructure("get_by_id_self", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) { printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data(), pointerToSourceString(vPC[6].u.structureChain).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) { printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structureChain).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id)) { printStructure("put_by_id", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { printStructure("put_by_id_replace", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global)) { printStructure("resolve_global", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) { printStructure("resolve_global_dynamic", vPC, 4); return; } // These m_instructions doesn't ref Structures. ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_call) || vPC[0].u.opcode == interpreter->getOpcode(op_call_eval) || vPC[0].u.opcode == interpreter->getOpcode(op_construct)); } void CodeBlock::dump(ExecState* exec) const { if (m_instructions.isEmpty()) { printf("No instructions available.\n"); return; } size_t instructionCount = 0; for (size_t i = 0; i < m_instructions.size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(m_instructions[i].u.opcode)]) ++instructionCount; printf("%lu m_instructions; %lu bytes at %p; %d parameter(s); %d callee register(s)\n\n", static_cast<unsigned long>(instructionCount), static_cast<unsigned long>(m_instructions.size() * sizeof(Instruction)), this, m_numParameters, m_numCalleeRegisters); Vector<Instruction>::const_iterator begin = m_instructions.begin(); Vector<Instruction>::const_iterator end = m_instructions.end(); for (Vector<Instruction>::const_iterator it = begin; it != end; ++it) dump(exec, begin, it); if (!m_identifiers.isEmpty()) { printf("\nIdentifiers:\n"); size_t i = 0; do { printf(" id%u = %s\n", static_cast<unsigned>(i), m_identifiers[i].ustring().utf8().data()); ++i; } while (i != m_identifiers.size()); } if (!m_constantRegisters.isEmpty()) { printf("\nConstants:\n"); unsigned registerIndex = m_numVars; size_t i = 0; do { printf(" k%u = %s\n", registerIndex, valueToSourceString(exec, m_constantRegisters[i].get()).utf8().data()); ++i; ++registerIndex; } while (i < m_constantRegisters.size()); } if (m_rareData && !m_rareData->m_regexps.isEmpty()) { printf("\nm_regexps:\n"); size_t i = 0; do { printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_rareData->m_regexps[i].get()).utf8().data()); ++i; } while (i < m_rareData->m_regexps.size()); } #if ENABLE(JIT) if (!m_globalResolveInfos.isEmpty() || !m_structureStubInfos.isEmpty()) printf("\nStructures:\n"); if (!m_globalResolveInfos.isEmpty()) { size_t i = 0; do { printGlobalResolveInfo(m_globalResolveInfos[i], instructionOffsetForNth(exec, m_instructions, i + 1, isGlobalResolve)); ++i; } while (i < m_globalResolveInfos.size()); } if (!m_structureStubInfos.isEmpty()) { size_t i = 0; do { printStructureStubInfo(m_structureStubInfos[i], instructionOffsetForNth(exec, m_instructions, i + 1, isPropertyAccess)); ++i; } while (i < m_structureStubInfos.size()); } #else if (!m_globalResolveInstructions.isEmpty() || !m_propertyAccessInstructions.isEmpty()) printf("\nStructures:\n"); if (!m_globalResolveInstructions.isEmpty()) { size_t i = 0; do { printStructures(&m_instructions[m_globalResolveInstructions[i]]); ++i; } while (i < m_globalResolveInstructions.size()); } if (!m_propertyAccessInstructions.isEmpty()) { size_t i = 0; do { printStructures(&m_instructions[m_propertyAccessInstructions[i]]); ++i; } while (i < m_propertyAccessInstructions.size()); } #endif if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { printf("\nException Handlers:\n"); unsigned i = 0; do { printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target); ++i; } while (i < m_rareData->m_exceptionHandlers.size()); } if (m_rareData && !m_rareData->m_immediateSwitchJumpTables.isEmpty()) { printf("Immediate Switch Jump Tables:\n"); unsigned i = 0; do { printf(" %1d = {\n", i); int entry = 0; Vector<int32_t>::const_iterator end = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.end(); for (Vector<int32_t>::const_iterator iter = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; printf("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter); } printf(" }\n"); ++i; } while (i < m_rareData->m_immediateSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_characterSwitchJumpTables.isEmpty()) { printf("\nCharacter Switch Jump Tables:\n"); unsigned i = 0; do { printf(" %1d = {\n", i); int entry = 0; Vector<int32_t>::const_iterator end = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.end(); for (Vector<int32_t>::const_iterator iter = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; ASSERT(!((i + m_rareData->m_characterSwitchJumpTables[i].min) & ~0xFFFF)); UChar ch = static_cast<UChar>(entry + m_rareData->m_characterSwitchJumpTables[i].min); printf("\t\t\"%s\" => %04d\n", UString(&ch, 1).utf8().data(), *iter); } printf(" }\n"); ++i; } while (i < m_rareData->m_characterSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { printf("\nString Switch Jump Tables:\n"); unsigned i = 0; do { printf(" %1d = {\n", i); StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) printf("\t\t\"%s\" => %04d\n", UString(iter->first).utf8().data(), iter->second.branchOffset); printf(" }\n"); ++i; } while (i < m_rareData->m_stringSwitchJumpTables.size()); } printf("\n"); } void CodeBlock::dump(ExecState* exec, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator& it) const { int location = it - begin; switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { case op_enter: { printf("[%4d] enter\n", location); break; } case op_create_activation: { int r0 = (++it)->u.operand; printf("[%4d] create_activation %s\n", location, registerName(exec, r0).data()); break; } case op_create_arguments: { int r0 = (++it)->u.operand; printf("[%4d] create_arguments\t %s\n", location, registerName(exec, r0).data()); break; } case op_init_lazy_reg: { int r0 = (++it)->u.operand; printf("[%4d] init_lazy_reg\t %s\n", location, registerName(exec, r0).data()); break; } case op_get_callee: { int r0 = (++it)->u.operand; printf("[%4d] op_get_callee %s\n", location, registerName(exec, r0).data()); break; } case op_create_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] create_this %s %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_convert_this: { int r0 = (++it)->u.operand; printf("[%4d] convert_this %s\n", location, registerName(exec, r0).data()); break; } case op_convert_this_strict: { int r0 = (++it)->u.operand; printf("[%4d] convert_this_strict %s\n", location, registerName(exec, r0).data()); break; } case op_new_object: { int r0 = (++it)->u.operand; printf("[%4d] new_object\t %s\n", location, registerName(exec, r0).data()); break; } case op_new_array: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; printf("[%4d] new_array\t %s, %s, %d\n", location, registerName(exec, dst).data(), registerName(exec, argv).data(), argc); break; } case op_new_regexp: { int r0 = (++it)->u.operand; int re0 = (++it)->u.operand; printf("[%4d] new_regexp\t %s, %s\n", location, registerName(exec, r0).data(), regexpName(re0, regexp(re0)).data()); break; } case op_mov: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] mov\t\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_not: { printUnaryOp(exec, location, it, "not"); break; } case op_eq: { printBinaryOp(exec, location, it, "eq"); break; } case op_eq_null: { printUnaryOp(exec, location, it, "eq_null"); break; } case op_neq: { printBinaryOp(exec, location, it, "neq"); break; } case op_neq_null: { printUnaryOp(exec, location, it, "neq_null"); break; } case op_stricteq: { printBinaryOp(exec, location, it, "stricteq"); break; } case op_nstricteq: { printBinaryOp(exec, location, it, "nstricteq"); break; } case op_less: { printBinaryOp(exec, location, it, "less"); break; } case op_lesseq: { printBinaryOp(exec, location, it, "lesseq"); break; } case op_pre_inc: { int r0 = (++it)->u.operand; printf("[%4d] pre_inc\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_pre_dec: { int r0 = (++it)->u.operand; printf("[%4d] pre_dec\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_post_inc: { printUnaryOp(exec, location, it, "post_inc"); break; } case op_post_dec: { printUnaryOp(exec, location, it, "post_dec"); break; } case op_to_jsnumber: { printUnaryOp(exec, location, it, "to_jsnumber"); break; } case op_negate: { printUnaryOp(exec, location, it, "negate"); break; } case op_add: { printBinaryOp(exec, location, it, "add"); ++it; break; } case op_mul: { printBinaryOp(exec, location, it, "mul"); ++it; break; } case op_div: { printBinaryOp(exec, location, it, "div"); ++it; break; } case op_mod: { printBinaryOp(exec, location, it, "mod"); break; } case op_sub: { printBinaryOp(exec, location, it, "sub"); ++it; break; } case op_lshift: { printBinaryOp(exec, location, it, "lshift"); break; } case op_rshift: { printBinaryOp(exec, location, it, "rshift"); break; } case op_urshift: { printBinaryOp(exec, location, it, "urshift"); break; } case op_bitand: { printBinaryOp(exec, location, it, "bitand"); ++it; break; } case op_bitxor: { printBinaryOp(exec, location, it, "bitxor"); ++it; break; } case op_bitor: { printBinaryOp(exec, location, it, "bitor"); ++it; break; } case op_bitnot: { printUnaryOp(exec, location, it, "bitnot"); break; } case op_check_has_instance: { int base = (++it)->u.operand; printf("[%4d] check_has_instance\t\t %s\n", location, registerName(exec, base).data()); break; } case op_instanceof: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; printf("[%4d] instanceof\t\t %s, %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data()); break; } case op_typeof: { printUnaryOp(exec, location, it, "typeof"); break; } case op_is_undefined: { printUnaryOp(exec, location, it, "is_undefined"); break; } case op_is_boolean: { printUnaryOp(exec, location, it, "is_boolean"); break; } case op_is_number: { printUnaryOp(exec, location, it, "is_number"); break; } case op_is_string: { printUnaryOp(exec, location, it, "is_string"); break; } case op_is_object: { printUnaryOp(exec, location, it, "is_object"); break; } case op_is_function: { printUnaryOp(exec, location, it, "is_function"); break; } case op_in: { printBinaryOp(exec, location, it, "in"); break; } case op_resolve: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] resolve\t\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); break; } case op_resolve_skip: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int skipLevels = (++it)->u.operand; printf("[%4d] resolve_skip\t %s, %s, %d\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), skipLevels); break; } case op_resolve_global: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] resolve_global\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); it += 2; break; } case op_resolve_global_dynamic: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; JSValue scope = JSValue((++it)->u.jsCell.get()); ++it; int depth = (++it)->u.operand; printf("[%4d] resolve_global_dynamic\t %s, %s, %s, %d\n", location, registerName(exec, r0).data(), valueToSourceString(exec, scope).utf8().data(), idName(id0, m_identifiers[id0]).data(), depth); break; } case op_get_scoped_var: { int r0 = (++it)->u.operand; int index = (++it)->u.operand; int skipLevels = (++it)->u.operand; printf("[%4d] get_scoped_var\t %s, %d, %d\n", location, registerName(exec, r0).data(), index, skipLevels); break; } case op_put_scoped_var: { int index = (++it)->u.operand; int skipLevels = (++it)->u.operand; int r0 = (++it)->u.operand; printf("[%4d] put_scoped_var\t %d, %d, %s\n", location, index, skipLevels, registerName(exec, r0).data()); break; } case op_get_global_var: { int r0 = (++it)->u.operand; int index = (++it)->u.operand; printf("[%4d] get_global_var\t %s, %d\n", location, registerName(exec, r0).data(), index); break; } case op_put_global_var: { int index = (++it)->u.operand; int r0 = (++it)->u.operand; printf("[%4d] put_global_var\t %d, %s\n", location, index, registerName(exec, r0).data()); break; } case op_resolve_base: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int isStrict = (++it)->u.operand; printf("[%4d] resolve_base%s\t %s, %s\n", location, isStrict ? "_strict" : "", registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); break; } case op_ensure_property_exists: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] ensure_property_exists\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); break; } case op_resolve_with_base: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] resolve_with_base %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); break; } case op_get_by_id: { printGetByIdOp(exec, location, it, "get_by_id"); break; } case op_get_by_id_self: { printGetByIdOp(exec, location, it, "get_by_id_self"); break; } case op_get_by_id_self_list: { printGetByIdOp(exec, location, it, "get_by_id_self_list"); break; } case op_get_by_id_proto: { printGetByIdOp(exec, location, it, "get_by_id_proto"); break; } case op_get_by_id_proto_list: { printGetByIdOp(exec, location, it, "op_get_by_id_proto_list"); break; } case op_get_by_id_chain: { printGetByIdOp(exec, location, it, "get_by_id_chain"); break; } case op_get_by_id_getter_self: { printGetByIdOp(exec, location, it, "get_by_id_getter_self"); break; } case op_get_by_id_getter_self_list: { printGetByIdOp(exec, location, it, "get_by_id_getter_self_list"); break; } case op_get_by_id_getter_proto: { printGetByIdOp(exec, location, it, "get_by_id_getter_proto"); break; } case op_get_by_id_getter_proto_list: { printGetByIdOp(exec, location, it, "get_by_id_getter_proto_list"); break; } case op_get_by_id_getter_chain: { printGetByIdOp(exec, location, it, "get_by_id_getter_chain"); break; } case op_get_by_id_custom_self: { printGetByIdOp(exec, location, it, "get_by_id_custom_self"); break; } case op_get_by_id_custom_self_list: { printGetByIdOp(exec, location, it, "get_by_id_custom_self_list"); break; } case op_get_by_id_custom_proto: { printGetByIdOp(exec, location, it, "get_by_id_custom_proto"); break; } case op_get_by_id_custom_proto_list: { printGetByIdOp(exec, location, it, "get_by_id_custom_proto_list"); break; } case op_get_by_id_custom_chain: { printGetByIdOp(exec, location, it, "get_by_id_custom_chain"); break; } case op_get_by_id_generic: { printGetByIdOp(exec, location, it, "get_by_id_generic"); break; } case op_get_array_length: { printGetByIdOp(exec, location, it, "get_array_length"); break; } case op_get_string_length: { printGetByIdOp(exec, location, it, "get_string_length"); break; } case op_get_arguments_length: { printUnaryOp(exec, location, it, "get_arguments_length"); it++; break; } case op_put_by_id: { printPutByIdOp(exec, location, it, "put_by_id"); break; } case op_put_by_id_replace: { printPutByIdOp(exec, location, it, "put_by_id_replace"); break; } case op_put_by_id_transition: { printPutByIdOp(exec, location, it, "put_by_id_transition"); break; } case op_put_by_id_generic: { printPutByIdOp(exec, location, it, "put_by_id_generic"); break; } case op_put_getter: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] put_getter\t %s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); break; } case op_put_setter: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] put_setter\t %s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); break; } case op_method_check: { printf("[%4d] method_check\n", location); break; } case op_del_by_id: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] del_by_id\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); break; } case op_get_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] get_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_get_argument_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] get_argument_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_get_by_pname: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; int r4 = (++it)->u.operand; int r5 = (++it)->u.operand; printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), registerName(exec, r4).data(), registerName(exec, r5).data()); break; } case op_put_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] put_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_del_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] del_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_put_by_index: { int r0 = (++it)->u.operand; unsigned n0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] put_by_index\t %s, %u, %s\n", location, registerName(exec, r0).data(), n0, registerName(exec, r1).data()); break; } case op_jmp: { int offset = (++it)->u.operand; printf("[%4d] jmp\t\t %d(->%d)\n", location, offset, location + offset); break; } case op_loop: { int offset = (++it)->u.operand; printf("[%4d] loop\t\t %d(->%d)\n", location, offset, location + offset); break; } case op_jtrue: { printConditionalJump(exec, begin, it, location, "jtrue"); break; } case op_loop_if_true: { printConditionalJump(exec, begin, it, location, "loop_if_true"); break; } case op_loop_if_false: { printConditionalJump(exec, begin, it, location, "loop_if_false"); break; } case op_jfalse: { printConditionalJump(exec, begin, it, location, "jfalse"); break; } case op_jeq_null: { printConditionalJump(exec, begin, it, location, "jeq_null"); break; } case op_jneq_null: { printConditionalJump(exec, begin, it, location, "jneq_null"); break; } case op_jneq_ptr: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jneq_ptr\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jnless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jnless\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jnlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_loop_if_less: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] loop_if_less\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jless\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_loop_if_lesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] loop_if_lesseq\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_switch_imm: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printf("[%4d] switch_imm\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_switch_char: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printf("[%4d] switch_char\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_switch_string: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printf("[%4d] switch_string\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_new_func: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; int shouldCheck = (++it)->u.operand; printf("[%4d] new_func\t\t %s, f%d, %s\n", location, registerName(exec, r0).data(), f0, shouldCheck ? "<Checked>" : "<Unchecked>"); break; } case op_new_func_exp: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; printf("[%4d] new_func_exp\t %s, f%d\n", location, registerName(exec, r0).data(), f0); break; } case op_call: { int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; printf("[%4d] call\t\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset); break; } case op_call_eval: { int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; printf("[%4d] call_eval\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset); break; } case op_call_varargs: { int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; printf("[%4d] call_varargs\t %s, %s, %d\n", location, registerName(exec, func).data(), registerName(exec, argCount).data(), registerOffset); break; } case op_load_varargs: { printUnaryOp(exec, location, it, "load_varargs"); break; } case op_tear_off_activation: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] tear_off_activation\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_tear_off_arguments: { int r0 = (++it)->u.operand; printf("[%4d] tear_off_arguments\t %s\n", location, registerName(exec, r0).data()); break; } case op_ret: { int r0 = (++it)->u.operand; printf("[%4d] ret\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_call_put_result: { int r0 = (++it)->u.operand; printf("[%4d] op_call_put_result\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_ret_object_or_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] constructor_ret\t\t %s %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_construct: { int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; printf("[%4d] construct\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset); break; } case op_strcat: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int count = (++it)->u.operand; printf("[%4d] strcat\t\t %s, %s, %d\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), count); break; } case op_to_primitive: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] to_primitive\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_get_pnames: { int r0 = it[1].u.operand; int r1 = it[2].u.operand; int r2 = it[3].u.operand; int r3 = it[4].u.operand; int offset = it[5].u.operand; printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), offset, location + offset); it += OPCODE_LENGTH(op_get_pnames) - 1; break; } case op_next_pname: { int dest = it[1].u.operand; int base = it[2].u.operand; int i = it[3].u.operand; int size = it[4].u.operand; int iter = it[5].u.operand; int offset = it[6].u.operand; printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)\n", location, registerName(exec, dest).data(), registerName(exec, base).data(), registerName(exec, i).data(), registerName(exec, size).data(), registerName(exec, iter).data(), offset, location + offset); it += OPCODE_LENGTH(op_next_pname) - 1; break; } case op_push_scope: { int r0 = (++it)->u.operand; printf("[%4d] push_scope\t %s\n", location, registerName(exec, r0).data()); break; } case op_pop_scope: { printf("[%4d] pop_scope\n", location); break; } case op_push_new_scope: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] push_new_scope \t%s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); break; } case op_jmp_scopes: { int scopeDelta = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jmp_scopes\t^%d, %d(->%d)\n", location, scopeDelta, offset, location + offset); break; } case op_catch: { int r0 = (++it)->u.operand; printf("[%4d] catch\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_throw: { int r0 = (++it)->u.operand; printf("[%4d] throw\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_throw_reference_error: { int k0 = (++it)->u.operand; printf("[%4d] throw_reference_error\t %s\n", location, constantName(exec, k0, getConstant(k0)).data()); break; } case op_jsr: { int retAddrDst = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jsr\t\t %s, %d(->%d)\n", location, registerName(exec, retAddrDst).data(), offset, location + offset); break; } case op_sret: { int retAddrSrc = (++it)->u.operand; printf("[%4d] sret\t\t %s\n", location, registerName(exec, retAddrSrc).data()); break; } case op_debug: { int debugHookID = (++it)->u.operand; int firstLine = (++it)->u.operand; int lastLine = (++it)->u.operand; printf("[%4d] debug\t\t %s, %d, %d\n", location, debugHookName(debugHookID), firstLine, lastLine); break; } case op_profile_will_call: { int function = (++it)->u.operand; printf("[%4d] profile_will_call %s\n", location, registerName(exec, function).data()); break; } case op_profile_did_call: { int function = (++it)->u.operand; printf("[%4d] profile_did_call\t %s\n", location, registerName(exec, function).data()); break; } case op_end: { int r0 = (++it)->u.operand; printf("[%4d] end\t\t %s\n", location, registerName(exec, r0).data()); break; } } } #endif // !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING) #if DUMP_CODE_BLOCK_STATISTICS static HashSet<CodeBlock*> liveCodeBlockSet; #endif #define FOR_EACH_MEMBER_VECTOR(macro) \ macro(instructions) \ macro(globalResolveInfos) \ macro(structureStubInfos) \ macro(callLinkInfos) \ macro(linkedCallerList) \ macro(identifiers) \ macro(functionExpressions) \ macro(constantRegisters) #define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \ macro(regexps) \ macro(functions) \ macro(exceptionHandlers) \ macro(immediateSwitchJumpTables) \ macro(characterSwitchJumpTables) \ macro(stringSwitchJumpTables) \ macro(evalCodeCache) \ macro(expressionInfo) \ macro(lineInfo) \ macro(callReturnIndexVector) template<typename T> static size_t sizeInBytes(const Vector<T>& vector) { return vector.capacity() * sizeof(T); } void CodeBlock::dumpStatistics() { #if DUMP_CODE_BLOCK_STATISTICS #define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0; FOR_EACH_MEMBER_VECTOR(DEFINE_VARS) FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS) #undef DEFINE_VARS // Non-vector data members size_t evalCodeCacheIsNotEmpty = 0; size_t symbolTableIsNotEmpty = 0; size_t symbolTableTotalSize = 0; size_t hasRareData = 0; size_t isFunctionCode = 0; size_t isGlobalCode = 0; size_t isEvalCode = 0; HashSet<CodeBlock*>::const_iterator end = liveCodeBlockSet.end(); for (HashSet<CodeBlock*>::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) { CodeBlock* codeBlock = *it; #define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); } FOR_EACH_MEMBER_VECTOR(GET_STATS) #undef GET_STATS if (!codeBlock->m_symbolTable.isEmpty()) { symbolTableIsNotEmpty++; symbolTableTotalSize += (codeBlock->m_symbolTable.capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType))); } if (codeBlock->m_rareData) { hasRareData++; #define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); } FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS) #undef GET_STATS if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty()) evalCodeCacheIsNotEmpty++; } switch (codeBlock->codeType()) { case FunctionCode: ++isFunctionCode; break; case GlobalCode: ++isGlobalCode; break; case EvalCode: ++isEvalCode; break; } } size_t totalSize = 0; #define GET_TOTAL_SIZE(name) totalSize += name##TotalSize; FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE) FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE) #undef GET_TOTAL_SIZE totalSize += symbolTableTotalSize; totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock)); printf("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size()); printf("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock)); printf("Size of all CodeBlocks: %zu\n", totalSize); printf("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size()); printf("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast<double>(isFunctionCode) * 100.0 / liveCodeBlockSet.size()); printf("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast<double>(isGlobalCode) * 100.0 / liveCodeBlockSet.size()); printf("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast<double>(isEvalCode) * 100.0 / liveCodeBlockSet.size()); printf("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast<double>(hasRareData) * 100.0 / liveCodeBlockSet.size()); #define PRINT_STATS(name) printf("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); printf("Size of all " #name ": %zu\n", name##TotalSize); FOR_EACH_MEMBER_VECTOR(PRINT_STATS) FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS) #undef PRINT_STATS printf("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty); printf("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty); printf("Size of all symbolTables: %zu\n", symbolTableTotalSize); #else printf("Dumping CodeBlock statistics is not enabled.\n"); #endif } CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject *globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, SymbolTable* symTab, bool isConstructor) : m_globalObject(globalObject->globalData(), ownerExecutable, globalObject) , m_heap(&m_globalObject->globalData().heap) , m_numCalleeRegisters(0) , m_numVars(0) , m_numParameters(0) , m_isConstructor(isConstructor) , m_ownerExecutable(globalObject->globalData(), ownerExecutable, ownerExecutable) , m_globalData(0) #ifndef NDEBUG , m_instructionCount(0) #endif , m_argumentsRegister(-1) , m_needsFullScopeChain(ownerExecutable->needsActivation()) , m_usesEval(ownerExecutable->usesEval()) , m_isNumericCompareFunction(false) , m_isStrictMode(ownerExecutable->isStrictMode()) , m_codeType(codeType) , m_source(sourceProvider) , m_sourceOffset(sourceOffset) , m_symbolTable(symTab) { ASSERT(m_source); #if DUMP_CODE_BLOCK_STATISTICS liveCodeBlockSet.add(this); #endif } CodeBlock::~CodeBlock() { #if ENABLE(JIT) for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) m_structureStubInfos[i].deref(); #endif // ENABLE(JIT) #if DUMP_CODE_BLOCK_STATISTICS liveCodeBlockSet.remove(this); #endif } void CodeBlock::markStructures(MarkStack& markStack, Instruction* vPC) const { Interpreter* interpreter = m_globalData->interpreter; if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self)) { markStack.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto)) { markStack.append(&vPC[4].u.structure); markStack.append(&vPC[5].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_chain)) { markStack.append(&vPC[4].u.structure); markStack.append(&vPC[5].u.structureChain); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { markStack.append(&vPC[4].u.structure); markStack.append(&vPC[5].u.structure); markStack.append(&vPC[6].u.structureChain); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { markStack.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global) || vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) { if (vPC[3].u.structure) markStack.append(&vPC[3].u.structure); return; } if ((vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto_list)) || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self_list)) || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto_list)) || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self_list)) || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto_list)) || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self_list))) { PolymorphicAccessStructureList* polymorphicStructures = vPC[4].u.polymorphicStructures; polymorphicStructures->markAggregate(markStack, vPC[5].u.operand); delete polymorphicStructures; return; } // These instructions don't ref their Structures. ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_get_array_length) || vPC[0].u.opcode == interpreter->getOpcode(op_get_string_length)); } void EvalCodeCache::markAggregate(MarkStack& markStack) { EvalCacheMap::iterator end = m_cacheMap.end(); for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) markStack.append(&ptr->second); } void CodeBlock::markAggregate(MarkStack& markStack) { markStack.append(&m_globalObject); markStack.append(&m_ownerExecutable); if (m_rareData) m_rareData->m_evalCodeCache.markAggregate(markStack); markStack.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); for (size_t i = 0; i < m_functionExprs.size(); ++i) markStack.append(&m_functionExprs[i]); for (size_t i = 0; i < m_functionDecls.size(); ++i) markStack.append(&m_functionDecls[i]); #if ENABLE(JIT_OPTIMIZE_CALL) for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) if (callLinkInfo(i).isLinked()) markStack.append(&callLinkInfo(i).callee); #endif #if ENABLE(INTERPRETER) for (size_t size = m_propertyAccessInstructions.size(), i = 0; i < size; ++i) markStructures(markStack, &m_instructions[m_propertyAccessInstructions[i]]); #endif #if ENABLE(JIT) for (size_t size = m_globalResolveInfos.size(), i = 0; i < size; ++i) { if (m_globalResolveInfos[i].structure) markStack.append(&m_globalResolveInfos[i].structure); } for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) m_structureStubInfos[i].markAggregate(markStack); for (size_t size = m_methodCallLinkInfos.size(), i = 0; i < size; ++i) { if (m_methodCallLinkInfos[i].cachedStructure) { // Both members must be filled at the same time markStack.append(&m_methodCallLinkInfos[i].cachedStructure); ASSERT(!!m_methodCallLinkInfos[i].cachedPrototypeStructure); markStack.append(&m_methodCallLinkInfos[i].cachedPrototypeStructure); } } #endif } HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset) { ASSERT(bytecodeOffset < m_instructionCount); if (!m_rareData) return 0; Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers; for (size_t i = 0; i < exceptionHandlers.size(); ++i) { // Handlers are ordered innermost first, so the first handler we encounter // that contains the source address is the correct handler to use. if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end >= bytecodeOffset) return &exceptionHandlers[i]; } return 0; } int CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) { ASSERT(bytecodeOffset < m_instructionCount); if (!m_rareData) return m_ownerExecutable->source().firstLine(); Vector<LineInfo>& lineInfo = m_rareData->m_lineInfo; int low = 0; int high = lineInfo.size(); while (low < high) { int mid = low + (high - low) / 2; if (lineInfo[mid].instructionOffset <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low) return m_ownerExecutable->source().firstLine(); return lineInfo[low - 1].lineNumber; } void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset) { ASSERT(bytecodeOffset < m_instructionCount); if (!m_rareData) { startOffset = 0; endOffset = 0; divot = 0; return; } Vector<ExpressionRangeInfo>& expressionInfo = m_rareData->m_expressionInfo; int low = 0; int high = expressionInfo.size(); while (low < high) { int mid = low + (high - low) / 2; if (expressionInfo[mid].instructionOffset <= bytecodeOffset) low = mid + 1; else high = mid; } ASSERT(low); if (!low) { startOffset = 0; endOffset = 0; divot = 0; return; } startOffset = expressionInfo[low - 1].startOffset; endOffset = expressionInfo[low - 1].endOffset; divot = expressionInfo[low - 1].divotPoint + m_sourceOffset; return; } #if ENABLE(INTERPRETER) bool CodeBlock::hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset) { if (m_globalResolveInstructions.isEmpty()) return false; int low = 0; int high = m_globalResolveInstructions.size(); while (low < high) { int mid = low + (high - low) / 2; if (m_globalResolveInstructions[mid] <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low || m_globalResolveInstructions[low - 1] != bytecodeOffset) return false; return true; } #endif #if ENABLE(JIT) bool CodeBlock::hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset) { if (m_globalResolveInfos.isEmpty()) return false; int low = 0; int high = m_globalResolveInfos.size(); while (low < high) { int mid = low + (high - low) / 2; if (m_globalResolveInfos[mid].bytecodeOffset <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low || m_globalResolveInfos[low - 1].bytecodeOffset != bytecodeOffset) return false; return true; } #endif void CodeBlock::shrinkToFit() { m_instructions.shrinkToFit(); #if ENABLE(INTERPRETER) m_propertyAccessInstructions.shrinkToFit(); m_globalResolveInstructions.shrinkToFit(); #endif #if ENABLE(JIT) m_structureStubInfos.shrinkToFit(); m_globalResolveInfos.shrinkToFit(); m_callLinkInfos.shrinkToFit(); #endif m_identifiers.shrinkToFit(); m_functionDecls.shrinkToFit(); m_functionExprs.shrinkToFit(); m_constantRegisters.shrinkToFit(); if (m_rareData) { m_rareData->m_exceptionHandlers.shrinkToFit(); m_rareData->m_regexps.shrinkToFit(); m_rareData->m_immediateSwitchJumpTables.shrinkToFit(); m_rareData->m_characterSwitchJumpTables.shrinkToFit(); m_rareData->m_stringSwitchJumpTables.shrinkToFit(); m_rareData->m_expressionInfo.shrinkToFit(); m_rareData->m_lineInfo.shrinkToFit(); } } void CodeBlock::createActivation(CallFrame* callFrame) { ASSERT(codeType() == FunctionCode); ASSERT(needsFullScopeChain()); ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue()); JSActivation* activation = new (callFrame) JSActivation(callFrame, static_cast<FunctionExecutable*>(ownerExecutable())); callFrame->uncheckedR(activationRegister()) = JSValue(activation); callFrame->setScopeChain(callFrame->scopeChain()->push(activation)); } } // namespace JSC