/* sha.c ** ** Copyright 2008, The Android Open Source Project ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of Google Inc. nor the names of its contributors may ** be used to endorse or promote products derived from this software ** without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO ** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mincrypt/sha.h" // Some machines lack byteswap.h and endian.h. These have to use the // slower code, even if they're little-endian. #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) #include <byteswap.h> #include <memory.h> // This version is about 28% faster than the generic version below, // but assumes little-endianness. static inline uint32_t ror27(uint32_t val) { return (val >> 27) | (val << 5); } static inline uint32_t ror2(uint32_t val) { return (val >> 2) | (val << 30); } static inline uint32_t ror31(uint32_t val) { return (val >> 31) | (val << 1); } static void SHA1_Transform(SHA_CTX* ctx) { uint32_t W[80]; register uint32_t A, B, C, D, E; int t; A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; #define SHA_F1(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = bswap_32(ctx->buf.w[t])) + \ (D^(B&(C^D))) + 0x5A827999; \ B = ror2(B); for (t = 0; t < 15; t += 5) { SHA_F1(A,B,C,D,E,t + 0); SHA_F1(E,A,B,C,D,t + 1); SHA_F1(D,E,A,B,C,t + 2); SHA_F1(C,D,E,A,B,t + 3); SHA_F1(B,C,D,E,A,t + 4); } SHA_F1(A,B,C,D,E,t + 0); // 16th one, t == 15 #undef SHA_F1 #define SHA_F1(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ (D^(B&(C^D))) + 0x5A827999; \ B = ror2(B); SHA_F1(E,A,B,C,D,t + 1); SHA_F1(D,E,A,B,C,t + 2); SHA_F1(C,D,E,A,B,t + 3); SHA_F1(B,C,D,E,A,t + 4); #undef SHA_F1 #define SHA_F2(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ (B^C^D) + 0x6ED9EBA1; \ B = ror2(B); for (t = 20; t < 40; t += 5) { SHA_F2(A,B,C,D,E,t + 0); SHA_F2(E,A,B,C,D,t + 1); SHA_F2(D,E,A,B,C,t + 2); SHA_F2(C,D,E,A,B,t + 3); SHA_F2(B,C,D,E,A,t + 4); } #undef SHA_F2 #define SHA_F3(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ ((B&C)|(D&(B|C))) + 0x8F1BBCDC; \ B = ror2(B); for (; t < 60; t += 5) { SHA_F3(A,B,C,D,E,t + 0); SHA_F3(E,A,B,C,D,t + 1); SHA_F3(D,E,A,B,C,t + 2); SHA_F3(C,D,E,A,B,t + 3); SHA_F3(B,C,D,E,A,t + 4); } #undef SHA_F3 #define SHA_F4(A,B,C,D,E,t) \ E += ror27(A) + \ (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ (B^C^D) + 0xCA62C1D6; \ B = ror2(B); for (; t < 80; t += 5) { SHA_F4(A,B,C,D,E,t + 0); SHA_F4(E,A,B,C,D,t + 1); SHA_F4(D,E,A,B,C,t + 2); SHA_F4(C,D,E,A,B,t + 3); SHA_F4(B,C,D,E,A,t + 4); } #undef SHA_F4 ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; } void SHA_update(SHA_CTX* ctx, const void* data, int len) { int i = ctx->count % sizeof(ctx->buf); const uint8_t* p = (const uint8_t*)data; ctx->count += len; while (len > sizeof(ctx->buf) - i) { memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i); len -= sizeof(ctx->buf) - i; p += sizeof(ctx->buf) - i; SHA1_Transform(ctx); i = 0; } while (len--) { ctx->buf.b[i++] = *p++; if (i == sizeof(ctx->buf)) { SHA1_Transform(ctx); i = 0; } } } const uint8_t* SHA_final(SHA_CTX* ctx) { uint64_t cnt = ctx->count * 8; int i; SHA_update(ctx, (uint8_t*)"\x80", 1); while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { SHA_update(ctx, (uint8_t*)"\0", 1); } for (i = 0; i < 8; ++i) { uint8_t tmp = cnt >> ((7 - i) * 8); SHA_update(ctx, &tmp, 1); } for (i = 0; i < 5; i++) { ctx->buf.w[i] = bswap_32(ctx->state[i]); } return ctx->buf.b; } #else // #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) #define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits)))) static void SHA1_transform(SHA_CTX *ctx) { uint32_t W[80]; uint32_t A, B, C, D, E; uint8_t *p = ctx->buf; int t; for(t = 0; t < 16; ++t) { uint32_t tmp = *p++ << 24; tmp |= *p++ << 16; tmp |= *p++ << 8; tmp |= *p++; W[t] = tmp; } for(; t < 80; t++) { W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; for(t = 0; t < 80; t++) { uint32_t tmp = rol(5,A) + E + W[t]; if (t < 20) tmp += (D^(B&(C^D))) + 0x5A827999; else if ( t < 40) tmp += (B^C^D) + 0x6ED9EBA1; else if ( t < 60) tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC; else tmp += (B^C^D) + 0xCA62C1D6; E = D; D = C; C = rol(30,B); B = A; A = tmp; } ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; } void SHA_update(SHA_CTX *ctx, const void *data, int len) { int i = ctx->count % sizeof(ctx->buf); const uint8_t* p = (const uint8_t*)data; ctx->count += len; while (len--) { ctx->buf[i++] = *p++; if (i == sizeof(ctx->buf)) { SHA1_transform(ctx); i = 0; } } } const uint8_t *SHA_final(SHA_CTX *ctx) { uint8_t *p = ctx->buf; uint64_t cnt = ctx->count * 8; int i; SHA_update(ctx, (uint8_t*)"\x80", 1); while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { SHA_update(ctx, (uint8_t*)"\0", 1); } for (i = 0; i < 8; ++i) { uint8_t tmp = cnt >> ((7 - i) * 8); SHA_update(ctx, &tmp, 1); } for (i = 0; i < 5; i++) { uint32_t tmp = ctx->state[i]; *p++ = tmp >> 24; *p++ = tmp >> 16; *p++ = tmp >> 8; *p++ = tmp >> 0; } return ctx->buf; } #endif // endianness void SHA_init(SHA_CTX* ctx) { ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xC3D2E1F0; ctx->count = 0; } /* Convenience function */ const uint8_t* SHA(const void *data, int len, uint8_t *digest) { const uint8_t *p; int i; SHA_CTX ctx; SHA_init(&ctx); SHA_update(&ctx, data, len); p = SHA_final(&ctx); for (i = 0; i < SHA_DIGEST_SIZE; ++i) { digest[i] = *p++; } return digest; }