/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "MonoPipe" //#define LOG_NDEBUG 0 #include <common_time/cc_helper.h> #include <cutils/atomic.h> #include <cutils/compiler.h> #include <utils/LinearTransform.h> #include <utils/Log.h> #include <utils/Trace.h> #include <media/AudioBufferProvider.h> #include <media/nbaio/MonoPipe.h> #include <media/nbaio/roundup.h> namespace android { MonoPipe::MonoPipe(size_t reqFrames, NBAIO_Format format, bool writeCanBlock) : NBAIO_Sink(format), mUpdateSeq(0), mReqFrames(reqFrames), mMaxFrames(roundup(reqFrames)), mBuffer(malloc(mMaxFrames * Format_frameSize(format))), mFront(0), mRear(0), mWriteTsValid(false), // mWriteTs mSetpoint((reqFrames * 11) / 16), mWriteCanBlock(writeCanBlock), mIsShutdown(false) { CCHelper tmpHelper; status_t res; uint64_t N, D; mNextRdPTS = AudioBufferProvider::kInvalidPTS; mSamplesToLocalTime.a_zero = 0; mSamplesToLocalTime.b_zero = 0; mSamplesToLocalTime.a_to_b_numer = 0; mSamplesToLocalTime.a_to_b_denom = 0; D = Format_sampleRate(format); if (OK != (res = tmpHelper.getLocalFreq(&N))) { ALOGE("Failed to fetch local time frequency when constructing a" " MonoPipe (res = %d). getNextWriteTimestamp calls will be" " non-functional", res); return; } LinearTransform::reduce(&N, &D); static const uint64_t kSignedHiBitsMask = ~(0x7FFFFFFFull); static const uint64_t kUnsignedHiBitsMask = ~(0xFFFFFFFFull); if ((N & kSignedHiBitsMask) || (D & kUnsignedHiBitsMask)) { ALOGE("Cannot reduce sample rate to local clock frequency ratio to fit" " in a 32/32 bit rational. (max reduction is 0x%016llx/0x%016llx" "). getNextWriteTimestamp calls will be non-functional", N, D); return; } mSamplesToLocalTime.a_to_b_numer = static_cast<int32_t>(N); mSamplesToLocalTime.a_to_b_denom = static_cast<uint32_t>(D); } MonoPipe::~MonoPipe() { free(mBuffer); } ssize_t MonoPipe::availableToWrite() const { if (CC_UNLIKELY(!mNegotiated)) { return NEGOTIATE; } // uses mMaxFrames not mReqFrames, so allows "over-filling" the pipe beyond requested limit ssize_t ret = mMaxFrames - (mRear - android_atomic_acquire_load(&mFront)); ALOG_ASSERT((0 <= ret) && (ret <= mMaxFrames)); return ret; } ssize_t MonoPipe::write(const void *buffer, size_t count) { if (CC_UNLIKELY(!mNegotiated)) { return NEGOTIATE; } size_t totalFramesWritten = 0; while (count > 0) { // can't return a negative value, as we already checked for !mNegotiated size_t avail = availableToWrite(); size_t written = avail; if (CC_LIKELY(written > count)) { written = count; } size_t rear = mRear & (mMaxFrames - 1); size_t part1 = mMaxFrames - rear; if (part1 > written) { part1 = written; } if (CC_LIKELY(part1 > 0)) { memcpy((char *) mBuffer + (rear << mBitShift), buffer, part1 << mBitShift); if (CC_UNLIKELY(rear + part1 == mMaxFrames)) { size_t part2 = written - part1; if (CC_LIKELY(part2 > 0)) { memcpy(mBuffer, (char *) buffer + (part1 << mBitShift), part2 << mBitShift); } } android_atomic_release_store(written + mRear, &mRear); totalFramesWritten += written; } if (!mWriteCanBlock || mIsShutdown) { break; } count -= written; buffer = (char *) buffer + (written << mBitShift); // Simulate blocking I/O by sleeping at different rates, depending on a throttle. // The throttle tries to keep the mean pipe depth near the setpoint, with a slight jitter. uint32_t ns; if (written > 0) { size_t filled = (mMaxFrames - avail) + written; // FIXME cache these values to avoid re-computation if (filled <= mSetpoint / 2) { // pipe is (nearly) empty, fill quickly ns = written * ( 500000000 / Format_sampleRate(mFormat)); } else if (filled <= (mSetpoint * 3) / 4) { // pipe is below setpoint, fill at slightly faster rate ns = written * ( 750000000 / Format_sampleRate(mFormat)); } else if (filled <= (mSetpoint * 5) / 4) { // pipe is at setpoint, fill at nominal rate ns = written * (1000000000 / Format_sampleRate(mFormat)); } else if (filled <= (mSetpoint * 3) / 2) { // pipe is above setpoint, fill at slightly slower rate ns = written * (1150000000 / Format_sampleRate(mFormat)); } else if (filled <= (mSetpoint * 7) / 4) { // pipe is overflowing, fill slowly ns = written * (1350000000 / Format_sampleRate(mFormat)); } else { // pipe is severely overflowing ns = written * (1750000000 / Format_sampleRate(mFormat)); } } else { ns = count * (1350000000 / Format_sampleRate(mFormat)); } if (ns > 999999999) { ns = 999999999; } struct timespec nowTs; bool nowTsValid = !clock_gettime(CLOCK_MONOTONIC, &nowTs); // deduct the elapsed time since previous write() completed if (nowTsValid && mWriteTsValid) { time_t sec = nowTs.tv_sec - mWriteTs.tv_sec; long nsec = nowTs.tv_nsec - mWriteTs.tv_nsec; ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0), "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld", mWriteTs.tv_sec, mWriteTs.tv_nsec, nowTs.tv_sec, nowTs.tv_nsec); if (nsec < 0) { --sec; nsec += 1000000000; } if (sec == 0) { if ((long) ns > nsec) { ns -= nsec; } else { ns = 0; } } } if (ns > 0) { const struct timespec req = {0, ns}; nanosleep(&req, NULL); } // record the time that this write() completed if (nowTsValid) { mWriteTs = nowTs; if ((mWriteTs.tv_nsec += ns) >= 1000000000) { mWriteTs.tv_nsec -= 1000000000; ++mWriteTs.tv_sec; } } mWriteTsValid = nowTsValid; } mFramesWritten += totalFramesWritten; return totalFramesWritten; } void MonoPipe::setAvgFrames(size_t setpoint) { mSetpoint = setpoint; } status_t MonoPipe::getNextWriteTimestamp(int64_t *timestamp) { int32_t front; ALOG_ASSERT(NULL != timestamp); if (0 == mSamplesToLocalTime.a_to_b_denom) return UNKNOWN_ERROR; observeFrontAndNRPTS(&front, timestamp); if (AudioBufferProvider::kInvalidPTS != *timestamp) { // If we have a valid read-pointer and next read timestamp pair, then // use the current value of the write pointer to figure out how many // frames are in the buffer, and offset the timestamp by that amt. Then // next time we write to the MonoPipe, the data will hit the speakers at // the next read timestamp plus the current amount of data in the // MonoPipe. size_t pendingFrames = (mRear - front) & (mMaxFrames - 1); *timestamp = offsetTimestampByAudioFrames(*timestamp, pendingFrames); } return OK; } void MonoPipe::updateFrontAndNRPTS(int32_t newFront, int64_t newNextRdPTS) { // Set the MSB of the update sequence number to indicate that there is a // multi-variable update in progress. Use an atomic store with an "acquire" // barrier to make sure that the next operations cannot be re-ordered and // take place before the change to mUpdateSeq is commited.. int32_t tmp = mUpdateSeq | 0x80000000; android_atomic_acquire_store(tmp, &mUpdateSeq); // Update mFront and mNextRdPTS mFront = newFront; mNextRdPTS = newNextRdPTS; // We are finished with the update. Compute the next sequnce number (which // should be the old sequence number, plus one, and with the MSB cleared) // and then store it in mUpdateSeq using an atomic store with a "release" // barrier so our update operations cannot be re-ordered past the update of // the sequence number. tmp = (tmp + 1) & 0x7FFFFFFF; android_atomic_release_store(tmp, &mUpdateSeq); } void MonoPipe::observeFrontAndNRPTS(int32_t *outFront, int64_t *outNextRdPTS) { // Perform an atomic observation of mFront and mNextRdPTS. Basically, // atomically observe the sequence number, then observer the variables, then // atomically observe the sequence number again. If the two observations of // the sequence number match, and the update-in-progress bit was not set, // then we know we have a successful atomic observation. Otherwise, we loop // around and try again. // // Note, it is very important that the observer be a lower priority thread // than the updater. If the updater is lower than the observer, or they are // the same priority and running with SCHED_FIFO (implying that quantum // based premption is disabled) then we run the risk of deadlock. int32_t seqOne, seqTwo; do { seqOne = android_atomic_acquire_load(&mUpdateSeq); *outFront = mFront; *outNextRdPTS = mNextRdPTS; seqTwo = android_atomic_release_load(&mUpdateSeq); } while ((seqOne != seqTwo) || (seqOne & 0x80000000)); } int64_t MonoPipe::offsetTimestampByAudioFrames(int64_t ts, size_t audFrames) { if (0 == mSamplesToLocalTime.a_to_b_denom) return AudioBufferProvider::kInvalidPTS; if (ts == AudioBufferProvider::kInvalidPTS) return AudioBufferProvider::kInvalidPTS; int64_t frame_lt_duration; if (!mSamplesToLocalTime.doForwardTransform(audFrames, &frame_lt_duration)) { // This should never fail, but if there is a bug which is causing it // to fail, this message would probably end up flooding the logs // because the conversion would probably fail forever. Log the // error, but then zero out the ratio in the linear transform so // that we don't try to do any conversions from now on. This // MonoPipe's getNextWriteTimestamp is now broken for good. ALOGE("Overflow when attempting to convert %d audio frames to" " duration in local time. getNextWriteTimestamp will fail from" " now on.", audFrames); mSamplesToLocalTime.a_to_b_numer = 0; mSamplesToLocalTime.a_to_b_denom = 0; return AudioBufferProvider::kInvalidPTS; } return ts + frame_lt_duration; } void MonoPipe::shutdown(bool newState) { mIsShutdown = newState; } bool MonoPipe::isShutdown() { return mIsShutdown; } } // namespace android