/* // // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file contains the Yacc grammar for GLSL ES. Based on ANSI C Yacc grammar: http://www.lysator.liu.se/c/ANSI-C-grammar-y.html IF YOU MODIFY THIS FILE YOU ALSO NEED TO RUN generate_glslang_parser.sh, WHICH GENERATES THE GLSL ES PARSER (glslang_tab.cpp AND glslang_tab.h). */ %{ // // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // This file is auto-generated by generate_glslang_parser.sh. DO NOT EDIT! #include "compiler/SymbolTable.h" #include "compiler/ParseHelper.h" #include "GLSLANG/ShaderLang.h" #define YYLEX_PARAM context->scanner %} %expect 1 /* One shift reduce conflict because of if | else */ %pure-parser %parse-param {TParseContext* context} %union { struct { TSourceLoc line; union { TString *string; float f; int i; bool b; }; TSymbol* symbol; } lex; struct { TSourceLoc line; TOperator op; union { TIntermNode* intermNode; TIntermNodePair nodePair; TIntermTyped* intermTypedNode; TIntermAggregate* intermAggregate; }; union { TPublicType type; TPrecision precision; TQualifier qualifier; TFunction* function; TParameter param; TTypeLine typeLine; TTypeList* typeList; }; } interm; } %{ extern int yylex(YYSTYPE* yylval_param, void* yyscanner); extern void yyerror(TParseContext* context, const char* reason); #define FRAG_VERT_ONLY(S, L) { \ if (context->shaderType != SH_FRAGMENT_SHADER && \ context->shaderType != SH_VERTEX_SHADER) { \ context->error(L, " supported in vertex/fragment shaders only ", S, "", ""); \ context->recover(); \ } \ } #define VERTEX_ONLY(S, L) { \ if (context->shaderType != SH_VERTEX_SHADER) { \ context->error(L, " supported in vertex shaders only ", S, "", ""); \ context->recover(); \ } \ } #define FRAG_ONLY(S, L) { \ if (context->shaderType != SH_FRAGMENT_SHADER) { \ context->error(L, " supported in fragment shaders only ", S, "", ""); \ context->recover(); \ } \ } %} %token <lex> INVARIANT HIGH_PRECISION MEDIUM_PRECISION LOW_PRECISION PRECISION %token <lex> ATTRIBUTE CONST_QUAL BOOL_TYPE FLOAT_TYPE INT_TYPE %token <lex> BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN %token <lex> BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 VEC2 VEC3 VEC4 %token <lex> MATRIX2 MATRIX3 MATRIX4 IN_QUAL OUT_QUAL INOUT_QUAL UNIFORM VARYING %token <lex> STRUCT VOID_TYPE WHILE %token <lex> SAMPLER2D SAMPLERCUBE %token <lex> IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT BOOLCONSTANT %token <lex> FIELD_SELECTION %token <lex> LEFT_OP RIGHT_OP %token <lex> INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP %token <lex> AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN %token <lex> MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN %token <lex> SUB_ASSIGN %token <lex> LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT %token <lex> COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT %token <lex> LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION %type <interm> assignment_operator unary_operator %type <interm.intermTypedNode> variable_identifier primary_expression postfix_expression %type <interm.intermTypedNode> expression integer_expression assignment_expression %type <interm.intermTypedNode> unary_expression multiplicative_expression additive_expression %type <interm.intermTypedNode> relational_expression equality_expression %type <interm.intermTypedNode> conditional_expression constant_expression %type <interm.intermTypedNode> logical_or_expression logical_xor_expression logical_and_expression %type <interm.intermTypedNode> shift_expression and_expression exclusive_or_expression inclusive_or_expression %type <interm.intermTypedNode> function_call initializer condition conditionopt %type <interm.intermNode> translation_unit function_definition %type <interm.intermNode> statement simple_statement %type <interm.intermAggregate> statement_list compound_statement %type <interm.intermNode> declaration_statement selection_statement expression_statement %type <interm.intermNode> declaration external_declaration %type <interm.intermNode> for_init_statement compound_statement_no_new_scope %type <interm.nodePair> selection_rest_statement for_rest_statement %type <interm.intermNode> iteration_statement jump_statement statement_no_new_scope %type <interm> single_declaration init_declarator_list %type <interm> parameter_declaration parameter_declarator parameter_type_specifier %type <interm.qualifier> parameter_qualifier %type <interm.precision> precision_qualifier %type <interm.type> type_qualifier fully_specified_type type_specifier %type <interm.type> type_specifier_no_prec type_specifier_nonarray %type <interm.type> struct_specifier %type <interm.typeLine> struct_declarator %type <interm.typeList> struct_declarator_list struct_declaration struct_declaration_list %type <interm.function> function_header function_declarator function_identifier %type <interm.function> function_header_with_parameters function_call_header %type <interm> function_call_header_with_parameters function_call_header_no_parameters function_call_generic function_prototype %type <interm> function_call_or_method %start translation_unit %% variable_identifier : IDENTIFIER { // The symbol table search was done in the lexical phase const TSymbol* symbol = $1.symbol; const TVariable* variable; if (symbol == 0) { context->error($1.line, "undeclared identifier", $1.string->c_str(), ""); context->recover(); TType type(EbtFloat, EbpUndefined); TVariable* fakeVariable = new TVariable($1.string, type); context->symbolTable.insert(*fakeVariable); variable = fakeVariable; } else { // This identifier can only be a variable type symbol if (! symbol->isVariable()) { context->error($1.line, "variable expected", $1.string->c_str(), ""); context->recover(); } variable = static_cast<const TVariable*>(symbol); } // don't delete $1.string, it's used by error recovery, and the pool // pop will reclaim the memory if (variable->getType().getQualifier() == EvqConst ) { ConstantUnion* constArray = variable->getConstPointer(); TType t(variable->getType()); $$ = context->intermediate.addConstantUnion(constArray, t, $1.line); } else $$ = context->intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), $1.line); } ; primary_expression : variable_identifier { $$ = $1; } | INTCONSTANT { // // INT_TYPE is only 16-bit plus sign bit for vertex/fragment shaders, // check for overflow for constants // if (abs($1.i) >= (1 << 16)) { context->error($1.line, " integer constant overflow", "", ""); context->recover(); } ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst($1.i); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), $1.line); } | FLOATCONSTANT { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setFConst($1.f); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConst), $1.line); } | BOOLCONSTANT { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst($1.b); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $1.line); } | LEFT_PAREN expression RIGHT_PAREN { $$ = $2; } ; postfix_expression : primary_expression { $$ = $1; } | postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET { if (!$1->isArray() && !$1->isMatrix() && !$1->isVector()) { if ($1->getAsSymbolNode()) context->error($2.line, " left of '[' is not of type array, matrix, or vector ", $1->getAsSymbolNode()->getSymbol().c_str(), ""); else context->error($2.line, " left of '[' is not of type array, matrix, or vector ", "expression", ""); context->recover(); } if ($1->getType().getQualifier() == EvqConst && $3->getQualifier() == EvqConst) { if ($1->isArray()) { // constant folding for arrays $$ = context->addConstArrayNode($3->getAsConstantUnion()->getUnionArrayPointer()->getIConst(), $1, $2.line); } else if ($1->isVector()) { // constant folding for vectors TVectorFields fields; fields.num = 1; fields.offsets[0] = $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst(); // need to do it this way because v.xy sends fields integer array $$ = context->addConstVectorNode(fields, $1, $2.line); } else if ($1->isMatrix()) { // constant folding for matrices $$ = context->addConstMatrixNode($3->getAsConstantUnion()->getUnionArrayPointer()->getIConst(), $1, $2.line); } } else { if ($3->getQualifier() == EvqConst) { if (($1->isVector() || $1->isMatrix()) && $1->getType().getNominalSize() <= $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst() && !$1->isArray() ) { context->error($2.line, "", "[", "field selection out of range '%d'", $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst()); context->recover(); } else { if ($1->isArray()) { if ($1->getType().getArraySize() == 0) { if ($1->getType().getMaxArraySize() <= $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst()) { if (context->arraySetMaxSize($1->getAsSymbolNode(), $1->getTypePointer(), $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst(), true, $2.line)) context->recover(); } else { if (context->arraySetMaxSize($1->getAsSymbolNode(), $1->getTypePointer(), 0, false, $2.line)) context->recover(); } } else if ( $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst() >= $1->getType().getArraySize()) { context->error($2.line, "", "[", "array index out of range '%d'", $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst()); context->recover(); } } $$ = context->intermediate.addIndex(EOpIndexDirect, $1, $3, $2.line); } } else { if ($1->isArray() && $1->getType().getArraySize() == 0) { context->error($2.line, "", "[", "array must be redeclared with a size before being indexed with a variable"); context->recover(); } $$ = context->intermediate.addIndex(EOpIndexIndirect, $1, $3, $2.line); } } if ($$ == 0) { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setFConst(0.0f); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), $2.line); } else if ($1->isArray()) { if ($1->getType().getStruct()) $$->setType(TType($1->getType().getStruct(), $1->getType().getTypeName())); else $$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqTemporary, $1->getNominalSize(), $1->isMatrix())); if ($1->getType().getQualifier() == EvqConst) $$->getTypePointer()->setQualifier(EvqConst); } else if ($1->isMatrix() && $1->getType().getQualifier() == EvqConst) $$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqConst, $1->getNominalSize())); else if ($1->isMatrix()) $$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqTemporary, $1->getNominalSize())); else if ($1->isVector() && $1->getType().getQualifier() == EvqConst) $$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqConst)); else if ($1->isVector()) $$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqTemporary)); else $$->setType($1->getType()); } | function_call { $$ = $1; } | postfix_expression DOT FIELD_SELECTION { if ($1->isArray()) { context->error($3.line, "cannot apply dot operator to an array", ".", ""); context->recover(); } if ($1->isVector()) { TVectorFields fields; if (! context->parseVectorFields(*$3.string, $1->getNominalSize(), fields, $3.line)) { fields.num = 1; fields.offsets[0] = 0; context->recover(); } if ($1->getType().getQualifier() == EvqConst) { // constant folding for vector fields $$ = context->addConstVectorNode(fields, $1, $3.line); if ($$ == 0) { context->recover(); $$ = $1; } else $$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqConst, (int) (*$3.string).size())); } else { if (fields.num == 1) { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(fields.offsets[0]); TIntermTyped* index = context->intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), $3.line); $$ = context->intermediate.addIndex(EOpIndexDirect, $1, index, $2.line); $$->setType(TType($1->getBasicType(), $1->getPrecision())); } else { TString vectorString = *$3.string; TIntermTyped* index = context->intermediate.addSwizzle(fields, $3.line); $$ = context->intermediate.addIndex(EOpVectorSwizzle, $1, index, $2.line); $$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqTemporary, (int) vectorString.size())); } } } else if ($1->isMatrix()) { TMatrixFields fields; if (! context->parseMatrixFields(*$3.string, $1->getNominalSize(), fields, $3.line)) { fields.wholeRow = false; fields.wholeCol = false; fields.row = 0; fields.col = 0; context->recover(); } if (fields.wholeRow || fields.wholeCol) { context->error($2.line, " non-scalar fields not implemented yet", ".", ""); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(0); TIntermTyped* index = context->intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), $3.line); $$ = context->intermediate.addIndex(EOpIndexDirect, $1, index, $2.line); $$->setType(TType($1->getBasicType(), $1->getPrecision(),EvqTemporary, $1->getNominalSize())); } else { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(fields.col * $1->getNominalSize() + fields.row); TIntermTyped* index = context->intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), $3.line); $$ = context->intermediate.addIndex(EOpIndexDirect, $1, index, $2.line); $$->setType(TType($1->getBasicType(), $1->getPrecision())); } } else if ($1->getBasicType() == EbtStruct) { bool fieldFound = false; const TTypeList* fields = $1->getType().getStruct(); if (fields == 0) { context->error($2.line, "structure has no fields", "Internal Error", ""); context->recover(); $$ = $1; } else { unsigned int i; for (i = 0; i < fields->size(); ++i) { if ((*fields)[i].type->getFieldName() == *$3.string) { fieldFound = true; break; } } if (fieldFound) { if ($1->getType().getQualifier() == EvqConst) { $$ = context->addConstStruct(*$3.string, $1, $2.line); if ($$ == 0) { context->recover(); $$ = $1; } else { $$->setType(*(*fields)[i].type); // change the qualifier of the return type, not of the structure field // as the structure definition is shared between various structures. $$->getTypePointer()->setQualifier(EvqConst); } } else { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(i); TIntermTyped* index = context->intermediate.addConstantUnion(unionArray, *(*fields)[i].type, $3.line); $$ = context->intermediate.addIndex(EOpIndexDirectStruct, $1, index, $2.line); $$->setType(*(*fields)[i].type); } } else { context->error($2.line, " no such field in structure", $3.string->c_str(), ""); context->recover(); $$ = $1; } } } else { context->error($2.line, " field selection requires structure, vector, or matrix on left hand side", $3.string->c_str(), ""); context->recover(); $$ = $1; } // don't delete $3.string, it's from the pool } | postfix_expression INC_OP { if (context->lValueErrorCheck($2.line, "++", $1)) context->recover(); $$ = context->intermediate.addUnaryMath(EOpPostIncrement, $1, $2.line, context->symbolTable); if ($$ == 0) { context->unaryOpError($2.line, "++", $1->getCompleteString()); context->recover(); $$ = $1; } } | postfix_expression DEC_OP { if (context->lValueErrorCheck($2.line, "--", $1)) context->recover(); $$ = context->intermediate.addUnaryMath(EOpPostDecrement, $1, $2.line, context->symbolTable); if ($$ == 0) { context->unaryOpError($2.line, "--", $1->getCompleteString()); context->recover(); $$ = $1; } } ; integer_expression : expression { if (context->integerErrorCheck($1, "[]")) context->recover(); $$ = $1; } ; function_call : function_call_or_method { TFunction* fnCall = $1.function; TOperator op = fnCall->getBuiltInOp(); if (op != EOpNull) { // // Then this should be a constructor. // Don't go through the symbol table for constructors. // Their parameters will be verified algorithmically. // TType type(EbtVoid, EbpUndefined); // use this to get the type back if (context->constructorErrorCheck($1.line, $1.intermNode, *fnCall, op, &type)) { $$ = 0; } else { // // It's a constructor, of type 'type'. // $$ = context->addConstructor($1.intermNode, &type, op, fnCall, $1.line); } if ($$ == 0) { context->recover(); $$ = context->intermediate.setAggregateOperator(0, op, $1.line); } $$->setType(type); } else { // // Not a constructor. Find it in the symbol table. // const TFunction* fnCandidate; bool builtIn; fnCandidate = context->findFunction($1.line, fnCall, &builtIn); if (fnCandidate) { // // A declared function. // if (builtIn && !fnCandidate->getExtension().empty() && context->extensionErrorCheck($1.line, fnCandidate->getExtension())) { context->recover(); } op = fnCandidate->getBuiltInOp(); if (builtIn && op != EOpNull) { // // A function call mapped to a built-in operation. // if (fnCandidate->getParamCount() == 1) { // // Treat it like a built-in unary operator. // $$ = context->intermediate.addUnaryMath(op, $1.intermNode, 0, context->symbolTable); if ($$ == 0) { context->error($1.intermNode->getLine(), " wrong operand type", "Internal Error", "built in unary operator function. Type: %s", static_cast<TIntermTyped*>($1.intermNode)->getCompleteString().c_str()); YYERROR; } } else { $$ = context->intermediate.setAggregateOperator($1.intermAggregate, op, $1.line); } } else { // This is a real function call $$ = context->intermediate.setAggregateOperator($1.intermAggregate, EOpFunctionCall, $1.line); $$->setType(fnCandidate->getReturnType()); // this is how we know whether the given function is a builtIn function or a user defined function // if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also // if builtIn == true, it's definitely a builtIn function with EOpNull if (!builtIn) $$->getAsAggregate()->setUserDefined(); $$->getAsAggregate()->setName(fnCandidate->getMangledName()); TQualifier qual; for (int i = 0; i < fnCandidate->getParamCount(); ++i) { qual = fnCandidate->getParam(i).type->getQualifier(); if (qual == EvqOut || qual == EvqInOut) { if (context->lValueErrorCheck($$->getLine(), "assign", $$->getAsAggregate()->getSequence()[i]->getAsTyped())) { context->error($1.intermNode->getLine(), "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error", ""); context->recover(); } } } } $$->setType(fnCandidate->getReturnType()); } else { // error message was put out by PaFindFunction() // Put on a dummy node for error recovery ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setFConst(0.0f); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConst), $1.line); context->recover(); } } delete fnCall; } ; function_call_or_method : function_call_generic { $$ = $1; } | postfix_expression DOT function_call_generic { context->error($3.line, "methods are not supported", "", ""); context->recover(); $$ = $3; } ; function_call_generic : function_call_header_with_parameters RIGHT_PAREN { $$ = $1; $$.line = $2.line; } | function_call_header_no_parameters RIGHT_PAREN { $$ = $1; $$.line = $2.line; } ; function_call_header_no_parameters : function_call_header VOID_TYPE { $$.function = $1; $$.intermNode = 0; } | function_call_header { $$.function = $1; $$.intermNode = 0; } ; function_call_header_with_parameters : function_call_header assignment_expression { TParameter param = { 0, new TType($2->getType()) }; $1->addParameter(param); $$.function = $1; $$.intermNode = $2; } | function_call_header_with_parameters COMMA assignment_expression { TParameter param = { 0, new TType($3->getType()) }; $1.function->addParameter(param); $$.function = $1.function; $$.intermNode = context->intermediate.growAggregate($1.intermNode, $3, $2.line); } ; function_call_header : function_identifier LEFT_PAREN { $$ = $1; } ; // Grammar Note: Constructors look like functions, but are recognized as types. function_identifier : type_specifier { // // Constructor // if ($1.array) { // Constructors for arrays are not allowed. context->error($1.line, "cannot construct this type", "array", ""); context->recover(); $1.setArray(false); } TOperator op = EOpNull; if ($1.userDef) { op = EOpConstructStruct; } else { switch ($1.type) { case EbtFloat: if ($1.matrix) { switch($1.size) { case 2: op = EOpConstructMat2; break; case 3: op = EOpConstructMat3; break; case 4: op = EOpConstructMat4; break; } } else { switch($1.size) { case 1: op = EOpConstructFloat; break; case 2: op = EOpConstructVec2; break; case 3: op = EOpConstructVec3; break; case 4: op = EOpConstructVec4; break; } } break; case EbtInt: switch($1.size) { case 1: op = EOpConstructInt; break; case 2: FRAG_VERT_ONLY("ivec2", $1.line); op = EOpConstructIVec2; break; case 3: FRAG_VERT_ONLY("ivec3", $1.line); op = EOpConstructIVec3; break; case 4: FRAG_VERT_ONLY("ivec4", $1.line); op = EOpConstructIVec4; break; } break; case EbtBool: switch($1.size) { case 1: op = EOpConstructBool; break; case 2: FRAG_VERT_ONLY("bvec2", $1.line); op = EOpConstructBVec2; break; case 3: FRAG_VERT_ONLY("bvec3", $1.line); op = EOpConstructBVec3; break; case 4: FRAG_VERT_ONLY("bvec4", $1.line); op = EOpConstructBVec4; break; } break; default: break; } if (op == EOpNull) { context->error($1.line, "cannot construct this type", getBasicString($1.type), ""); context->recover(); $1.type = EbtFloat; op = EOpConstructFloat; } } TString tempString; TType type($1); TFunction *function = new TFunction(&tempString, type, op); $$ = function; } | IDENTIFIER { if (context->reservedErrorCheck($1.line, *$1.string)) context->recover(); TType type(EbtVoid, EbpUndefined); TFunction *function = new TFunction($1.string, type); $$ = function; } | FIELD_SELECTION { if (context->reservedErrorCheck($1.line, *$1.string)) context->recover(); TType type(EbtVoid, EbpUndefined); TFunction *function = new TFunction($1.string, type); $$ = function; } ; unary_expression : postfix_expression { $$ = $1; } | INC_OP unary_expression { if (context->lValueErrorCheck($1.line, "++", $2)) context->recover(); $$ = context->intermediate.addUnaryMath(EOpPreIncrement, $2, $1.line, context->symbolTable); if ($$ == 0) { context->unaryOpError($1.line, "++", $2->getCompleteString()); context->recover(); $$ = $2; } } | DEC_OP unary_expression { if (context->lValueErrorCheck($1.line, "--", $2)) context->recover(); $$ = context->intermediate.addUnaryMath(EOpPreDecrement, $2, $1.line, context->symbolTable); if ($$ == 0) { context->unaryOpError($1.line, "--", $2->getCompleteString()); context->recover(); $$ = $2; } } | unary_operator unary_expression { if ($1.op != EOpNull) { $$ = context->intermediate.addUnaryMath($1.op, $2, $1.line, context->symbolTable); if ($$ == 0) { const char* errorOp = ""; switch($1.op) { case EOpNegative: errorOp = "-"; break; case EOpLogicalNot: errorOp = "!"; break; default: break; } context->unaryOpError($1.line, errorOp, $2->getCompleteString()); context->recover(); $$ = $2; } } else $$ = $2; } ; // Grammar Note: No traditional style type casts. unary_operator : PLUS { $$.line = $1.line; $$.op = EOpNull; } | DASH { $$.line = $1.line; $$.op = EOpNegative; } | BANG { $$.line = $1.line; $$.op = EOpLogicalNot; } ; // Grammar Note: No '*' or '&' unary ops. Pointers are not supported. multiplicative_expression : unary_expression { $$ = $1; } | multiplicative_expression STAR unary_expression { FRAG_VERT_ONLY("*", $2.line); $$ = context->intermediate.addBinaryMath(EOpMul, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "*", $1->getCompleteString(), $3->getCompleteString()); context->recover(); $$ = $1; } } | multiplicative_expression SLASH unary_expression { FRAG_VERT_ONLY("/", $2.line); $$ = context->intermediate.addBinaryMath(EOpDiv, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "/", $1->getCompleteString(), $3->getCompleteString()); context->recover(); $$ = $1; } } ; additive_expression : multiplicative_expression { $$ = $1; } | additive_expression PLUS multiplicative_expression { $$ = context->intermediate.addBinaryMath(EOpAdd, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "+", $1->getCompleteString(), $3->getCompleteString()); context->recover(); $$ = $1; } } | additive_expression DASH multiplicative_expression { $$ = context->intermediate.addBinaryMath(EOpSub, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "-", $1->getCompleteString(), $3->getCompleteString()); context->recover(); $$ = $1; } } ; shift_expression : additive_expression { $$ = $1; } ; relational_expression : shift_expression { $$ = $1; } | relational_expression LEFT_ANGLE shift_expression { $$ = context->intermediate.addBinaryMath(EOpLessThan, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "<", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } | relational_expression RIGHT_ANGLE shift_expression { $$ = context->intermediate.addBinaryMath(EOpGreaterThan, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, ">", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } | relational_expression LE_OP shift_expression { $$ = context->intermediate.addBinaryMath(EOpLessThanEqual, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "<=", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } | relational_expression GE_OP shift_expression { $$ = context->intermediate.addBinaryMath(EOpGreaterThanEqual, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, ">=", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } ; equality_expression : relational_expression { $$ = $1; } | equality_expression EQ_OP relational_expression { $$ = context->intermediate.addBinaryMath(EOpEqual, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "==", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } | equality_expression NE_OP relational_expression { $$ = context->intermediate.addBinaryMath(EOpNotEqual, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "!=", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } ; and_expression : equality_expression { $$ = $1; } ; exclusive_or_expression : and_expression { $$ = $1; } ; inclusive_or_expression : exclusive_or_expression { $$ = $1; } ; logical_and_expression : inclusive_or_expression { $$ = $1; } | logical_and_expression AND_OP inclusive_or_expression { $$ = context->intermediate.addBinaryMath(EOpLogicalAnd, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "&&", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } ; logical_xor_expression : logical_and_expression { $$ = $1; } | logical_xor_expression XOR_OP logical_and_expression { $$ = context->intermediate.addBinaryMath(EOpLogicalXor, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "^^", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } ; logical_or_expression : logical_xor_expression { $$ = $1; } | logical_or_expression OR_OP logical_xor_expression { $$ = context->intermediate.addBinaryMath(EOpLogicalOr, $1, $3, $2.line, context->symbolTable); if ($$ == 0) { context->binaryOpError($2.line, "||", $1->getCompleteString(), $3->getCompleteString()); context->recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); $$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line); } } ; conditional_expression : logical_or_expression { $$ = $1; } | logical_or_expression QUESTION expression COLON assignment_expression { if (context->boolErrorCheck($2.line, $1)) context->recover(); $$ = context->intermediate.addSelection($1, $3, $5, $2.line); if ($3->getType() != $5->getType()) $$ = 0; if ($$ == 0) { context->binaryOpError($2.line, ":", $3->getCompleteString(), $5->getCompleteString()); context->recover(); $$ = $5; } } ; assignment_expression : conditional_expression { $$ = $1; } | unary_expression assignment_operator assignment_expression { if (context->lValueErrorCheck($2.line, "assign", $1)) context->recover(); $$ = context->intermediate.addAssign($2.op, $1, $3, $2.line); if ($$ == 0) { context->assignError($2.line, "assign", $1->getCompleteString(), $3->getCompleteString()); context->recover(); $$ = $1; } } ; assignment_operator : EQUAL { $$.line = $1.line; $$.op = EOpAssign; } | MUL_ASSIGN { FRAG_VERT_ONLY("*=", $1.line); $$.line = $1.line; $$.op = EOpMulAssign; } | DIV_ASSIGN { FRAG_VERT_ONLY("/=", $1.line); $$.line = $1.line; $$.op = EOpDivAssign; } | ADD_ASSIGN { $$.line = $1.line; $$.op = EOpAddAssign; } | SUB_ASSIGN { $$.line = $1.line; $$.op = EOpSubAssign; } ; expression : assignment_expression { $$ = $1; } | expression COMMA assignment_expression { $$ = context->intermediate.addComma($1, $3, $2.line); if ($$ == 0) { context->binaryOpError($2.line, ",", $1->getCompleteString(), $3->getCompleteString()); context->recover(); $$ = $3; } } ; constant_expression : conditional_expression { if (context->constErrorCheck($1)) context->recover(); $$ = $1; } ; declaration : function_prototype SEMICOLON { TFunction &function = *($1.function); TIntermAggregate *prototype = new TIntermAggregate; prototype->setType(function.getReturnType()); prototype->setName(function.getName()); for (int i = 0; i < function.getParamCount(); i++) { const TParameter ¶m = function.getParam(i); if (param.name != 0) { TVariable *variable = new TVariable(param.name, *param.type); prototype = context->intermediate.growAggregate(prototype, context->intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), $1.line), $1.line); } else { prototype = context->intermediate.growAggregate(prototype, context->intermediate.addSymbol(0, "", *param.type, $1.line), $1.line); } } prototype->setOp(EOpPrototype); $$ = prototype; } | init_declarator_list SEMICOLON { if ($1.intermAggregate) $1.intermAggregate->setOp(EOpDeclaration); $$ = $1.intermAggregate; } | PRECISION precision_qualifier type_specifier_no_prec SEMICOLON { context->symbolTable.setDefaultPrecision( $3.type, $2 ); $$ = 0; } ; function_prototype : function_declarator RIGHT_PAREN { // // Multiple declarations of the same function are allowed. // // If this is a definition, the definition production code will check for redefinitions // (we don't know at this point if it's a definition or not). // // Redeclarations are allowed. But, return types and parameter qualifiers must match. // TFunction* prevDec = static_cast<TFunction*>(context->symbolTable.find($1->getMangledName())); if (prevDec) { if (prevDec->getReturnType() != $1->getReturnType()) { context->error($2.line, "overloaded functions must have the same return type", $1->getReturnType().getBasicString(), ""); context->recover(); } for (int i = 0; i < prevDec->getParamCount(); ++i) { if (prevDec->getParam(i).type->getQualifier() != $1->getParam(i).type->getQualifier()) { context->error($2.line, "overloaded functions must have the same parameter qualifiers", $1->getParam(i).type->getQualifierString(), ""); context->recover(); } } } // // If this is a redeclaration, it could also be a definition, // in which case, we want to use the variable names from this one, and not the one that's // being redeclared. So, pass back up this declaration, not the one in the symbol table. // $$.function = $1; $$.line = $2.line; context->symbolTable.insert(*$$.function); } ; function_declarator : function_header { $$ = $1; } | function_header_with_parameters { $$ = $1; } ; function_header_with_parameters : function_header parameter_declaration { // Add the parameter $$ = $1; if ($2.param.type->getBasicType() != EbtVoid) $1->addParameter($2.param); else delete $2.param.type; } | function_header_with_parameters COMMA parameter_declaration { // // Only first parameter of one-parameter functions can be void // The check for named parameters not being void is done in parameter_declarator // if ($3.param.type->getBasicType() == EbtVoid) { // // This parameter > first is void // context->error($2.line, "cannot be an argument type except for '(void)'", "void", ""); context->recover(); delete $3.param.type; } else { // Add the parameter $$ = $1; $1->addParameter($3.param); } } ; function_header : fully_specified_type IDENTIFIER LEFT_PAREN { if ($1.qualifier != EvqGlobal && $1.qualifier != EvqTemporary) { context->error($2.line, "no qualifiers allowed for function return", getQualifierString($1.qualifier), ""); context->recover(); } // make sure a sampler is not involved as well... if (context->structQualifierErrorCheck($2.line, $1)) context->recover(); // Add the function as a prototype after parsing it (we do not support recursion) TFunction *function; TType type($1); function = new TFunction($2.string, type); $$ = function; } ; parameter_declarator // Type + name : type_specifier IDENTIFIER { if ($1.type == EbtVoid) { context->error($2.line, "illegal use of type 'void'", $2.string->c_str(), ""); context->recover(); } if (context->reservedErrorCheck($2.line, *$2.string)) context->recover(); TParameter param = {$2.string, new TType($1)}; $$.line = $2.line; $$.param = param; } | type_specifier IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET { // Check that we can make an array out of this type if (context->arrayTypeErrorCheck($3.line, $1)) context->recover(); if (context->reservedErrorCheck($2.line, *$2.string)) context->recover(); int size; if (context->arraySizeErrorCheck($3.line, $4, size)) context->recover(); $1.setArray(true, size); TType* type = new TType($1); TParameter param = { $2.string, type }; $$.line = $2.line; $$.param = param; } ; parameter_declaration // // The only parameter qualifier a parameter can have are // IN_QUAL, OUT_QUAL, INOUT_QUAL, or CONST. // // // Type + name // : type_qualifier parameter_qualifier parameter_declarator { $$ = $3; if (context->paramErrorCheck($3.line, $1.qualifier, $2, $$.param.type)) context->recover(); } | parameter_qualifier parameter_declarator { $$ = $2; if (context->parameterSamplerErrorCheck($2.line, $1, *$2.param.type)) context->recover(); if (context->paramErrorCheck($2.line, EvqTemporary, $1, $$.param.type)) context->recover(); } // // Only type // | type_qualifier parameter_qualifier parameter_type_specifier { $$ = $3; if (context->paramErrorCheck($3.line, $1.qualifier, $2, $$.param.type)) context->recover(); } | parameter_qualifier parameter_type_specifier { $$ = $2; if (context->parameterSamplerErrorCheck($2.line, $1, *$2.param.type)) context->recover(); if (context->paramErrorCheck($2.line, EvqTemporary, $1, $$.param.type)) context->recover(); } ; parameter_qualifier : /* empty */ { $$ = EvqIn; } | IN_QUAL { $$ = EvqIn; } | OUT_QUAL { $$ = EvqOut; } | INOUT_QUAL { $$ = EvqInOut; } ; parameter_type_specifier : type_specifier { TParameter param = { 0, new TType($1) }; $$.param = param; } ; init_declarator_list : single_declaration { $$ = $1; if ($$.type.precision == EbpUndefined) { $$.type.precision = context->symbolTable.getDefaultPrecision($1.type.type); if (context->precisionErrorCheck($1.line, $$.type.precision, $1.type.type)) { context->recover(); } } } | init_declarator_list COMMA IDENTIFIER { $$.intermAggregate = context->intermediate.growAggregate($1.intermNode, context->intermediate.addSymbol(0, *$3.string, TType($1.type), $3.line), $3.line); if (context->structQualifierErrorCheck($3.line, $$.type)) context->recover(); if (context->nonInitConstErrorCheck($3.line, *$3.string, $$.type)) context->recover(); if (context->nonInitErrorCheck($3.line, *$3.string, $$.type)) context->recover(); } | init_declarator_list COMMA IDENTIFIER LEFT_BRACKET RIGHT_BRACKET { if (context->structQualifierErrorCheck($3.line, $1.type)) context->recover(); if (context->nonInitConstErrorCheck($3.line, *$3.string, $1.type)) context->recover(); $$ = $1; if (context->arrayTypeErrorCheck($4.line, $1.type) || context->arrayQualifierErrorCheck($4.line, $1.type)) context->recover(); else { $1.type.setArray(true); TVariable* variable; if (context->arrayErrorCheck($4.line, *$3.string, $1.type, variable)) context->recover(); } } | init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET { if (context->structQualifierErrorCheck($3.line, $1.type)) context->recover(); if (context->nonInitConstErrorCheck($3.line, *$3.string, $1.type)) context->recover(); $$ = $1; if (context->arrayTypeErrorCheck($4.line, $1.type) || context->arrayQualifierErrorCheck($4.line, $1.type)) context->recover(); else { int size; if (context->arraySizeErrorCheck($4.line, $5, size)) context->recover(); $1.type.setArray(true, size); TVariable* variable; if (context->arrayErrorCheck($4.line, *$3.string, $1.type, variable)) context->recover(); TType type = TType($1.type); type.setArraySize(size); $$.intermAggregate = context->intermediate.growAggregate($1.intermNode, context->intermediate.addSymbol(0, *$3.string, type, $3.line), $3.line); } } | init_declarator_list COMMA IDENTIFIER EQUAL initializer { if (context->structQualifierErrorCheck($3.line, $1.type)) context->recover(); $$ = $1; TIntermNode* intermNode; if (!context->executeInitializer($3.line, *$3.string, $1.type, $5, intermNode)) { // // build the intermediate representation // if (intermNode) $$.intermAggregate = context->intermediate.growAggregate($1.intermNode, intermNode, $4.line); else $$.intermAggregate = $1.intermAggregate; } else { context->recover(); $$.intermAggregate = 0; } } ; single_declaration : fully_specified_type { $$.type = $1; $$.intermAggregate = context->intermediate.makeAggregate(context->intermediate.addSymbol(0, "", TType($1), $1.line), $1.line); } | fully_specified_type IDENTIFIER { $$.intermAggregate = context->intermediate.makeAggregate(context->intermediate.addSymbol(0, *$2.string, TType($1), $2.line), $2.line); if (context->structQualifierErrorCheck($2.line, $$.type)) context->recover(); if (context->nonInitConstErrorCheck($2.line, *$2.string, $$.type)) context->recover(); $$.type = $1; if (context->nonInitErrorCheck($2.line, *$2.string, $$.type)) context->recover(); } | fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET { $$.intermAggregate = context->intermediate.makeAggregate(context->intermediate.addSymbol(0, *$2.string, TType($1), $2.line), $2.line); if (context->structQualifierErrorCheck($2.line, $1)) context->recover(); if (context->nonInitConstErrorCheck($2.line, *$2.string, $1)) context->recover(); $$.type = $1; if (context->arrayTypeErrorCheck($3.line, $1) || context->arrayQualifierErrorCheck($3.line, $1)) context->recover(); else { $1.setArray(true); TVariable* variable; if (context->arrayErrorCheck($3.line, *$2.string, $1, variable)) context->recover(); } } | fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET { TType type = TType($1); int size; if (context->arraySizeErrorCheck($2.line, $4, size)) context->recover(); type.setArraySize(size); $$.intermAggregate = context->intermediate.makeAggregate(context->intermediate.addSymbol(0, *$2.string, type, $2.line), $2.line); if (context->structQualifierErrorCheck($2.line, $1)) context->recover(); if (context->nonInitConstErrorCheck($2.line, *$2.string, $1)) context->recover(); $$.type = $1; if (context->arrayTypeErrorCheck($3.line, $1) || context->arrayQualifierErrorCheck($3.line, $1)) context->recover(); else { int size; if (context->arraySizeErrorCheck($3.line, $4, size)) context->recover(); $1.setArray(true, size); TVariable* variable; if (context->arrayErrorCheck($3.line, *$2.string, $1, variable)) context->recover(); } } | fully_specified_type IDENTIFIER EQUAL initializer { if (context->structQualifierErrorCheck($2.line, $1)) context->recover(); $$.type = $1; TIntermNode* intermNode; if (!context->executeInitializer($2.line, *$2.string, $1, $4, intermNode)) { // // Build intermediate representation // if(intermNode) $$.intermAggregate = context->intermediate.makeAggregate(intermNode, $3.line); else $$.intermAggregate = 0; } else { context->recover(); $$.intermAggregate = 0; } } | INVARIANT IDENTIFIER { VERTEX_ONLY("invariant declaration", $1.line); $$.qualifier = EvqInvariantVaryingOut; $$.intermAggregate = 0; } // // Place holder for the pack/unpack languages. // // | buffer_specifier { // $$.intermAggregate = 0; // } ; // Grammar Note: No 'enum', or 'typedef'. // // Place holder for the pack/unpack languages. // //%type <interm> buffer_declaration //%type <interm.type> buffer_specifier input_or_output buffer_declaration_list //buffer_specifier // : input_or_output LEFT_BRACE buffer_declaration_list RIGHT_BRACE { // } // ; // //input_or_output // : INPUT { // if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "input")) // context->recover(); // UNPACK_ONLY("input", $1.line); // $$.qualifier = EvqInput; // } // | OUTPUT { // if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "output")) // context->recover(); // PACK_ONLY("output", $1.line); // $$.qualifier = EvqOutput; // } // ; // // Place holder for the pack/unpack languages. // //buffer_declaration_list // : buffer_declaration { // } // | buffer_declaration_list buffer_declaration { // } // ; // // Input/output semantics: // float must be 16 or 32 bits // float alignment restrictions? // check for only one input and only one output // sum of bitfields has to be multiple of 32 // // // Place holder for the pack/unpack languages. // //buffer_declaration // : type_specifier IDENTIFIER COLON constant_expression SEMICOLON { // if (context->reservedErrorCheck($2.line, *$2.string, context)) // context->recover(); // $$.variable = new TVariable($2.string, $1); // if (! context->symbolTable.insert(*$$.variable)) { // context->error($2.line, "redefinition", $$.variable->getName().c_str(), ""); // context->recover(); // // don't have to delete $$.variable, the pool pop will take care of it // } // } // ; fully_specified_type : type_specifier { $$ = $1; if ($1.array) { context->error($1.line, "not supported", "first-class array", ""); context->recover(); $1.setArray(false); } } | type_qualifier type_specifier { if ($2.array) { context->error($2.line, "not supported", "first-class array", ""); context->recover(); $2.setArray(false); } if ($1.qualifier == EvqAttribute && ($2.type == EbtBool || $2.type == EbtInt)) { context->error($2.line, "cannot be bool or int", getQualifierString($1.qualifier), ""); context->recover(); } if (($1.qualifier == EvqVaryingIn || $1.qualifier == EvqVaryingOut) && ($2.type == EbtBool || $2.type == EbtInt)) { context->error($2.line, "cannot be bool or int", getQualifierString($1.qualifier), ""); context->recover(); } $$ = $2; $$.qualifier = $1.qualifier; } ; type_qualifier : CONST_QUAL { $$.setBasic(EbtVoid, EvqConst, $1.line); } | ATTRIBUTE { VERTEX_ONLY("attribute", $1.line); if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "attribute")) context->recover(); $$.setBasic(EbtVoid, EvqAttribute, $1.line); } | VARYING { if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "varying")) context->recover(); if (context->shaderType == SH_VERTEX_SHADER) $$.setBasic(EbtVoid, EvqVaryingOut, $1.line); else $$.setBasic(EbtVoid, EvqVaryingIn, $1.line); } | INVARIANT VARYING { if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "invariant varying")) context->recover(); if (context->shaderType == SH_VERTEX_SHADER) $$.setBasic(EbtVoid, EvqInvariantVaryingOut, $1.line); else $$.setBasic(EbtVoid, EvqInvariantVaryingIn, $1.line); } | UNIFORM { if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "uniform")) context->recover(); $$.setBasic(EbtVoid, EvqUniform, $1.line); } ; type_specifier : type_specifier_no_prec { $$ = $1; } | precision_qualifier type_specifier_no_prec { $$ = $2; $$.precision = $1; } ; precision_qualifier : HIGH_PRECISION { $$ = EbpHigh; } | MEDIUM_PRECISION { $$ = EbpMedium; } | LOW_PRECISION { $$ = EbpLow; } ; type_specifier_no_prec : type_specifier_nonarray { $$ = $1; } | type_specifier_nonarray LEFT_BRACKET constant_expression RIGHT_BRACKET { $$ = $1; if (context->arrayTypeErrorCheck($2.line, $1)) context->recover(); else { int size; if (context->arraySizeErrorCheck($2.line, $3, size)) context->recover(); $$.setArray(true, size); } } ; type_specifier_nonarray : VOID_TYPE { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtVoid, qual, $1.line); } | FLOAT_TYPE { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtFloat, qual, $1.line); } | INT_TYPE { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtInt, qual, $1.line); } | BOOL_TYPE { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtBool, qual, $1.line); } // | UNSIGNED INT_TYPE { // PACK_UNPACK_ONLY("unsigned", $1.line); // TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; // $$.setBasic(EbtInt, qual, $1.line); // } | VEC2 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtFloat, qual, $1.line); $$.setAggregate(2); } | VEC3 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtFloat, qual, $1.line); $$.setAggregate(3); } | VEC4 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtFloat, qual, $1.line); $$.setAggregate(4); } | BVEC2 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtBool, qual, $1.line); $$.setAggregate(2); } | BVEC3 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtBool, qual, $1.line); $$.setAggregate(3); } | BVEC4 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtBool, qual, $1.line); $$.setAggregate(4); } | IVEC2 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtInt, qual, $1.line); $$.setAggregate(2); } | IVEC3 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtInt, qual, $1.line); $$.setAggregate(3); } | IVEC4 { TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtInt, qual, $1.line); $$.setAggregate(4); } | MATRIX2 { FRAG_VERT_ONLY("mat2", $1.line); TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtFloat, qual, $1.line); $$.setAggregate(2, true); } | MATRIX3 { FRAG_VERT_ONLY("mat3", $1.line); TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtFloat, qual, $1.line); $$.setAggregate(3, true); } | MATRIX4 { FRAG_VERT_ONLY("mat4", $1.line); TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtFloat, qual, $1.line); $$.setAggregate(4, true); } | SAMPLER2D { FRAG_VERT_ONLY("sampler2D", $1.line); TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtSampler2D, qual, $1.line); } | SAMPLERCUBE { FRAG_VERT_ONLY("samplerCube", $1.line); TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtSamplerCube, qual, $1.line); } | struct_specifier { FRAG_VERT_ONLY("struct", $1.line); $$ = $1; $$.qualifier = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; } | TYPE_NAME { // // This is for user defined type names. The lexical phase looked up the // type. // TType& structure = static_cast<TVariable*>($1.symbol)->getType(); TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary; $$.setBasic(EbtStruct, qual, $1.line); $$.userDef = &structure; } ; struct_specifier : STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE { if (context->reservedErrorCheck($2.line, *$2.string)) context->recover(); TType* structure = new TType($4, *$2.string); TVariable* userTypeDef = new TVariable($2.string, *structure, true); if (! context->symbolTable.insert(*userTypeDef)) { context->error($2.line, "redefinition", $2.string->c_str(), "struct"); context->recover(); } $$.setBasic(EbtStruct, EvqTemporary, $1.line); $$.userDef = structure; } | STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE { TType* structure = new TType($3, TString("")); $$.setBasic(EbtStruct, EvqTemporary, $1.line); $$.userDef = structure; } ; struct_declaration_list : struct_declaration { $$ = $1; } | struct_declaration_list struct_declaration { $$ = $1; for (unsigned int i = 0; i < $2->size(); ++i) { for (unsigned int j = 0; j < $$->size(); ++j) { if ((*$$)[j].type->getFieldName() == (*$2)[i].type->getFieldName()) { context->error((*$2)[i].line, "duplicate field name in structure:", "struct", (*$2)[i].type->getFieldName().c_str()); context->recover(); } } $$->push_back((*$2)[i]); } } ; struct_declaration : type_specifier struct_declarator_list SEMICOLON { $$ = $2; if (context->voidErrorCheck($1.line, (*$2)[0].type->getFieldName(), $1)) { context->recover(); } for (unsigned int i = 0; i < $$->size(); ++i) { // // Careful not to replace already known aspects of type, like array-ness // TType* type = (*$$)[i].type; type->setBasicType($1.type); type->setNominalSize($1.size); type->setMatrix($1.matrix); // don't allow arrays of arrays if (type->isArray()) { if (context->arrayTypeErrorCheck($1.line, $1)) context->recover(); } if ($1.array) type->setArraySize($1.arraySize); if ($1.userDef) { type->setStruct($1.userDef->getStruct()); type->setTypeName($1.userDef->getTypeName()); } } } ; struct_declarator_list : struct_declarator { $$ = NewPoolTTypeList(); $$->push_back($1); } | struct_declarator_list COMMA struct_declarator { $$->push_back($3); } ; struct_declarator : IDENTIFIER { if (context->reservedErrorCheck($1.line, *$1.string)) context->recover(); $$.type = new TType(EbtVoid, EbpUndefined); $$.line = $1.line; $$.type->setFieldName(*$1.string); } | IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET { if (context->reservedErrorCheck($1.line, *$1.string)) context->recover(); $$.type = new TType(EbtVoid, EbpUndefined); $$.line = $1.line; $$.type->setFieldName(*$1.string); int size; if (context->arraySizeErrorCheck($2.line, $3, size)) context->recover(); $$.type->setArraySize(size); } ; initializer : assignment_expression { $$ = $1; } ; declaration_statement : declaration { $$ = $1; } ; statement : compound_statement { $$ = $1; } | simple_statement { $$ = $1; } ; // Grammar Note: No labeled statements; 'goto' is not supported. simple_statement : declaration_statement { $$ = $1; } | expression_statement { $$ = $1; } | selection_statement { $$ = $1; } | iteration_statement { $$ = $1; } | jump_statement { $$ = $1; } ; compound_statement : LEFT_BRACE RIGHT_BRACE { $$ = 0; } | LEFT_BRACE { context->symbolTable.push(); } statement_list { context->symbolTable.pop(); } RIGHT_BRACE { if ($3 != 0) $3->setOp(EOpSequence); $$ = $3; } ; statement_no_new_scope : compound_statement_no_new_scope { $$ = $1; } | simple_statement { $$ = $1; } ; compound_statement_no_new_scope // Statement that doesn't create a new scope, for selection_statement, iteration_statement : LEFT_BRACE RIGHT_BRACE { $$ = 0; } | LEFT_BRACE statement_list RIGHT_BRACE { if ($2) $2->setOp(EOpSequence); $$ = $2; } ; statement_list : statement { $$ = context->intermediate.makeAggregate($1, 0); } | statement_list statement { $$ = context->intermediate.growAggregate($1, $2, 0); } ; expression_statement : SEMICOLON { $$ = 0; } | expression SEMICOLON { $$ = static_cast<TIntermNode*>($1); } ; selection_statement : IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement { if (context->boolErrorCheck($1.line, $3)) context->recover(); $$ = context->intermediate.addSelection($3, $5, $1.line); } ; selection_rest_statement : statement ELSE statement { $$.node1 = $1; $$.node2 = $3; } | statement { $$.node1 = $1; $$.node2 = 0; } ; // Grammar Note: No 'switch'. Switch statements not supported. condition // In 1996 c++ draft, conditions can include single declarations : expression { $$ = $1; if (context->boolErrorCheck($1->getLine(), $1)) context->recover(); } | fully_specified_type IDENTIFIER EQUAL initializer { TIntermNode* intermNode; if (context->structQualifierErrorCheck($2.line, $1)) context->recover(); if (context->boolErrorCheck($2.line, $1)) context->recover(); if (!context->executeInitializer($2.line, *$2.string, $1, $4, intermNode)) $$ = $4; else { context->recover(); $$ = 0; } } ; iteration_statement : WHILE LEFT_PAREN { context->symbolTable.push(); ++context->loopNestingLevel; } condition RIGHT_PAREN statement_no_new_scope { context->symbolTable.pop(); $$ = context->intermediate.addLoop(ELoopWhile, 0, $4, 0, $6, $1.line); --context->loopNestingLevel; } | DO { ++context->loopNestingLevel; } statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON { if (context->boolErrorCheck($8.line, $6)) context->recover(); $$ = context->intermediate.addLoop(ELoopDoWhile, 0, $6, 0, $3, $4.line); --context->loopNestingLevel; } | FOR LEFT_PAREN { context->symbolTable.push(); ++context->loopNestingLevel; } for_init_statement for_rest_statement RIGHT_PAREN statement_no_new_scope { context->symbolTable.pop(); $$ = context->intermediate.addLoop(ELoopFor, $4, reinterpret_cast<TIntermTyped*>($5.node1), reinterpret_cast<TIntermTyped*>($5.node2), $7, $1.line); --context->loopNestingLevel; } ; for_init_statement : expression_statement { $$ = $1; } | declaration_statement { $$ = $1; } ; conditionopt : condition { $$ = $1; } | /* May be null */ { $$ = 0; } ; for_rest_statement : conditionopt SEMICOLON { $$.node1 = $1; $$.node2 = 0; } | conditionopt SEMICOLON expression { $$.node1 = $1; $$.node2 = $3; } ; jump_statement : CONTINUE SEMICOLON { if (context->loopNestingLevel <= 0) { context->error($1.line, "continue statement only allowed in loops", "", ""); context->recover(); } $$ = context->intermediate.addBranch(EOpContinue, $1.line); } | BREAK SEMICOLON { if (context->loopNestingLevel <= 0) { context->error($1.line, "break statement only allowed in loops", "", ""); context->recover(); } $$ = context->intermediate.addBranch(EOpBreak, $1.line); } | RETURN SEMICOLON { $$ = context->intermediate.addBranch(EOpReturn, $1.line); if (context->currentFunctionType->getBasicType() != EbtVoid) { context->error($1.line, "non-void function must return a value", "return", ""); context->recover(); } } | RETURN expression SEMICOLON { $$ = context->intermediate.addBranch(EOpReturn, $2, $1.line); context->functionReturnsValue = true; if (context->currentFunctionType->getBasicType() == EbtVoid) { context->error($1.line, "void function cannot return a value", "return", ""); context->recover(); } else if (*(context->currentFunctionType) != $2->getType()) { context->error($1.line, "function return is not matching type:", "return", ""); context->recover(); } } | DISCARD SEMICOLON { FRAG_ONLY("discard", $1.line); $$ = context->intermediate.addBranch(EOpKill, $1.line); } ; // Grammar Note: No 'goto'. Gotos are not supported. translation_unit : external_declaration { $$ = $1; context->treeRoot = $$; } | translation_unit external_declaration { $$ = context->intermediate.growAggregate($1, $2, 0); context->treeRoot = $$; } ; external_declaration : function_definition { $$ = $1; } | declaration { $$ = $1; } ; function_definition : function_prototype { TFunction* function = $1.function; TFunction* prevDec = static_cast<TFunction*>(context->symbolTable.find(function->getMangledName())); // // Note: 'prevDec' could be 'function' if this is the first time we've seen function // as it would have just been put in the symbol table. Otherwise, we're looking up // an earlier occurance. // if (prevDec->isDefined()) { // // Then this function already has a body. // context->error($1.line, "function already has a body", function->getName().c_str(), ""); context->recover(); } prevDec->setDefined(); // // Raise error message if main function takes any parameters or return anything other than void // if (function->getName() == "main") { if (function->getParamCount() > 0) { context->error($1.line, "function cannot take any parameter(s)", function->getName().c_str(), ""); context->recover(); } if (function->getReturnType().getBasicType() != EbtVoid) { context->error($1.line, "", function->getReturnType().getBasicString(), "main function cannot return a value"); context->recover(); } } // // New symbol table scope for body of function plus its arguments // context->symbolTable.push(); // // Remember the return type for later checking for RETURN statements. // context->currentFunctionType = &(prevDec->getReturnType()); context->functionReturnsValue = false; // // Insert parameters into the symbol table. // If the parameter has no name, it's not an error, just don't insert it // (could be used for unused args). // // Also, accumulate the list of parameters into the HIL, so lower level code // knows where to find parameters. // TIntermAggregate* paramNodes = new TIntermAggregate; for (int i = 0; i < function->getParamCount(); i++) { const TParameter& param = function->getParam(i); if (param.name != 0) { TVariable *variable = new TVariable(param.name, *param.type); // // Insert the parameters with name in the symbol table. // if (! context->symbolTable.insert(*variable)) { context->error($1.line, "redefinition", variable->getName().c_str(), ""); context->recover(); delete variable; } // // Add the parameter to the HIL // paramNodes = context->intermediate.growAggregate( paramNodes, context->intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), $1.line), $1.line); } else { paramNodes = context->intermediate.growAggregate(paramNodes, context->intermediate.addSymbol(0, "", *param.type, $1.line), $1.line); } } context->intermediate.setAggregateOperator(paramNodes, EOpParameters, $1.line); $1.intermAggregate = paramNodes; context->loopNestingLevel = 0; } compound_statement_no_new_scope { //?? Check that all paths return a value if return type != void ? // May be best done as post process phase on intermediate code if (context->currentFunctionType->getBasicType() != EbtVoid && ! context->functionReturnsValue) { context->error($1.line, "function does not return a value:", "", $1.function->getName().c_str()); context->recover(); } context->symbolTable.pop(); $$ = context->intermediate.growAggregate($1.intermAggregate, $3, 0); context->intermediate.setAggregateOperator($$, EOpFunction, $1.line); $$->getAsAggregate()->setName($1.function->getMangledName().c_str()); $$->getAsAggregate()->setType($1.function->getReturnType()); // store the pragma information for debug and optimize and other vendor specific // information. This information can be queried from the parse tree $$->getAsAggregate()->setOptimize(context->contextPragma.optimize); $$->getAsAggregate()->setDebug(context->contextPragma.debug); $$->getAsAggregate()->addToPragmaTable(context->contextPragma.pragmaTable); } ; %% int glslang_parse(TParseContext* context) { return yyparse(context); }