/* * Copyright (C) 2010, Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(WEB_AUDIO) #include "JavaScriptAudioNode.h" #include "AudioBuffer.h" #include "AudioBus.h" #include "AudioContext.h" #include "AudioNodeInput.h" #include "AudioNodeOutput.h" #include "AudioProcessingEvent.h" #include "Document.h" #include "Float32Array.h" #include <wtf/MainThread.h> namespace WebCore { const size_t DefaultBufferSize = 4096; PassRefPtr<JavaScriptAudioNode> JavaScriptAudioNode::create(AudioContext* context, double sampleRate, size_t bufferSize, unsigned numberOfInputs, unsigned numberOfOutputs) { return adoptRef(new JavaScriptAudioNode(context, sampleRate, bufferSize, numberOfInputs, numberOfOutputs)); } JavaScriptAudioNode::JavaScriptAudioNode(AudioContext* context, double sampleRate, size_t bufferSize, unsigned numberOfInputs, unsigned numberOfOutputs) : AudioNode(context, sampleRate) , m_doubleBufferIndex(0) , m_doubleBufferIndexForEvent(0) , m_bufferSize(bufferSize) , m_bufferReadWriteIndex(0) , m_isRequestOutstanding(false) { // Check for valid buffer size. switch (bufferSize) { case 256: case 512: case 1024: case 2048: case 4096: case 8192: case 16384: m_bufferSize = bufferSize; break; default: m_bufferSize = DefaultBufferSize; } // Regardless of the allowed buffer sizes above, we still need to process at the granularity of the AudioNode. if (m_bufferSize < AudioNode::ProcessingSizeInFrames) m_bufferSize = AudioNode::ProcessingSizeInFrames; // FIXME: Right now we're hardcoded to single input and single output. // Although the specification says this is OK for a simple implementation, multiple inputs and outputs would be good. ASSERT_UNUSED(numberOfInputs, numberOfInputs == 1); ASSERT_UNUSED(numberOfOutputs, numberOfOutputs == 1); addInput(adoptPtr(new AudioNodeInput(this))); addOutput(adoptPtr(new AudioNodeOutput(this, 2))); setType(NodeTypeJavaScript); initialize(); } JavaScriptAudioNode::~JavaScriptAudioNode() { uninitialize(); } void JavaScriptAudioNode::initialize() { if (isInitialized()) return; double sampleRate = context()->sampleRate(); // Create double buffers on both the input and output sides. // These AudioBuffers will be directly accessed in the main thread by JavaScript. for (unsigned i = 0; i < 2; ++i) { m_inputBuffers.append(AudioBuffer::create(2, bufferSize(), sampleRate)); m_outputBuffers.append(AudioBuffer::create(2, bufferSize(), sampleRate)); } AudioNode::initialize(); } void JavaScriptAudioNode::uninitialize() { if (!isInitialized()) return; m_inputBuffers.clear(); m_outputBuffers.clear(); AudioNode::uninitialize(); } JavaScriptAudioNode* JavaScriptAudioNode::toJavaScriptAudioNode() { return this; } void JavaScriptAudioNode::process(size_t framesToProcess) { // Discussion about inputs and outputs: // As in other AudioNodes, JavaScriptAudioNode uses an AudioBus for its input and output (see inputBus and outputBus below). // Additionally, there is a double-buffering for input and output which is exposed directly to JavaScript (see inputBuffer and outputBuffer below). // This node is the producer for inputBuffer and the consumer for outputBuffer. // The JavaScript code is the consumer of inputBuffer and the producer for outputBuffer. // Get input and output busses. AudioBus* inputBus = this->input(0)->bus(); AudioBus* outputBus = this->output(0)->bus(); // Get input and output buffers. We double-buffer both the input and output sides. unsigned doubleBufferIndex = this->doubleBufferIndex(); bool isDoubleBufferIndexGood = doubleBufferIndex < 2 && doubleBufferIndex < m_inputBuffers.size() && doubleBufferIndex < m_outputBuffers.size(); ASSERT(isDoubleBufferIndexGood); if (!isDoubleBufferIndexGood) return; AudioBuffer* inputBuffer = m_inputBuffers[doubleBufferIndex].get(); AudioBuffer* outputBuffer = m_outputBuffers[doubleBufferIndex].get(); // Check the consistency of input and output buffers. bool buffersAreGood = inputBuffer && outputBuffer && bufferSize() == inputBuffer->length() && bufferSize() == outputBuffer->length() && m_bufferReadWriteIndex + framesToProcess <= bufferSize(); ASSERT(buffersAreGood); if (!buffersAreGood) return; // We assume that bufferSize() is evenly divisible by framesToProcess - should always be true, but we should still check. bool isFramesToProcessGood = framesToProcess && bufferSize() >= framesToProcess && !(bufferSize() % framesToProcess); ASSERT(isFramesToProcessGood); if (!isFramesToProcessGood) return; unsigned numberOfInputChannels = inputBus->numberOfChannels(); bool channelsAreGood = (numberOfInputChannels == 1 || numberOfInputChannels == 2) && outputBus->numberOfChannels() == 2; ASSERT(channelsAreGood); if (!channelsAreGood) return; float* sourceL = inputBus->channel(0)->data(); float* sourceR = numberOfInputChannels > 1 ? inputBus->channel(1)->data() : 0; float* destinationL = outputBus->channel(0)->data(); float* destinationR = outputBus->channel(1)->data(); // Copy from the input to the input buffer. See "buffersAreGood" check above for safety. size_t bytesToCopy = sizeof(float) * framesToProcess; memcpy(inputBuffer->getChannelData(0)->data() + m_bufferReadWriteIndex, sourceL, bytesToCopy); if (numberOfInputChannels == 2) memcpy(inputBuffer->getChannelData(1)->data() + m_bufferReadWriteIndex, sourceR, bytesToCopy); else if (numberOfInputChannels == 1) { // If the input is mono, then also copy the mono input to the right channel of the AudioBuffer which the AudioProcessingEvent uses. // FIXME: it is likely the audio API will evolve to present an AudioBuffer with the same number of channels as our input. memcpy(inputBuffer->getChannelData(1)->data() + m_bufferReadWriteIndex, sourceL, bytesToCopy); } // Copy from the output buffer to the output. See "buffersAreGood" check above for safety. memcpy(destinationL, outputBuffer->getChannelData(0)->data() + m_bufferReadWriteIndex, bytesToCopy); memcpy(destinationR, outputBuffer->getChannelData(1)->data() + m_bufferReadWriteIndex, bytesToCopy); // Update the buffering index. m_bufferReadWriteIndex = (m_bufferReadWriteIndex + framesToProcess) % bufferSize(); // m_bufferReadWriteIndex will wrap back around to 0 when the current input and output buffers are full. // When this happens, fire an event and swap buffers. if (!m_bufferReadWriteIndex) { // Avoid building up requests on the main thread to fire process events when they're not being handled. // This could be a problem if the main thread is very busy doing other things and is being held up handling previous requests. if (m_isRequestOutstanding) { // We're late in handling the previous request. The main thread must be very busy. // The best we can do is clear out the buffer ourself here. outputBuffer->zero(); } else { // Reference ourself so we don't accidentally get deleted before fireProcessEvent() gets called. ref(); // Fire the event on the main thread, not this one (which is the realtime audio thread). m_doubleBufferIndexForEvent = m_doubleBufferIndex; m_isRequestOutstanding = true; callOnMainThread(fireProcessEventDispatch, this); } swapBuffers(); } } void JavaScriptAudioNode::fireProcessEventDispatch(void* userData) { JavaScriptAudioNode* jsAudioNode = static_cast<JavaScriptAudioNode*>(userData); ASSERT(jsAudioNode); if (!jsAudioNode) return; jsAudioNode->fireProcessEvent(); // De-reference to match the ref() call in process(). jsAudioNode->deref(); } void JavaScriptAudioNode::fireProcessEvent() { ASSERT(isMainThread() && m_isRequestOutstanding); bool isIndexGood = m_doubleBufferIndexForEvent < 2; ASSERT(isIndexGood); if (!isIndexGood) return; AudioBuffer* inputBuffer = m_inputBuffers[m_doubleBufferIndexForEvent].get(); AudioBuffer* outputBuffer = m_outputBuffers[m_doubleBufferIndexForEvent].get(); ASSERT(inputBuffer && outputBuffer); if (!inputBuffer || !outputBuffer) return; // Avoid firing the event if the document has already gone away. if (context()->hasDocument()) { // Let the audio thread know we've gotten to the point where it's OK for it to make another request. m_isRequestOutstanding = false; // Call the JavaScript event handler which will do the audio processing. dispatchEvent(AudioProcessingEvent::create(inputBuffer, outputBuffer)); } } void JavaScriptAudioNode::reset() { m_bufferReadWriteIndex = 0; m_doubleBufferIndex = 0; for (unsigned i = 0; i < 2; ++i) { m_inputBuffers[i]->zero(); m_outputBuffers[i]->zero(); } } ScriptExecutionContext* JavaScriptAudioNode::scriptExecutionContext() const { return const_cast<JavaScriptAudioNode*>(this)->context()->document(); } } // namespace WebCore #endif // ENABLE(WEB_AUDIO)