// // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/ParseHelper.h" #include <stdarg.h> #include <stdio.h> #include "compiler/glslang.h" #include "compiler/osinclude.h" #include "compiler/InitializeParseContext.h" extern "C" { extern int InitPreprocessor(); extern int FinalizePreprocessor(); extern void PredefineIntMacro(const char *name, int value); } static void ReportInfo(TInfoSinkBase& sink, TPrefixType type, TSourceLoc loc, const char* reason, const char* token, const char* extraInfo) { /* VC++ format: file(linenum) : error #: 'token' : extrainfo */ sink.prefix(type); sink.location(loc); sink << "'" << token << "' : " << reason << " " << extraInfo << "\n"; } static void DefineExtensionMacros(const TExtensionBehavior& extBehavior) { for (TExtensionBehavior::const_iterator iter = extBehavior.begin(); iter != extBehavior.end(); ++iter) { PredefineIntMacro(iter->first.c_str(), 1); } } /////////////////////////////////////////////////////////////////////// // // Sub- vector and matrix fields // //////////////////////////////////////////////////////////////////////// // // Look at a '.' field selector string and change it into offsets // for a vector. // bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, int line) { fields.num = (int) compString.size(); if (fields.num > 4) { error(line, "illegal vector field selection", compString.c_str(), ""); return false; } enum { exyzw, ergba, estpq, } fieldSet[4]; for (int i = 0; i < fields.num; ++i) { switch (compString[i]) { case 'x': fields.offsets[i] = 0; fieldSet[i] = exyzw; break; case 'r': fields.offsets[i] = 0; fieldSet[i] = ergba; break; case 's': fields.offsets[i] = 0; fieldSet[i] = estpq; break; case 'y': fields.offsets[i] = 1; fieldSet[i] = exyzw; break; case 'g': fields.offsets[i] = 1; fieldSet[i] = ergba; break; case 't': fields.offsets[i] = 1; fieldSet[i] = estpq; break; case 'z': fields.offsets[i] = 2; fieldSet[i] = exyzw; break; case 'b': fields.offsets[i] = 2; fieldSet[i] = ergba; break; case 'p': fields.offsets[i] = 2; fieldSet[i] = estpq; break; case 'w': fields.offsets[i] = 3; fieldSet[i] = exyzw; break; case 'a': fields.offsets[i] = 3; fieldSet[i] = ergba; break; case 'q': fields.offsets[i] = 3; fieldSet[i] = estpq; break; default: error(line, "illegal vector field selection", compString.c_str(), ""); return false; } } for (int i = 0; i < fields.num; ++i) { if (fields.offsets[i] >= vecSize) { error(line, "vector field selection out of range", compString.c_str(), ""); return false; } if (i > 0) { if (fieldSet[i] != fieldSet[i-1]) { error(line, "illegal - vector component fields not from the same set", compString.c_str(), ""); return false; } } } return true; } // // Look at a '.' field selector string and change it into offsets // for a matrix. // bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, int line) { fields.wholeRow = false; fields.wholeCol = false; fields.row = -1; fields.col = -1; if (compString.size() != 2) { error(line, "illegal length of matrix field selection", compString.c_str(), ""); return false; } if (compString[0] == '_') { if (compString[1] < '0' || compString[1] > '3') { error(line, "illegal matrix field selection", compString.c_str(), ""); return false; } fields.wholeCol = true; fields.col = compString[1] - '0'; } else if (compString[1] == '_') { if (compString[0] < '0' || compString[0] > '3') { error(line, "illegal matrix field selection", compString.c_str(), ""); return false; } fields.wholeRow = true; fields.row = compString[0] - '0'; } else { if (compString[0] < '0' || compString[0] > '3' || compString[1] < '0' || compString[1] > '3') { error(line, "illegal matrix field selection", compString.c_str(), ""); return false; } fields.row = compString[0] - '0'; fields.col = compString[1] - '0'; } if (fields.row >= matSize || fields.col >= matSize) { error(line, "matrix field selection out of range", compString.c_str(), ""); return false; } return true; } /////////////////////////////////////////////////////////////////////// // // Errors // //////////////////////////////////////////////////////////////////////// // // Track whether errors have occurred. // void TParseContext::recover() { recoveredFromError = true; } // // Used by flex/bison to output all syntax and parsing errors. // void TParseContext::error(TSourceLoc loc, const char* reason, const char* token, const char* extraInfoFormat, ...) { char extraInfo[512]; va_list marker; va_start(marker, extraInfoFormat); vsnprintf(extraInfo, sizeof(extraInfo), extraInfoFormat, marker); ReportInfo(infoSink.info, EPrefixError, loc, reason, token, extraInfo); va_end(marker); ++numErrors; } void TParseContext::warning(TSourceLoc loc, const char* reason, const char* token, const char* extraInfoFormat, ...) { char extraInfo[512]; va_list marker; va_start(marker, extraInfoFormat); vsnprintf(extraInfo, sizeof(extraInfo), extraInfoFormat, marker); ReportInfo(infoSink.info, EPrefixWarning, loc, reason, token, extraInfo); va_end(marker); } // // Same error message for all places assignments don't work. // void TParseContext::assignError(int line, const char* op, TString left, TString right) { error(line, "", op, "cannot convert from '%s' to '%s'", right.c_str(), left.c_str()); } // // Same error message for all places unary operations don't work. // void TParseContext::unaryOpError(int line, const char* op, TString operand) { error(line, " wrong operand type", op, "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", op, operand.c_str()); } // // Same error message for all binary operations don't work. // void TParseContext::binaryOpError(int line, const char* op, TString left, TString right) { error(line, " wrong operand types ", op, "no operation '%s' exists that takes a left-hand operand of type '%s' and " "a right operand of type '%s' (or there is no acceptable conversion)", op, left.c_str(), right.c_str()); } bool TParseContext::precisionErrorCheck(int line, TPrecision precision, TBasicType type){ switch( type ){ case EbtFloat: if( precision == EbpUndefined ){ error( line, "No precision specified for (float)", "", "" ); return true; } break; case EbtInt: if( precision == EbpUndefined ){ error( line, "No precision specified (int)", "", "" ); return true; } break; } return false; } // // Both test and if necessary, spit out an error, to see if the node is really // an l-value that can be operated on this way. // // Returns true if the was an error. // bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* node) { TIntermSymbol* symNode = node->getAsSymbolNode(); TIntermBinary* binaryNode = node->getAsBinaryNode(); if (binaryNode) { bool errorReturn; switch(binaryNode->getOp()) { case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: return lValueErrorCheck(line, op, binaryNode->getLeft()); case EOpVectorSwizzle: errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft()); if (!errorReturn) { int offset[4] = {0,0,0,0}; TIntermTyped* rightNode = binaryNode->getRight(); TIntermAggregate *aggrNode = rightNode->getAsAggregate(); for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); p != aggrNode->getSequence().end(); p++) { int value = (*p)->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getIConst(); offset[value]++; if (offset[value] > 1) { error(line, " l-value of swizzle cannot have duplicate components", op, "", ""); return true; } } } return errorReturn; default: break; } error(line, " l-value required", op, "", ""); return true; } const char* symbol = 0; if (symNode != 0) symbol = symNode->getSymbol().c_str(); const char* message = 0; switch (node->getQualifier()) { case EvqConst: message = "can't modify a const"; break; case EvqConstReadOnly: message = "can't modify a const"; break; case EvqAttribute: message = "can't modify an attribute"; break; case EvqUniform: message = "can't modify a uniform"; break; case EvqVaryingIn: message = "can't modify a varying"; break; case EvqInput: message = "can't modify an input"; break; case EvqFragCoord: message = "can't modify gl_FragCoord"; break; case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; case EvqPointCoord: message = "can't modify gl_PointCoord"; break; default: // // Type that can't be written to? // switch (node->getBasicType()) { case EbtSampler2D: case EbtSamplerCube: message = "can't modify a sampler"; break; case EbtVoid: message = "can't modify void"; break; default: break; } } if (message == 0 && binaryNode == 0 && symNode == 0) { error(line, " l-value required", op, "", ""); return true; } // // Everything else is okay, no error. // if (message == 0) return false; // // If we get here, we have an error and a message. // if (symNode) error(line, " l-value required", op, "\"%s\" (%s)", symbol, message); else error(line, " l-value required", op, "(%s)", message); return true; } // // Both test, and if necessary spit out an error, to see if the node is really // a constant. // // Returns true if the was an error. // bool TParseContext::constErrorCheck(TIntermTyped* node) { if (node->getQualifier() == EvqConst) return false; error(node->getLine(), "constant expression required", "", ""); return true; } // // Both test, and if necessary spit out an error, to see if the node is really // an integer. // // Returns true if the was an error. // bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token) { if (node->getBasicType() == EbtInt && node->getNominalSize() == 1) return false; error(node->getLine(), "integer expression required", token, ""); return true; } // // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. // // Returns true if the was an error. // bool TParseContext::globalErrorCheck(int line, bool global, const char* token) { if (global) return false; error(line, "only allowed at global scope", token, ""); return true; } // // For now, keep it simple: if it starts "gl_", it's reserved, independent // of scope. Except, if the symbol table is at the built-in push-level, // which is when we are parsing built-ins. // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a // webgl shader. // // Returns true if there was an error. // bool TParseContext::reservedErrorCheck(int line, const TString& identifier) { static const char* reservedErrMsg = "reserved built-in name"; if (!symbolTable.atBuiltInLevel()) { if (identifier.substr(0, 3) == TString("gl_")) { error(line, reservedErrMsg, "gl_", ""); return true; } if (shaderSpec == SH_WEBGL_SPEC) { if (identifier.substr(0, 6) == TString("webgl_")) { error(line, reservedErrMsg, "webgl_", ""); return true; } if (identifier.substr(0, 7) == TString("_webgl_")) { error(line, reservedErrMsg, "_webgl_", ""); return true; } } if (identifier.find("__") != TString::npos) { //error(line, "Two consecutive underscores are reserved for future use.", identifier.c_str(), "", ""); //return true; infoSink.info.message(EPrefixWarning, "Two consecutive underscores are reserved for future use.", line); return false; } } return false; } // // Make sure there is enough data provided to the constructor to build // something of the type of the constructor. Also returns the type of // the constructor. // // Returns true if there was an error in construction. // bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type) { *type = function.getReturnType(); bool constructingMatrix = false; switch(op) { case EOpConstructMat2: case EOpConstructMat3: case EOpConstructMat4: constructingMatrix = true; break; default: break; } // // Note: It's okay to have too many components available, but not okay to have unused // arguments. 'full' will go to true when enough args have been seen. If we loop // again, there is an extra argument, so 'overfull' will become true. // int size = 0; bool constType = true; bool full = false; bool overFull = false; bool matrixInMatrix = false; bool arrayArg = false; for (int i = 0; i < function.getParamCount(); ++i) { const TParameter& param = function.getParam(i); size += param.type->getObjectSize(); if (constructingMatrix && param.type->isMatrix()) matrixInMatrix = true; if (full) overFull = true; if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize()) full = true; if (param.type->getQualifier() != EvqConst) constType = false; if (param.type->isArray()) arrayArg = true; } if (constType) type->setQualifier(EvqConst); if (type->isArray() && type->getArraySize() != function.getParamCount()) { error(line, "array constructor needs one argument per array element", "constructor", ""); return true; } if (arrayArg && op != EOpConstructStruct) { error(line, "constructing from a non-dereferenced array", "constructor", ""); return true; } if (matrixInMatrix && !type->isArray()) { if (function.getParamCount() != 1) { error(line, "constructing matrix from matrix can only take one argument", "constructor", ""); return true; } } if (overFull) { error(line, "too many arguments", "constructor", ""); return true; } if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->size()) != function.getParamCount()) { error(line, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); return true; } if (!type->isMatrix()) { if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) || (op == EOpConstructStruct && size < type->getObjectSize())) { error(line, "not enough data provided for construction", "constructor", ""); return true; } } TIntermTyped* typed = node->getAsTyped(); if (typed == 0) { error(line, "constructor argument does not have a type", "constructor", ""); return true; } if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) { error(line, "cannot convert a sampler", "constructor", ""); return true; } if (typed->getBasicType() == EbtVoid) { error(line, "cannot convert a void", "constructor", ""); return true; } return false; } // This function checks to see if a void variable has been declared and raise an error message for such a case // // returns true in case of an error // bool TParseContext::voidErrorCheck(int line, const TString& identifier, const TPublicType& pubType) { if (pubType.type == EbtVoid) { error(line, "illegal use of type 'void'", identifier.c_str(), ""); return true; } return false; } // This function checks to see if the node (for the expression) contains a scalar boolean expression or not // // returns true in case of an error // bool TParseContext::boolErrorCheck(int line, const TIntermTyped* type) { if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) { error(line, "boolean expression expected", "", ""); return true; } return false; } // This function checks to see if the node (for the expression) contains a scalar boolean expression or not // // returns true in case of an error // bool TParseContext::boolErrorCheck(int line, const TPublicType& pType) { if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) { error(line, "boolean expression expected", "", ""); return true; } return false; } bool TParseContext::samplerErrorCheck(int line, const TPublicType& pType, const char* reason) { if (pType.type == EbtStruct) { if (containsSampler(*pType.userDef)) { error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); return true; } return false; } else if (IsSampler(pType.type)) { error(line, reason, getBasicString(pType.type), ""); return true; } return false; } bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType) { if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) && pType.type == EbtStruct) { error(line, "cannot be used with a structure", getQualifierString(pType.qualifier), ""); return true; } if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform")) return true; return false; } bool TParseContext::parameterSamplerErrorCheck(int line, TQualifier qualifier, const TType& type) { if ((qualifier == EvqOut || qualifier == EvqInOut) && type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) { error(line, "samplers cannot be output parameters", type.getBasicString(), ""); return true; } return false; } bool TParseContext::containsSampler(TType& type) { if (IsSampler(type.getBasicType())) return true; if (type.getBasicType() == EbtStruct) { TTypeList& structure = *type.getStruct(); for (unsigned int i = 0; i < structure.size(); ++i) { if (containsSampler(*structure[i].type)) return true; } } return false; } // // Do size checking for an array type's size. // // Returns true if there was an error. // bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size) { TIntermConstantUnion* constant = expr->getAsConstantUnion(); if (constant == 0 || constant->getBasicType() != EbtInt) { error(line, "array size must be a constant integer expression", "", ""); return true; } size = constant->getUnionArrayPointer()->getIConst(); if (size <= 0) { error(line, "array size must be a positive integer", "", ""); size = 1; return true; } return false; } // // See if this qualifier can be an array. // // Returns true if there is an error. // bool TParseContext::arrayQualifierErrorCheck(int line, TPublicType type) { if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) { error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str(), ""); return true; } return false; } // // See if this type can be an array. // // Returns true if there is an error. // bool TParseContext::arrayTypeErrorCheck(int line, TPublicType type) { // // Can the type be an array? // if (type.array) { error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str(), ""); return true; } return false; } // // Do all the semantic checking for declaring an array, with and // without a size, and make the right changes to the symbol table. // // size == 0 means no specified size. // // Returns true if there was an error. // bool TParseContext::arrayErrorCheck(int line, TString& identifier, TPublicType type, TVariable*& variable) { // // Don't check for reserved word use until after we know it's not in the symbol table, // because reserved arrays can be redeclared. // bool builtIn = false; bool sameScope = false; TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope); if (symbol == 0 || !sameScope) { if (reservedErrorCheck(line, identifier)) return true; variable = new TVariable(&identifier, TType(type)); if (type.arraySize) variable->getType().setArraySize(type.arraySize); if (! symbolTable.insert(*variable)) { delete variable; error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str(), ""); return true; } } else { if (! symbol->isVariable()) { error(line, "variable expected", identifier.c_str(), ""); return true; } variable = static_cast<TVariable*>(symbol); if (! variable->getType().isArray()) { error(line, "redeclaring non-array as array", identifier.c_str(), ""); return true; } if (variable->getType().getArraySize() > 0) { error(line, "redeclaration of array with size", identifier.c_str(), ""); return true; } if (! variable->getType().sameElementType(TType(type))) { error(line, "redeclaration of array with a different type", identifier.c_str(), ""); return true; } TType* t = variable->getArrayInformationType(); while (t != 0) { if (t->getMaxArraySize() > type.arraySize) { error(line, "higher index value already used for the array", identifier.c_str(), ""); return true; } t->setArraySize(type.arraySize); t = t->getArrayInformationType(); } if (type.arraySize) variable->getType().setArraySize(type.arraySize); } if (voidErrorCheck(line, identifier, type)) return true; return false; } bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, TSourceLoc line) { bool builtIn = false; TSymbol* symbol = symbolTable.find(node->getSymbol(), &builtIn); if (symbol == 0) { error(line, " undeclared identifier", node->getSymbol().c_str(), ""); return true; } TVariable* variable = static_cast<TVariable*>(symbol); type->setArrayInformationType(variable->getArrayInformationType()); variable->updateArrayInformationType(type); // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers // its an error if (node->getSymbol() == "gl_FragData") { TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", &builtIn); if (fragData == 0) { infoSink.info.message(EPrefixInternalError, "gl_MaxDrawBuffers not defined", line); return true; } int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst(); if (fragDataValue <= size) { error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers", ""); return true; } } // we dont want to update the maxArraySize when this flag is not set, we just want to include this // node type in the chain of node types so that its updated when a higher maxArraySize comes in. if (!updateFlag) return false; size++; variable->getType().setMaxArraySize(size); type->setMaxArraySize(size); TType* tt = type; while(tt->getArrayInformationType() != 0) { tt = tt->getArrayInformationType(); tt->setMaxArraySize(size); } return false; } // // Enforce non-initializer type/qualifier rules. // // Returns true if there was an error. // bool TParseContext::nonInitConstErrorCheck(int line, TString& identifier, TPublicType& type) { // // Make the qualifier make sense. // if (type.qualifier == EvqConst) { type.qualifier = EvqTemporary; error(line, "variables with qualifier 'const' must be initialized", identifier.c_str(), ""); return true; } return false; } // // Do semantic checking for a variable declaration that has no initializer, // and update the symbol table. // // Returns true if there was an error. // bool TParseContext::nonInitErrorCheck(int line, TString& identifier, TPublicType& type) { if (reservedErrorCheck(line, identifier)) recover(); TVariable* variable = new TVariable(&identifier, TType(type)); if (! symbolTable.insert(*variable)) { error(line, "redefinition", variable->getName().c_str(), ""); delete variable; return true; } if (voidErrorCheck(line, identifier, type)) return true; return false; } bool TParseContext::paramErrorCheck(int line, TQualifier qualifier, TQualifier paramQualifier, TType* type) { if (qualifier != EvqConst && qualifier != EvqTemporary) { error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier), ""); return true; } if (qualifier == EvqConst && paramQualifier != EvqIn) { error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier)); return true; } if (qualifier == EvqConst) type->setQualifier(EvqConstReadOnly); else type->setQualifier(paramQualifier); return false; } bool TParseContext::extensionErrorCheck(int line, const TString& extension) { TExtensionBehavior::const_iterator iter = extensionBehavior.find(extension); if (iter == extensionBehavior.end()) { error(line, "extension", extension.c_str(), "is not supported"); return true; } if (iter->second == EBhDisable) { error(line, "extension", extension.c_str(), "is disabled"); return true; } if (iter->second == EBhWarn) { TString msg = "extension " + extension + " is being used"; infoSink.info.message(EPrefixWarning, msg.c_str(), line); return false; } return false; } ///////////////////////////////////////////////////////////////////////////////// // // Non-Errors. // ///////////////////////////////////////////////////////////////////////////////// // // Look up a function name in the symbol table, and make sure it is a function. // // Return the function symbol if found, otherwise 0. // const TFunction* TParseContext::findFunction(int line, TFunction* call, bool *builtIn) { // First find by unmangled name to check whether the function name has been // hidden by a variable name or struct typename. const TSymbol* symbol = symbolTable.find(call->getName(), builtIn); if (symbol == 0) { symbol = symbolTable.find(call->getMangledName(), builtIn); } if (symbol == 0) { error(line, "no matching overloaded function found", call->getName().c_str(), ""); return 0; } if (!symbol->isFunction()) { error(line, "function name expected", call->getName().c_str(), ""); return 0; } return static_cast<const TFunction*>(symbol); } // // Initializers show up in several places in the grammar. Have one set of // code to handle them here. // bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType, TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable) { TType type = TType(pType); if (variable == 0) { if (reservedErrorCheck(line, identifier)) return true; if (voidErrorCheck(line, identifier, pType)) return true; // // add variable to symbol table // variable = new TVariable(&identifier, type); if (! symbolTable.insert(*variable)) { error(line, "redefinition", variable->getName().c_str(), ""); return true; // don't delete variable, it's used by error recovery, and the pool // pop will take care of the memory } } // // identifier must be of type constant, a global, or a temporary // TQualifier qualifier = variable->getType().getQualifier(); if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) { error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString(), ""); return true; } // // test for and propagate constant // if (qualifier == EvqConst) { if (qualifier != initializer->getType().getQualifier()) { error(line, " assigning non-constant to", "=", "'%s'", variable->getType().getCompleteString().c_str()); variable->getType().setQualifier(EvqTemporary); return true; } if (type != initializer->getType()) { error(line, " non-matching types for const initializer ", variable->getType().getQualifierString(), ""); variable->getType().setQualifier(EvqTemporary); return true; } if (initializer->getAsConstantUnion()) { ConstantUnion* unionArray = variable->getConstPointer(); if (type.getObjectSize() == 1 && type.getBasicType() != EbtStruct) { *unionArray = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0]; } else { variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); } } else if (initializer->getAsSymbolNode()) { const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol()); const TVariable* tVar = static_cast<const TVariable*>(symbol); ConstantUnion* constArray = tVar->getConstPointer(); variable->shareConstPointer(constArray); } else { error(line, " cannot assign to", "=", "'%s'", variable->getType().getCompleteString().c_str()); variable->getType().setQualifier(EvqTemporary); return true; } } if (qualifier != EvqConst) { TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line); intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line); if (intermNode == 0) { assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); return true; } } else intermNode = 0; return false; } bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode) { ASSERT(aggrNode != NULL); if (!aggrNode->isConstructor()) return false; bool allConstant = true; // check if all the child nodes are constants so that they can be inserted into // the parent node TIntermSequence &sequence = aggrNode->getSequence() ; for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) { if (!(*p)->getAsTyped()->getAsConstantUnion()) return false; } return allConstant; } // This function is used to test for the correctness of the parameters passed to various constructor functions // and also convert them to the right datatype if it is allowed and required. // // Returns 0 for an error or the constructed node (aggregate or typed) for no error. // TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, TSourceLoc line) { if (node == 0) return 0; TIntermAggregate* aggrNode = node->getAsAggregate(); TTypeList::const_iterator memberTypes; if (op == EOpConstructStruct) memberTypes = type->getStruct()->begin(); TType elementType = *type; if (type->isArray()) elementType.clearArrayness(); bool singleArg; if (aggrNode) { if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1) singleArg = true; else singleArg = false; } else singleArg = true; TIntermTyped *newNode; if (singleArg) { // If structure constructor or array constructor is being called // for only one parameter inside the structure, we need to call constructStruct function once. if (type->isArray()) newNode = constructStruct(node, &elementType, 1, node->getLine(), false); else if (op == EOpConstructStruct) newNode = constructStruct(node, (*memberTypes).type, 1, node->getLine(), false); else newNode = constructBuiltIn(type, op, node, node->getLine(), false); if (newNode && newNode->getAsAggregate()) { TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type); if (constConstructor) return constConstructor; } return newNode; } // // Handle list of arguments. // TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor // if the structure constructor contains more than one parameter, then construct // each parameter int paramCount = 0; // keeps a track of the constructor parameter number being checked // for each parameter to the constructor call, check to see if the right type is passed or convert them // to the right type if possible (and allowed). // for structure constructors, just check if the right type is passed, no conversion is allowed. for (TIntermSequence::iterator p = sequenceVector.begin(); p != sequenceVector.end(); p++, paramCount++) { if (type->isArray()) newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true); else if (op == EOpConstructStruct) newNode = constructStruct(*p, (memberTypes[paramCount]).type, paramCount+1, node->getLine(), true); else newNode = constructBuiltIn(type, op, *p, node->getLine(), true); if (newNode) { *p = newNode; } } TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line); TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type); if (constConstructor) return constConstructor; return constructor; } TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type) { bool canBeFolded = areAllChildConst(aggrNode); aggrNode->setType(type); if (canBeFolded) { bool returnVal = false; ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()]; if (aggrNode->getSequence().size() == 1) { returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type, true); } else { returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type); } if (returnVal) return 0; return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine()); } return 0; } // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value // for the parameter to the constructor (passed to this function). Essentially, it converts // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a // float, then float is converted to int. // // Returns 0 for an error or the constructed node. // TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset) { TIntermTyped* newNode; TOperator basicOp; // // First, convert types as needed. // switch (op) { case EOpConstructVec2: case EOpConstructVec3: case EOpConstructVec4: case EOpConstructMat2: case EOpConstructMat3: case EOpConstructMat4: case EOpConstructFloat: basicOp = EOpConstructFloat; break; case EOpConstructIVec2: case EOpConstructIVec3: case EOpConstructIVec4: case EOpConstructInt: basicOp = EOpConstructInt; break; case EOpConstructBVec2: case EOpConstructBVec3: case EOpConstructBVec4: case EOpConstructBool: basicOp = EOpConstructBool; break; default: error(line, "unsupported construction", "", ""); recover(); return 0; } newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable); if (newNode == 0) { error(line, "can't convert", "constructor", ""); return 0; } // // Now, if there still isn't an operation to do the construction, and we need one, add one. // // Otherwise, skip out early. if (subset || (newNode != node && newNode->getType() == *type)) return newNode; // setAggregateOperator will insert a new node for the constructor, as needed. return intermediate.setAggregateOperator(newNode, op, line); } // This function tests for the type of the parameters to the structures constructors. Raises // an error message if the expected type does not match the parameter passed to the constructor. // // Returns 0 for an error or the input node itself if the expected and the given parameter types match. // TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, TSourceLoc line, bool subset) { if (*type == node->getAsTyped()->getType()) { if (subset) return node->getAsTyped(); else return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line); } else { error(line, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, node->getAsTyped()->getType().getBasicString(), type->getBasicString()); recover(); } return 0; } // // This function returns the tree representation for the vector field(s) being accessed from contant vector. // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of // a constant matrix. // TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); ConstantUnion *unionArray; if (tempConstantNode) { unionArray = tempConstantNode->getUnionArrayPointer(); if (!unionArray) { // this error message should never be raised infoSink.info.message(EPrefixInternalError, "ConstantUnion not initialized in addConstVectorNode function", line); recover(); return node; } } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error error(line, "Cannot offset into the vector", "Error", ""); recover(); return 0; } ConstantUnion* constArray = new ConstantUnion[fields.num]; for (int i = 0; i < fields.num; i++) { if (fields.offsets[i] >= node->getType().getObjectSize()) { error(line, "", "[", "vector field selection out of range '%d'", fields.offsets[i]); recover(); fields.offsets[i] = 0; } constArray[i] = unionArray[fields.offsets[i]]; } typedNode = intermediate.addConstantUnion(constArray, node->getType(), line); return typedNode; } // // This function returns the column being accessed from a constant matrix. The values are retrieved from // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure) // TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); if (index >= node->getType().getNominalSize()) { error(line, "", "[", "matrix field selection out of range '%d'", index); recover(); index = 0; } if (tempConstantNode) { ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); int size = tempConstantNode->getType().getNominalSize(); typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line); } else { error(line, "Cannot offset into the matrix", "Error", ""); recover(); return 0; } return typedNode; } // // This function returns an element of an array accessed from a constant array. The values are retrieved from // the symbol table and parse-tree is built for the type of the element. The input // to the function could either be a symbol node (a[0] where a is a constant array)that represents a // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure) // TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); TType arrayElementType = node->getType(); arrayElementType.clearArrayness(); if (index >= node->getType().getArraySize()) { error(line, "", "[", "array field selection out of range '%d'", index); recover(); index = 0; } int arrayElementSize = arrayElementType.getObjectSize(); if (tempConstantNode) { ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line); } else { error(line, "Cannot offset into the array", "Error", ""); recover(); return 0; } return typedNode; } // // This function returns the value of a particular field inside a constant structure from the symbol table. // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr // function and returns the parse-tree with the values of the embedded/nested struct. // TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line) { const TTypeList* fields = node->getType().getStruct(); TIntermTyped *typedNode; int instanceSize = 0; unsigned int index = 0; TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); for ( index = 0; index < fields->size(); ++index) { if ((*fields)[index].type->getFieldName() == identifier) { break; } else { instanceSize += (*fields)[index].type->getObjectSize(); } } if (tempConstantNode) { ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer(); typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function } else { error(line, "Cannot offset into the structure", "Error", ""); recover(); return 0; } return typedNode; } // // Parse an array of strings using yyparse. // // Returns 0 for success. // int PaParseStrings(int count, const char* const string[], const int length[], TParseContext* context) { if ((count == 0) || (string == NULL)) return 1; // setup preprocessor. if (InitPreprocessor()) return 1; DefineExtensionMacros(context->extensionBehavior); if (glslang_initialize(context)) return 1; glslang_scan(count, string, length, context); int error = glslang_parse(context); glslang_finalize(context); FinalizePreprocessor(); return (error == 0) && (context->numErrors == 0) ? 0 : 1; } OS_TLSIndex GlobalParseContextIndex = OS_INVALID_TLS_INDEX; bool InitializeParseContextIndex() { if (GlobalParseContextIndex != OS_INVALID_TLS_INDEX) { assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); return false; } // // Allocate a TLS index. // GlobalParseContextIndex = OS_AllocTLSIndex(); if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); return false; } return true; } bool FreeParseContextIndex() { OS_TLSIndex tlsiIndex = GlobalParseContextIndex; if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { assert(0 && "FreeParseContextIndex(): Parse Context index not initalised"); return false; } GlobalParseContextIndex = OS_INVALID_TLS_INDEX; return OS_FreeTLSIndex(tlsiIndex); } bool InitializeGlobalParseContext() { if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { assert(0 && "InitializeGlobalParseContext(): Parse Context index not initalised"); return false; } TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); if (lpParseContext != 0) { assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); return false; } TThreadParseContext *lpThreadData = new TThreadParseContext(); if (lpThreadData == 0) { assert(0 && "InitializeGlobalParseContext(): Unable to create thread parse context"); return false; } lpThreadData->lpGlobalParseContext = 0; OS_SetTLSValue(GlobalParseContextIndex, lpThreadData); return true; } bool FreeParseContext() { if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { assert(0 && "FreeParseContext(): Parse Context index not initalised"); return false; } TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); if (lpParseContext) delete lpParseContext; return true; } TParseContextPointer& GetGlobalParseContext() { // // Minimal error checking for speed // TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); return lpParseContext->lpGlobalParseContext; }