// // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #ifndef _POOLALLOC_INCLUDED_ #define _POOLALLOC_INCLUDED_ #ifdef _DEBUG #define GUARD_BLOCKS // define to enable guard block sanity checking #endif // // This header defines an allocator that can be used to efficiently // allocate a large number of small requests for heap memory, with the // intention that they are not individually deallocated, but rather // collectively deallocated at one time. // // This simultaneously // // * Makes each individual allocation much more efficient; the // typical allocation is trivial. // * Completely avoids the cost of doing individual deallocation. // * Saves the trouble of tracking down and plugging a large class of leaks. // // Individual classes can use this allocator by supplying their own // new and delete methods. // // STL containers can use this allocator by using the pool_allocator // class as the allocator (second) template argument. // #include <stddef.h> #include <string.h> #include <vector> // If we are using guard blocks, we must track each indivual // allocation. If we aren't using guard blocks, these // never get instantiated, so won't have any impact. // class TAllocation { public: TAllocation(size_t size, unsigned char* mem, TAllocation* prev = 0) : size(size), mem(mem), prevAlloc(prev) { // Allocations are bracketed: // [allocationHeader][initialGuardBlock][userData][finalGuardBlock] // This would be cleaner with if (guardBlockSize)..., but that // makes the compiler print warnings about 0 length memsets, // even with the if() protecting them. #ifdef GUARD_BLOCKS memset(preGuard(), guardBlockBeginVal, guardBlockSize); memset(data(), userDataFill, size); memset(postGuard(), guardBlockEndVal, guardBlockSize); #endif } void check() const { checkGuardBlock(preGuard(), guardBlockBeginVal, "before"); checkGuardBlock(postGuard(), guardBlockEndVal, "after"); } void checkAllocList() const; // Return total size needed to accomodate user buffer of 'size', // plus our tracking data. inline static size_t allocationSize(size_t size) { return size + 2 * guardBlockSize + headerSize(); } // Offset from surrounding buffer to get to user data buffer. inline static unsigned char* offsetAllocation(unsigned char* m) { return m + guardBlockSize + headerSize(); } private: void checkGuardBlock(unsigned char* blockMem, unsigned char val, const char* locText) const; // Find offsets to pre and post guard blocks, and user data buffer unsigned char* preGuard() const { return mem + headerSize(); } unsigned char* data() const { return preGuard() + guardBlockSize; } unsigned char* postGuard() const { return data() + size; } size_t size; // size of the user data area unsigned char* mem; // beginning of our allocation (pts to header) TAllocation* prevAlloc; // prior allocation in the chain // Support MSVC++ 6.0 const static unsigned char guardBlockBeginVal; const static unsigned char guardBlockEndVal; const static unsigned char userDataFill; const static size_t guardBlockSize; #ifdef GUARD_BLOCKS inline static size_t headerSize() { return sizeof(TAllocation); } #else inline static size_t headerSize() { return 0; } #endif }; // // There are several stacks. One is to track the pushing and popping // of the user, and not yet implemented. The others are simply a // repositories of free pages or used pages. // // Page stacks are linked together with a simple header at the beginning // of each allocation obtained from the underlying OS. Multi-page allocations // are returned to the OS. Individual page allocations are kept for future // re-use. // // The "page size" used is not, nor must it match, the underlying OS // page size. But, having it be about that size or equal to a set of // pages is likely most optimal. // class TPoolAllocator { public: TPoolAllocator(int growthIncrement = 8*1024, int allocationAlignment = 16); // // Don't call the destructor just to free up the memory, call pop() // ~TPoolAllocator(); // // Call push() to establish a new place to pop memory too. Does not // have to be called to get things started. // void push(); // // Call pop() to free all memory allocated since the last call to push(), // or if no last call to push, frees all memory since first allocation. // void pop(); // // Call popAll() to free all memory allocated. // void popAll(); // // Call allocate() to actually acquire memory. Returns 0 if no memory // available, otherwise a properly aligned pointer to 'numBytes' of memory. // void* allocate(size_t numBytes); // // There is no deallocate. The point of this class is that // deallocation can be skipped by the user of it, as the model // of use is to simultaneously deallocate everything at once // by calling pop(), and to not have to solve memory leak problems. // protected: friend struct tHeader; struct tHeader { tHeader(tHeader* nextPage, size_t pageCount) : nextPage(nextPage), pageCount(pageCount) #ifdef GUARD_BLOCKS , lastAllocation(0) #endif { } ~tHeader() { #ifdef GUARD_BLOCKS if (lastAllocation) lastAllocation->checkAllocList(); #endif } tHeader* nextPage; size_t pageCount; #ifdef GUARD_BLOCKS TAllocation* lastAllocation; #endif }; struct tAllocState { size_t offset; tHeader* page; }; typedef std::vector<tAllocState> tAllocStack; // Track allocations if and only if we're using guard blocks void* initializeAllocation(tHeader* block, unsigned char* memory, size_t numBytes) { #ifdef GUARD_BLOCKS new(memory) TAllocation(numBytes, memory, block->lastAllocation); block->lastAllocation = reinterpret_cast<TAllocation*>(memory); #endif // This is optimized entirely away if GUARD_BLOCKS is not defined. return TAllocation::offsetAllocation(memory); } size_t pageSize; // granularity of allocation from the OS size_t alignment; // all returned allocations will be aligned at // this granularity, which will be a power of 2 size_t alignmentMask; size_t headerSkip; // amount of memory to skip to make room for the // header (basically, size of header, rounded // up to make it aligned size_t currentPageOffset; // next offset in top of inUseList to allocate from tHeader* freeList; // list of popped memory tHeader* inUseList; // list of all memory currently being used tAllocStack stack; // stack of where to allocate from, to partition pool int numCalls; // just an interesting statistic size_t totalBytes; // just an interesting statistic private: TPoolAllocator& operator=(const TPoolAllocator&); // dont allow assignment operator TPoolAllocator(const TPoolAllocator&); // dont allow default copy constructor }; // // There could potentially be many pools with pops happening at // different times. But a simple use is to have a global pop // with everyone using the same global allocator. // extern TPoolAllocator& GetGlobalPoolAllocator(); extern void SetGlobalPoolAllocator(TPoolAllocator* poolAllocator); #define GlobalPoolAllocator GetGlobalPoolAllocator() struct TThreadGlobalPools { TPoolAllocator* globalPoolAllocator; }; // // This STL compatible allocator is intended to be used as the allocator // parameter to templatized STL containers, like vector and map. // // It will use the pools for allocation, and not // do any deallocation, but will still do destruction. // template<class T> class pool_allocator { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; template<class Other> struct rebind { typedef pool_allocator<Other> other; }; pointer address(reference x) const { return &x; } const_pointer address(const_reference x) const { return &x; } pool_allocator() : allocator(GlobalPoolAllocator) { } pool_allocator(TPoolAllocator& a) : allocator(a) { } pool_allocator(const pool_allocator<T>& p) : allocator(p.allocator) { } template<class Other> pool_allocator(const pool_allocator<Other>& p) : allocator(p.getAllocator()) { } #if defined(__SUNPRO_CC) && !defined(_RWSTD_ALLOCATOR) // libCStd on some platforms have a different allocate/deallocate interface. // Caller pre-bakes sizeof(T) into 'n' which is the number of bytes to be // allocated, not the number of elements. void* allocate(size_type n) { return getAllocator().allocate(n); } void* allocate(size_type n, const void*) { return getAllocator().allocate(n); } void deallocate(void*, size_type) {} #else pointer allocate(size_type n) { return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); } pointer allocate(size_type n, const void*) { return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); } void deallocate(pointer, size_type) {} #endif // _RWSTD_ALLOCATOR void construct(pointer p, const T& val) { new ((void *)p) T(val); } void destroy(pointer p) { p->T::~T(); } bool operator==(const pool_allocator& rhs) const { return &getAllocator() == &rhs.getAllocator(); } bool operator!=(const pool_allocator& rhs) const { return &getAllocator() != &rhs.getAllocator(); } size_type max_size() const { return static_cast<size_type>(-1) / sizeof(T); } size_type max_size(int size) const { return static_cast<size_type>(-1) / size; } void setAllocator(TPoolAllocator* a) { allocator = *a; } TPoolAllocator& getAllocator() const { return allocator; } protected: TPoolAllocator& allocator; }; #endif // _POOLALLOC_INCLUDED_