// Copyright 2010 Google Inc. All Rights Reserved. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Main decoding functions for WEBP images. // // Author: Skal (pascal.massimino@gmail.com) #include <stdlib.h> #include "./vp8i.h" #include "./vp8li.h" #include "./webpi.h" #include "webp/format_constants.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif //------------------------------------------------------------------------------ // RIFF layout is: // Offset tag // 0...3 "RIFF" 4-byte tag // 4...7 size of image data (including metadata) starting at offset 8 // 8...11 "WEBP" our form-type signature // The RIFF container (12 bytes) is followed by appropriate chunks: // 12..15 "VP8 ": 4-bytes tags, signaling the use of VP8 video format // 16..19 size of the raw VP8 image data, starting at offset 20 // 20.... the VP8 bytes // Or, // 12..15 "VP8L": 4-bytes tags, signaling the use of VP8L lossless format // 16..19 size of the raw VP8L image data, starting at offset 20 // 20.... the VP8L bytes // Or, // 12..15 "VP8X": 4-bytes tags, describing the extended-VP8 chunk. // 16..19 size of the VP8X chunk starting at offset 20. // 20..23 VP8X flags bit-map corresponding to the chunk-types present. // 24..26 Width of the Canvas Image. // 27..29 Height of the Canvas Image. // There can be extra chunks after the "VP8X" chunk (ICCP, FRGM, ANMF, VP8, // VP8L, XMP, EXIF ...) // All sizes are in little-endian order. // Note: chunk data size must be padded to multiple of 2 when written. static WEBP_INLINE uint32_t get_le24(const uint8_t* const data) { return data[0] | (data[1] << 8) | (data[2] << 16); } static WEBP_INLINE uint32_t get_le32(const uint8_t* const data) { return (uint32_t)get_le24(data) | (data[3] << 24); } // Validates the RIFF container (if detected) and skips over it. // If a RIFF container is detected, // Returns VP8_STATUS_BITSTREAM_ERROR for invalid header, and // VP8_STATUS_OK otherwise. // In case there are not enough bytes (partial RIFF container), return 0 for // *riff_size. Else return the RIFF size extracted from the header. static VP8StatusCode ParseRIFF(const uint8_t** const data, size_t* const data_size, size_t* const riff_size) { assert(data != NULL); assert(data_size != NULL); assert(riff_size != NULL); *riff_size = 0; // Default: no RIFF present. if (*data_size >= RIFF_HEADER_SIZE && !memcmp(*data, "RIFF", TAG_SIZE)) { if (memcmp(*data + 8, "WEBP", TAG_SIZE)) { return VP8_STATUS_BITSTREAM_ERROR; // Wrong image file signature. } else { const uint32_t size = get_le32(*data + TAG_SIZE); // Check that we have at least one chunk (i.e "WEBP" + "VP8?nnnn"). if (size < TAG_SIZE + CHUNK_HEADER_SIZE) { return VP8_STATUS_BITSTREAM_ERROR; } if (size > MAX_CHUNK_PAYLOAD) { return VP8_STATUS_BITSTREAM_ERROR; } // We have a RIFF container. Skip it. *riff_size = size; *data += RIFF_HEADER_SIZE; *data_size -= RIFF_HEADER_SIZE; } } return VP8_STATUS_OK; } // Validates the VP8X header and skips over it. // Returns VP8_STATUS_BITSTREAM_ERROR for invalid VP8X header, // VP8_STATUS_NOT_ENOUGH_DATA in case of insufficient data, and // VP8_STATUS_OK otherwise. // If a VP8X chunk is found, found_vp8x is set to true and *width_ptr, // *height_ptr and *flags_ptr are set to the corresponding values extracted // from the VP8X chunk. static VP8StatusCode ParseVP8X(const uint8_t** const data, size_t* const data_size, int* const found_vp8x, int* const width_ptr, int* const height_ptr, uint32_t* const flags_ptr) { const uint32_t vp8x_size = CHUNK_HEADER_SIZE + VP8X_CHUNK_SIZE; assert(data != NULL); assert(data_size != NULL); assert(found_vp8x != NULL); *found_vp8x = 0; if (*data_size < CHUNK_HEADER_SIZE) { return VP8_STATUS_NOT_ENOUGH_DATA; // Insufficient data. } if (!memcmp(*data, "VP8X", TAG_SIZE)) { int width, height; uint32_t flags; const uint32_t chunk_size = get_le32(*data + TAG_SIZE); if (chunk_size != VP8X_CHUNK_SIZE) { return VP8_STATUS_BITSTREAM_ERROR; // Wrong chunk size. } // Verify if enough data is available to validate the VP8X chunk. if (*data_size < vp8x_size) { return VP8_STATUS_NOT_ENOUGH_DATA; // Insufficient data. } flags = get_le32(*data + 8); width = 1 + get_le24(*data + 12); height = 1 + get_le24(*data + 15); if (width * (uint64_t)height >= MAX_IMAGE_AREA) { return VP8_STATUS_BITSTREAM_ERROR; // image is too large } if (flags_ptr != NULL) *flags_ptr = flags; if (width_ptr != NULL) *width_ptr = width; if (height_ptr != NULL) *height_ptr = height; // Skip over VP8X header bytes. *data += vp8x_size; *data_size -= vp8x_size; *found_vp8x = 1; } return VP8_STATUS_OK; } // Skips to the next VP8/VP8L chunk header in the data given the size of the // RIFF chunk 'riff_size'. // Returns VP8_STATUS_BITSTREAM_ERROR if any invalid chunk size is encountered, // VP8_STATUS_NOT_ENOUGH_DATA in case of insufficient data, and // VP8_STATUS_OK otherwise. // If an alpha chunk is found, *alpha_data and *alpha_size are set // appropriately. static VP8StatusCode ParseOptionalChunks(const uint8_t** const data, size_t* const data_size, size_t const riff_size, const uint8_t** const alpha_data, size_t* const alpha_size) { const uint8_t* buf; size_t buf_size; uint32_t total_size = TAG_SIZE + // "WEBP". CHUNK_HEADER_SIZE + // "VP8Xnnnn". VP8X_CHUNK_SIZE; // data. assert(data != NULL); assert(data_size != NULL); buf = *data; buf_size = *data_size; assert(alpha_data != NULL); assert(alpha_size != NULL); *alpha_data = NULL; *alpha_size = 0; while (1) { uint32_t chunk_size; uint32_t disk_chunk_size; // chunk_size with padding *data = buf; *data_size = buf_size; if (buf_size < CHUNK_HEADER_SIZE) { // Insufficient data. return VP8_STATUS_NOT_ENOUGH_DATA; } chunk_size = get_le32(buf + TAG_SIZE); if (chunk_size > MAX_CHUNK_PAYLOAD) { return VP8_STATUS_BITSTREAM_ERROR; // Not a valid chunk size. } // For odd-sized chunk-payload, there's one byte padding at the end. disk_chunk_size = (CHUNK_HEADER_SIZE + chunk_size + 1) & ~1; total_size += disk_chunk_size; // Check that total bytes skipped so far does not exceed riff_size. if (riff_size > 0 && (total_size > riff_size)) { return VP8_STATUS_BITSTREAM_ERROR; // Not a valid chunk size. } if (buf_size < disk_chunk_size) { // Insufficient data. return VP8_STATUS_NOT_ENOUGH_DATA; } if (!memcmp(buf, "ALPH", TAG_SIZE)) { // A valid ALPH header. *alpha_data = buf + CHUNK_HEADER_SIZE; *alpha_size = chunk_size; } else if (!memcmp(buf, "VP8 ", TAG_SIZE) || !memcmp(buf, "VP8L", TAG_SIZE)) { // A valid VP8/VP8L header. return VP8_STATUS_OK; // Found. } // We have a full and valid chunk; skip it. buf += disk_chunk_size; buf_size -= disk_chunk_size; } } // Validates the VP8/VP8L Header ("VP8 nnnn" or "VP8L nnnn") and skips over it. // Returns VP8_STATUS_BITSTREAM_ERROR for invalid (chunk larger than // riff_size) VP8/VP8L header, // VP8_STATUS_NOT_ENOUGH_DATA in case of insufficient data, and // VP8_STATUS_OK otherwise. // If a VP8/VP8L chunk is found, *chunk_size is set to the total number of bytes // extracted from the VP8/VP8L chunk header. // The flag '*is_lossless' is set to 1 in case of VP8L chunk / raw VP8L data. static VP8StatusCode ParseVP8Header(const uint8_t** const data_ptr, size_t* const data_size, size_t riff_size, size_t* const chunk_size, int* const is_lossless) { const uint8_t* const data = *data_ptr; const int is_vp8 = !memcmp(data, "VP8 ", TAG_SIZE); const int is_vp8l = !memcmp(data, "VP8L", TAG_SIZE); const uint32_t minimal_size = TAG_SIZE + CHUNK_HEADER_SIZE; // "WEBP" + "VP8 nnnn" OR // "WEBP" + "VP8Lnnnn" assert(data != NULL); assert(data_size != NULL); assert(chunk_size != NULL); assert(is_lossless != NULL); if (*data_size < CHUNK_HEADER_SIZE) { return VP8_STATUS_NOT_ENOUGH_DATA; // Insufficient data. } if (is_vp8 || is_vp8l) { // Bitstream contains VP8/VP8L header. const uint32_t size = get_le32(data + TAG_SIZE); if ((riff_size >= minimal_size) && (size > riff_size - minimal_size)) { return VP8_STATUS_BITSTREAM_ERROR; // Inconsistent size information. } // Skip over CHUNK_HEADER_SIZE bytes from VP8/VP8L Header. *chunk_size = size; *data_ptr += CHUNK_HEADER_SIZE; *data_size -= CHUNK_HEADER_SIZE; *is_lossless = is_vp8l; } else { // Raw VP8/VP8L bitstream (no header). *is_lossless = VP8LCheckSignature(data, *data_size); *chunk_size = *data_size; } return VP8_STATUS_OK; } //------------------------------------------------------------------------------ // Fetch '*width', '*height', '*has_alpha' and fill out 'headers' based on // 'data'. All the output parameters may be NULL. If 'headers' is NULL only the // minimal amount will be read to fetch the remaining parameters. // If 'headers' is non-NULL this function will attempt to locate both alpha // data (with or without a VP8X chunk) and the bitstream chunk (VP8/VP8L). // Note: The following chunk sequences (before the raw VP8/VP8L data) are // considered valid by this function: // RIFF + VP8(L) // RIFF + VP8X + (optional chunks) + VP8(L) // ALPH + VP8 <-- Not a valid WebP format: only allowed for internal purpose. // VP8(L) <-- Not a valid WebP format: only allowed for internal purpose. static VP8StatusCode ParseHeadersInternal(const uint8_t* data, size_t data_size, int* const width, int* const height, int* const has_alpha, WebPHeaderStructure* const headers) { int found_riff = 0; int found_vp8x = 0; VP8StatusCode status; WebPHeaderStructure hdrs; if (data == NULL || data_size < RIFF_HEADER_SIZE) { return VP8_STATUS_NOT_ENOUGH_DATA; } memset(&hdrs, 0, sizeof(hdrs)); hdrs.data = data; hdrs.data_size = data_size; // Skip over RIFF header. status = ParseRIFF(&data, &data_size, &hdrs.riff_size); if (status != VP8_STATUS_OK) { return status; // Wrong RIFF header / insufficient data. } found_riff = (hdrs.riff_size > 0); // Skip over VP8X. { uint32_t flags = 0; status = ParseVP8X(&data, &data_size, &found_vp8x, width, height, &flags); if (status != VP8_STATUS_OK) { return status; // Wrong VP8X / insufficient data. } if (!found_riff && found_vp8x) { // Note: This restriction may be removed in the future, if it becomes // necessary to send VP8X chunk to the decoder. return VP8_STATUS_BITSTREAM_ERROR; } if (has_alpha != NULL) *has_alpha = !!(flags & ALPHA_FLAG); if (found_vp8x && headers == NULL) { return VP8_STATUS_OK; // Return features from VP8X header. } } if (data_size < TAG_SIZE) return VP8_STATUS_NOT_ENOUGH_DATA; // Skip over optional chunks if data started with "RIFF + VP8X" or "ALPH". if ((found_riff && found_vp8x) || (!found_riff && !found_vp8x && !memcmp(data, "ALPH", TAG_SIZE))) { status = ParseOptionalChunks(&data, &data_size, hdrs.riff_size, &hdrs.alpha_data, &hdrs.alpha_data_size); if (status != VP8_STATUS_OK) { return status; // Found an invalid chunk size / insufficient data. } } // Skip over VP8/VP8L header. status = ParseVP8Header(&data, &data_size, hdrs.riff_size, &hdrs.compressed_size, &hdrs.is_lossless); if (status != VP8_STATUS_OK) { return status; // Wrong VP8/VP8L chunk-header / insufficient data. } if (hdrs.compressed_size > MAX_CHUNK_PAYLOAD) { return VP8_STATUS_BITSTREAM_ERROR; } if (!hdrs.is_lossless) { if (data_size < VP8_FRAME_HEADER_SIZE) { return VP8_STATUS_NOT_ENOUGH_DATA; } // Validates raw VP8 data. if (!VP8GetInfo(data, data_size, (uint32_t)hdrs.compressed_size, width, height)) { return VP8_STATUS_BITSTREAM_ERROR; } } else { if (data_size < VP8L_FRAME_HEADER_SIZE) { return VP8_STATUS_NOT_ENOUGH_DATA; } // Validates raw VP8L data. if (!VP8LGetInfo(data, data_size, width, height, has_alpha)) { return VP8_STATUS_BITSTREAM_ERROR; } } if (has_alpha != NULL) { // If the data did not contain a VP8X/VP8L chunk the only definitive way // to set this is by looking for alpha data (from an ALPH chunk). *has_alpha |= (hdrs.alpha_data != NULL); } if (headers != NULL) { *headers = hdrs; headers->offset = data - headers->data; assert((uint64_t)(data - headers->data) < MAX_CHUNK_PAYLOAD); assert(headers->offset == headers->data_size - data_size); } return VP8_STATUS_OK; // Return features from VP8 header. } VP8StatusCode WebPParseHeaders(WebPHeaderStructure* const headers) { assert(headers != NULL); // fill out headers, ignore width/height/has_alpha. return ParseHeadersInternal(headers->data, headers->data_size, NULL, NULL, NULL, headers); } //------------------------------------------------------------------------------ // WebPDecParams void WebPResetDecParams(WebPDecParams* const params) { if (params) { memset(params, 0, sizeof(*params)); } } //------------------------------------------------------------------------------ // "Into" decoding variants // Main flow static VP8StatusCode DecodeInto(const uint8_t* const data, size_t data_size, WebPDecParams* const params) { VP8StatusCode status; VP8Io io; WebPHeaderStructure headers; headers.data = data; headers.data_size = data_size; status = WebPParseHeaders(&headers); // Process Pre-VP8 chunks. if (status != VP8_STATUS_OK) { return status; } assert(params != NULL); VP8InitIo(&io); io.data = headers.data + headers.offset; io.data_size = headers.data_size - headers.offset; WebPInitCustomIo(params, &io); // Plug the I/O functions. if (!headers.is_lossless) { VP8Decoder* const dec = VP8New(); if (dec == NULL) { return VP8_STATUS_OUT_OF_MEMORY; } #ifdef WEBP_USE_THREAD dec->use_threads_ = params->options && (params->options->use_threads > 0); #else dec->use_threads_ = 0; #endif dec->alpha_data_ = headers.alpha_data; dec->alpha_data_size_ = headers.alpha_data_size; // Decode bitstream header, update io->width/io->height. if (!VP8GetHeaders(dec, &io)) { status = dec->status_; // An error occurred. Grab error status. } else { // Allocate/check output buffers. status = WebPAllocateDecBuffer(io.width, io.height, params->options, params->output); if (status == VP8_STATUS_OK) { // Decode if (!VP8Decode(dec, &io)) { status = dec->status_; } } } VP8Delete(dec); } else { VP8LDecoder* const dec = VP8LNew(); if (dec == NULL) { return VP8_STATUS_OUT_OF_MEMORY; } if (!VP8LDecodeHeader(dec, &io)) { status = dec->status_; // An error occurred. Grab error status. } else { // Allocate/check output buffers. status = WebPAllocateDecBuffer(io.width, io.height, params->options, params->output); if (status == VP8_STATUS_OK) { // Decode if (!VP8LDecodeImage(dec)) { status = dec->status_; } } } VP8LDelete(dec); } if (status != VP8_STATUS_OK) { WebPFreeDecBuffer(params->output); } return status; } // Helpers static uint8_t* DecodeIntoRGBABuffer(WEBP_CSP_MODE colorspace, const uint8_t* const data, size_t data_size, uint8_t* const rgba, int stride, size_t size) { WebPDecParams params; WebPDecBuffer buf; if (rgba == NULL) { return NULL; } WebPInitDecBuffer(&buf); WebPResetDecParams(¶ms); params.output = &buf; buf.colorspace = colorspace; buf.u.RGBA.rgba = rgba; buf.u.RGBA.stride = stride; buf.u.RGBA.size = size; buf.is_external_memory = 1; if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) { return NULL; } return rgba; } uint8_t* WebPDecodeRGBInto(const uint8_t* data, size_t data_size, uint8_t* output, size_t size, int stride) { return DecodeIntoRGBABuffer(MODE_RGB, data, data_size, output, stride, size); } uint8_t* WebPDecodeRGBAInto(const uint8_t* data, size_t data_size, uint8_t* output, size_t size, int stride) { return DecodeIntoRGBABuffer(MODE_RGBA, data, data_size, output, stride, size); } uint8_t* WebPDecodeARGBInto(const uint8_t* data, size_t data_size, uint8_t* output, size_t size, int stride) { return DecodeIntoRGBABuffer(MODE_ARGB, data, data_size, output, stride, size); } uint8_t* WebPDecodeBGRInto(const uint8_t* data, size_t data_size, uint8_t* output, size_t size, int stride) { return DecodeIntoRGBABuffer(MODE_BGR, data, data_size, output, stride, size); } uint8_t* WebPDecodeBGRAInto(const uint8_t* data, size_t data_size, uint8_t* output, size_t size, int stride) { return DecodeIntoRGBABuffer(MODE_BGRA, data, data_size, output, stride, size); } uint8_t* WebPDecodeYUVInto(const uint8_t* data, size_t data_size, uint8_t* luma, size_t luma_size, int luma_stride, uint8_t* u, size_t u_size, int u_stride, uint8_t* v, size_t v_size, int v_stride) { WebPDecParams params; WebPDecBuffer output; if (luma == NULL) return NULL; WebPInitDecBuffer(&output); WebPResetDecParams(¶ms); params.output = &output; output.colorspace = MODE_YUV; output.u.YUVA.y = luma; output.u.YUVA.y_stride = luma_stride; output.u.YUVA.y_size = luma_size; output.u.YUVA.u = u; output.u.YUVA.u_stride = u_stride; output.u.YUVA.u_size = u_size; output.u.YUVA.v = v; output.u.YUVA.v_stride = v_stride; output.u.YUVA.v_size = v_size; output.is_external_memory = 1; if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) { return NULL; } return luma; } //------------------------------------------------------------------------------ static uint8_t* Decode(WEBP_CSP_MODE mode, const uint8_t* const data, size_t data_size, int* const width, int* const height, WebPDecBuffer* const keep_info) { WebPDecParams params; WebPDecBuffer output; WebPInitDecBuffer(&output); WebPResetDecParams(¶ms); params.output = &output; output.colorspace = mode; // Retrieve (and report back) the required dimensions from bitstream. if (!WebPGetInfo(data, data_size, &output.width, &output.height)) { return NULL; } if (width != NULL) *width = output.width; if (height != NULL) *height = output.height; // Decode if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) { return NULL; } if (keep_info != NULL) { // keep track of the side-info WebPCopyDecBuffer(&output, keep_info); } // return decoded samples (don't clear 'output'!) return WebPIsRGBMode(mode) ? output.u.RGBA.rgba : output.u.YUVA.y; } uint8_t* WebPDecodeRGB(const uint8_t* data, size_t data_size, int* width, int* height) { return Decode(MODE_RGB, data, data_size, width, height, NULL); } uint8_t* WebPDecodeRGBA(const uint8_t* data, size_t data_size, int* width, int* height) { return Decode(MODE_RGBA, data, data_size, width, height, NULL); } uint8_t* WebPDecodeARGB(const uint8_t* data, size_t data_size, int* width, int* height) { return Decode(MODE_ARGB, data, data_size, width, height, NULL); } uint8_t* WebPDecodeBGR(const uint8_t* data, size_t data_size, int* width, int* height) { return Decode(MODE_BGR, data, data_size, width, height, NULL); } uint8_t* WebPDecodeBGRA(const uint8_t* data, size_t data_size, int* width, int* height) { return Decode(MODE_BGRA, data, data_size, width, height, NULL); } uint8_t* WebPDecodeYUV(const uint8_t* data, size_t data_size, int* width, int* height, uint8_t** u, uint8_t** v, int* stride, int* uv_stride) { WebPDecBuffer output; // only to preserve the side-infos uint8_t* const out = Decode(MODE_YUV, data, data_size, width, height, &output); if (out != NULL) { const WebPYUVABuffer* const buf = &output.u.YUVA; *u = buf->u; *v = buf->v; *stride = buf->y_stride; *uv_stride = buf->u_stride; assert(buf->u_stride == buf->v_stride); } return out; } static void DefaultFeatures(WebPBitstreamFeatures* const features) { assert(features != NULL); memset(features, 0, sizeof(*features)); features->bitstream_version = 0; } static VP8StatusCode GetFeatures(const uint8_t* const data, size_t data_size, WebPBitstreamFeatures* const features) { if (features == NULL || data == NULL) { return VP8_STATUS_INVALID_PARAM; } DefaultFeatures(features); // Only parse enough of the data to retrieve width/height/has_alpha. return ParseHeadersInternal(data, data_size, &features->width, &features->height, &features->has_alpha, NULL); } //------------------------------------------------------------------------------ // WebPGetInfo() int WebPGetInfo(const uint8_t* data, size_t data_size, int* width, int* height) { WebPBitstreamFeatures features; if (GetFeatures(data, data_size, &features) != VP8_STATUS_OK) { return 0; } if (width != NULL) { *width = features.width; } if (height != NULL) { *height = features.height; } return 1; } //------------------------------------------------------------------------------ // Advance decoding API int WebPInitDecoderConfigInternal(WebPDecoderConfig* config, int version) { if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) { return 0; // version mismatch } if (config == NULL) { return 0; } memset(config, 0, sizeof(*config)); DefaultFeatures(&config->input); WebPInitDecBuffer(&config->output); return 1; } VP8StatusCode WebPGetFeaturesInternal(const uint8_t* data, size_t data_size, WebPBitstreamFeatures* features, int version) { if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) { return VP8_STATUS_INVALID_PARAM; // version mismatch } if (features == NULL) { return VP8_STATUS_INVALID_PARAM; } return GetFeatures(data, data_size, features); } VP8StatusCode WebPDecode(const uint8_t* data, size_t data_size, WebPDecoderConfig* config) { WebPDecParams params; VP8StatusCode status; if (config == NULL) { return VP8_STATUS_INVALID_PARAM; } status = GetFeatures(data, data_size, &config->input); if (status != VP8_STATUS_OK) { if (status == VP8_STATUS_NOT_ENOUGH_DATA) { return VP8_STATUS_BITSTREAM_ERROR; // Not-enough-data treated as error. } return status; } WebPResetDecParams(¶ms); params.output = &config->output; params.options = &config->options; status = DecodeInto(data, data_size, ¶ms); return status; } //------------------------------------------------------------------------------ // Cropping and rescaling. int WebPIoInitFromOptions(const WebPDecoderOptions* const options, VP8Io* const io, WEBP_CSP_MODE src_colorspace) { const int W = io->width; const int H = io->height; int x = 0, y = 0, w = W, h = H; // Cropping io->use_cropping = (options != NULL) && (options->use_cropping > 0); if (io->use_cropping) { w = options->crop_width; h = options->crop_height; x = options->crop_left; y = options->crop_top; if (!WebPIsRGBMode(src_colorspace)) { // only snap for YUV420 or YUV422 x &= ~1; y &= ~1; // TODO(later): only for YUV420, not YUV422. } if (x < 0 || y < 0 || w <= 0 || h <= 0 || x + w > W || y + h > H) { return 0; // out of frame boundary error } } io->crop_left = x; io->crop_top = y; io->crop_right = x + w; io->crop_bottom = y + h; io->mb_w = w; io->mb_h = h; // Scaling io->use_scaling = (options != NULL) && (options->use_scaling > 0); if (io->use_scaling) { if (options->scaled_width <= 0 || options->scaled_height <= 0) { return 0; } io->scaled_width = options->scaled_width; io->scaled_height = options->scaled_height; } // Filter io->bypass_filtering = options && options->bypass_filtering; // Fancy upsampler #ifdef FANCY_UPSAMPLING io->fancy_upsampling = (options == NULL) || (!options->no_fancy_upsampling); #endif if (io->use_scaling) { // disable filter (only for large downscaling ratio). io->bypass_filtering = (io->scaled_width < W * 3 / 4) && (io->scaled_height < H * 3 / 4); io->fancy_upsampling = 0; } return 1; } //------------------------------------------------------------------------------ #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif