/* libs/pixelflinger/codeflinger/GGLAssembler.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "GGLAssembler" #include <assert.h> #include <stdint.h> #include <stdlib.h> #include <stdio.h> #include <sys/types.h> #include <cutils/log.h> #include "GGLAssembler.h" namespace android { // ---------------------------------------------------------------------------- GGLAssembler::GGLAssembler(ARMAssemblerInterface* target) : ARMAssemblerProxy(target), RegisterAllocator(ARMAssemblerProxy::getCodegenArch()), mOptLevel(7) { } GGLAssembler::~GGLAssembler() { } void GGLAssembler::prolog() { ARMAssemblerProxy::prolog(); } void GGLAssembler::epilog(uint32_t touched) { ARMAssemblerProxy::epilog(touched); } void GGLAssembler::reset(int opt_level) { ARMAssemblerProxy::reset(); RegisterAllocator::reset(); mOptLevel = opt_level; } // --------------------------------------------------------------------------- int GGLAssembler::scanline(const needs_t& needs, context_t const* c) { int err = 0; int opt_level = mOptLevel; while (opt_level >= 0) { reset(opt_level); err = scanline_core(needs, c); if (err == 0) break; opt_level--; } // XXX: in theory, pcForLabel is not valid before generate() uint32_t* fragment_start_pc = pcForLabel("fragment_loop"); uint32_t* fragment_end_pc = pcForLabel("epilog"); const int per_fragment_ops = int(fragment_end_pc - fragment_start_pc); // build a name for our pipeline char name[64]; sprintf(name, "scanline__%08X:%08X_%08X_%08X [%3d ipp]", needs.p, needs.n, needs.t[0], needs.t[1], per_fragment_ops); if (err) { ALOGE("Error while generating ""%s""\n", name); disassemble(name); return -1; } return generate(name); } int GGLAssembler::scanline_core(const needs_t& needs, context_t const* c) { int64_t duration = ggl_system_time(); mBlendFactorCached = 0; mBlending = 0; mMasking = 0; mAA = GGL_READ_NEEDS(P_AA, needs.p); mDithering = GGL_READ_NEEDS(P_DITHER, needs.p); mAlphaTest = GGL_READ_NEEDS(P_ALPHA_TEST, needs.p) + GGL_NEVER; mDepthTest = GGL_READ_NEEDS(P_DEPTH_TEST, needs.p) + GGL_NEVER; mFog = GGL_READ_NEEDS(P_FOG, needs.p) != 0; mSmooth = GGL_READ_NEEDS(SHADE, needs.n) != 0; mBuilderContext.needs = needs; mBuilderContext.c = c; mBuilderContext.Rctx = reserveReg(R0); // context always in R0 mCbFormat = c->formats[ GGL_READ_NEEDS(CB_FORMAT, needs.n) ]; // ------------------------------------------------------------------------ decodeLogicOpNeeds(needs); decodeTMUNeeds(needs, c); mBlendSrc = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_SRC, needs.n)); mBlendDst = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_DST, needs.n)); mBlendSrcA = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_SRCA, needs.n)); mBlendDstA = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_DSTA, needs.n)); if (!mCbFormat.c[GGLFormat::ALPHA].h) { if ((mBlendSrc == GGL_ONE_MINUS_DST_ALPHA) || (mBlendSrc == GGL_DST_ALPHA)) { mBlendSrc = GGL_ONE; } if ((mBlendSrcA == GGL_ONE_MINUS_DST_ALPHA) || (mBlendSrcA == GGL_DST_ALPHA)) { mBlendSrcA = GGL_ONE; } if ((mBlendDst == GGL_ONE_MINUS_DST_ALPHA) || (mBlendDst == GGL_DST_ALPHA)) { mBlendDst = GGL_ONE; } if ((mBlendDstA == GGL_ONE_MINUS_DST_ALPHA) || (mBlendDstA == GGL_DST_ALPHA)) { mBlendDstA = GGL_ONE; } } // if we need the framebuffer, read it now const int blending = blending_codes(mBlendSrc, mBlendDst) | blending_codes(mBlendSrcA, mBlendDstA); // XXX: handle special cases, destination not modified... if ((mBlendSrc==GGL_ZERO) && (mBlendSrcA==GGL_ZERO) && (mBlendDst==GGL_ONE) && (mBlendDstA==GGL_ONE)) { // Destination unmodified (beware of logic ops) } else if ((mBlendSrc==GGL_ZERO) && (mBlendSrcA==GGL_ZERO) && (mBlendDst==GGL_ZERO) && (mBlendDstA==GGL_ZERO)) { // Destination is zero (beware of logic ops) } int fbComponents = 0; const int masking = GGL_READ_NEEDS(MASK_ARGB, needs.n); for (int i=0 ; i<4 ; i++) { const int mask = 1<<i; component_info_t& info = mInfo[i]; int fs = i==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc; int fd = i==GGLFormat::ALPHA ? mBlendDstA : mBlendDst; if (fs==GGL_SRC_ALPHA_SATURATE && i==GGLFormat::ALPHA) fs = GGL_ONE; info.masked = !!(masking & mask); info.inDest = !info.masked && mCbFormat.c[i].h && ((mLogicOp & LOGIC_OP_SRC) || (!mLogicOp)); if (mCbFormat.components >= GGL_LUMINANCE && (i==GGLFormat::GREEN || i==GGLFormat::BLUE)) { info.inDest = false; } info.needed = (i==GGLFormat::ALPHA) && (isAlphaSourceNeeded() || mAlphaTest != GGL_ALWAYS); info.replaced = !!(mTextureMachine.replaced & mask); info.iterated = (!info.replaced && (info.inDest || info.needed)); info.smooth = mSmooth && info.iterated; info.fog = mFog && info.inDest && (i != GGLFormat::ALPHA); info.blend = (fs != int(GGL_ONE)) || (fd > int(GGL_ZERO)); mBlending |= (info.blend ? mask : 0); mMasking |= (mCbFormat.c[i].h && info.masked) ? mask : 0; fbComponents |= mCbFormat.c[i].h ? mask : 0; } mAllMasked = (mMasking == fbComponents); if (mAllMasked) { mDithering = 0; } fragment_parts_t parts; // ------------------------------------------------------------------------ prolog(); // ------------------------------------------------------------------------ build_scanline_prolog(parts, needs); if (registerFile().status()) return registerFile().status(); // ------------------------------------------------------------------------ label("fragment_loop"); // ------------------------------------------------------------------------ { Scratch regs(registerFile()); if (mDithering) { // update the dither index. MOV(AL, 0, parts.count.reg, reg_imm(parts.count.reg, ROR, GGL_DITHER_ORDER_SHIFT)); ADD(AL, 0, parts.count.reg, parts.count.reg, imm( 1 << (32 - GGL_DITHER_ORDER_SHIFT))); MOV(AL, 0, parts.count.reg, reg_imm(parts.count.reg, ROR, 32 - GGL_DITHER_ORDER_SHIFT)); } // XXX: could we do an early alpha-test here in some cases? // It would probaly be used only with smooth-alpha and no texture // (or no alpha component in the texture). // Early z-test if (mAlphaTest==GGL_ALWAYS) { build_depth_test(parts, Z_TEST|Z_WRITE); } else { // we cannot do the z-write here, because // it might be killed by the alpha-test later build_depth_test(parts, Z_TEST); } { // texture coordinates Scratch scratches(registerFile()); // texel generation build_textures(parts, regs); if (registerFile().status()) return registerFile().status(); } if ((blending & (FACTOR_DST|BLEND_DST)) || (mMasking && !mAllMasked) || (mLogicOp & LOGIC_OP_DST)) { // blending / logic_op / masking need the framebuffer mDstPixel.setTo(regs.obtain(), &mCbFormat); // load the framebuffer pixel comment("fetch color-buffer"); load(parts.cbPtr, mDstPixel); } if (registerFile().status()) return registerFile().status(); pixel_t pixel; int directTex = mTextureMachine.directTexture; if (directTex | parts.packed) { // note: we can't have both here // iterated color or direct texture pixel = directTex ? parts.texel[directTex-1] : parts.iterated; pixel.flags &= ~CORRUPTIBLE; } else { if (mDithering) { const int ctxtReg = mBuilderContext.Rctx; const int mask = GGL_DITHER_SIZE-1; parts.dither = reg_t(regs.obtain()); AND(AL, 0, parts.dither.reg, parts.count.reg, imm(mask)); ADD(AL, 0, parts.dither.reg, parts.dither.reg, ctxtReg); LDRB(AL, parts.dither.reg, parts.dither.reg, immed12_pre(GGL_OFFSETOF(ditherMatrix))); } // allocate a register for the resulting pixel pixel.setTo(regs.obtain(), &mCbFormat, FIRST); build_component(pixel, parts, GGLFormat::ALPHA, regs); if (mAlphaTest!=GGL_ALWAYS) { // only handle the z-write part here. We know z-test // was successful, as well as alpha-test. build_depth_test(parts, Z_WRITE); } build_component(pixel, parts, GGLFormat::RED, regs); build_component(pixel, parts, GGLFormat::GREEN, regs); build_component(pixel, parts, GGLFormat::BLUE, regs); pixel.flags |= CORRUPTIBLE; } if (registerFile().status()) return registerFile().status(); if (pixel.reg == -1) { // be defensive here. if we're here it's probably // that this whole fragment is a no-op. pixel = mDstPixel; } if (!mAllMasked) { // logic operation build_logic_op(pixel, regs); // masking build_masking(pixel, regs); comment("store"); store(parts.cbPtr, pixel, WRITE_BACK); } } if (registerFile().status()) return registerFile().status(); // update the iterated color... if (parts.reload != 3) { build_smooth_shade(parts); } // update iterated z build_iterate_z(parts); // update iterated fog build_iterate_f(parts); SUB(AL, S, parts.count.reg, parts.count.reg, imm(1<<16)); B(PL, "fragment_loop"); label("epilog"); epilog(registerFile().touched()); if ((mAlphaTest!=GGL_ALWAYS) || (mDepthTest!=GGL_ALWAYS)) { if (mDepthTest!=GGL_ALWAYS) { label("discard_before_textures"); build_iterate_texture_coordinates(parts); } label("discard_after_textures"); build_smooth_shade(parts); build_iterate_z(parts); build_iterate_f(parts); if (!mAllMasked) { ADD(AL, 0, parts.cbPtr.reg, parts.cbPtr.reg, imm(parts.cbPtr.size>>3)); } SUB(AL, S, parts.count.reg, parts.count.reg, imm(1<<16)); B(PL, "fragment_loop"); epilog(registerFile().touched()); } return registerFile().status(); } // --------------------------------------------------------------------------- void GGLAssembler::build_scanline_prolog( fragment_parts_t& parts, const needs_t& needs) { Scratch scratches(registerFile()); int Rctx = mBuilderContext.Rctx; // compute count comment("compute ct (# of pixels to process)"); parts.count.setTo(obtainReg()); int Rx = scratches.obtain(); int Ry = scratches.obtain(); CONTEXT_LOAD(Rx, iterators.xl); CONTEXT_LOAD(parts.count.reg, iterators.xr); CONTEXT_LOAD(Ry, iterators.y); // parts.count = iterators.xr - Rx SUB(AL, 0, parts.count.reg, parts.count.reg, Rx); SUB(AL, 0, parts.count.reg, parts.count.reg, imm(1)); if (mDithering) { // parts.count.reg = 0xNNNNXXDD // NNNN = count-1 // DD = dither offset // XX = 0xxxxxxx (x = garbage) Scratch scratches(registerFile()); int tx = scratches.obtain(); int ty = scratches.obtain(); AND(AL, 0, tx, Rx, imm(GGL_DITHER_MASK)); AND(AL, 0, ty, Ry, imm(GGL_DITHER_MASK)); ADD(AL, 0, tx, tx, reg_imm(ty, LSL, GGL_DITHER_ORDER_SHIFT)); ORR(AL, 0, parts.count.reg, tx, reg_imm(parts.count.reg, LSL, 16)); } else { // parts.count.reg = 0xNNNN0000 // NNNN = count-1 MOV(AL, 0, parts.count.reg, reg_imm(parts.count.reg, LSL, 16)); } if (!mAllMasked) { // compute dst ptr comment("compute color-buffer pointer"); const int cb_bits = mCbFormat.size*8; int Rs = scratches.obtain(); parts.cbPtr.setTo(obtainReg(), cb_bits); CONTEXT_LOAD(Rs, state.buffers.color.stride); CONTEXT_LOAD(parts.cbPtr.reg, state.buffers.color.data); SMLABB(AL, Rs, Ry, Rs, Rx); // Rs = Rx + Ry*Rs base_offset(parts.cbPtr, parts.cbPtr, Rs); scratches.recycle(Rs); } // init fog const int need_fog = GGL_READ_NEEDS(P_FOG, needs.p); if (need_fog) { comment("compute initial fog coordinate"); Scratch scratches(registerFile()); int dfdx = scratches.obtain(); int ydfdy = scratches.obtain(); int f = ydfdy; CONTEXT_LOAD(dfdx, generated_vars.dfdx); CONTEXT_LOAD(ydfdy, iterators.ydfdy); MLA(AL, 0, f, Rx, dfdx, ydfdy); CONTEXT_STORE(f, generated_vars.f); } // init Z coordinate if ((mDepthTest != GGL_ALWAYS) || GGL_READ_NEEDS(P_MASK_Z, needs.p)) { parts.z = reg_t(obtainReg()); comment("compute initial Z coordinate"); Scratch scratches(registerFile()); int dzdx = scratches.obtain(); int ydzdy = parts.z.reg; CONTEXT_LOAD(dzdx, generated_vars.dzdx); // 1.31 fixed-point CONTEXT_LOAD(ydzdy, iterators.ydzdy); // 1.31 fixed-point MLA(AL, 0, parts.z.reg, Rx, dzdx, ydzdy); // we're going to index zbase of parts.count // zbase = base + (xl-count + stride*y)*2 int Rs = dzdx; int zbase = scratches.obtain(); CONTEXT_LOAD(Rs, state.buffers.depth.stride); CONTEXT_LOAD(zbase, state.buffers.depth.data); SMLABB(AL, Rs, Ry, Rs, Rx); ADD(AL, 0, Rs, Rs, reg_imm(parts.count.reg, LSR, 16)); ADD(AL, 0, zbase, zbase, reg_imm(Rs, LSL, 1)); CONTEXT_STORE(zbase, generated_vars.zbase); } // init texture coordinates init_textures(parts.coords, reg_t(Rx), reg_t(Ry)); scratches.recycle(Ry); // iterated color init_iterated_color(parts, reg_t(Rx)); // init coverage factor application (anti-aliasing) if (mAA) { parts.covPtr.setTo(obtainReg(), 16); CONTEXT_LOAD(parts.covPtr.reg, state.buffers.coverage); ADD(AL, 0, parts.covPtr.reg, parts.covPtr.reg, reg_imm(Rx, LSL, 1)); } } // --------------------------------------------------------------------------- void GGLAssembler::build_component( pixel_t& pixel, const fragment_parts_t& parts, int component, Scratch& regs) { static char const * comments[] = {"alpha", "red", "green", "blue"}; comment(comments[component]); // local register file Scratch scratches(registerFile()); const int dst_component_size = pixel.component_size(component); component_t temp(-1); build_incoming_component( temp, dst_component_size, parts, component, scratches, regs); if (mInfo[component].inDest) { // blending... build_blending( temp, mDstPixel, component, scratches ); // downshift component and rebuild pixel... downshift(pixel, component, temp, parts.dither); } } void GGLAssembler::build_incoming_component( component_t& temp, int dst_size, const fragment_parts_t& parts, int component, Scratch& scratches, Scratch& global_regs) { const uint32_t component_mask = 1<<component; // Figure out what we need for the blending stage... int fs = component==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc; int fd = component==GGLFormat::ALPHA ? mBlendDstA : mBlendDst; if (fs==GGL_SRC_ALPHA_SATURATE && component==GGLFormat::ALPHA) { fs = GGL_ONE; } // Figure out what we need to extract and for what reason const int blending = blending_codes(fs, fd); // Are we actually going to blend? const int need_blending = (fs != int(GGL_ONE)) || (fd > int(GGL_ZERO)); // expand the source if the destination has more bits int need_expander = false; for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT-1 ; i++) { texture_unit_t& tmu = mTextureMachine.tmu[i]; if ((tmu.format_idx) && (parts.texel[i].component_size(component) < dst_size)) { need_expander = true; } } // do we need to extract this component? const bool multiTexture = mTextureMachine.activeUnits > 1; const int blend_needs_alpha_source = (component==GGLFormat::ALPHA) && (isAlphaSourceNeeded()); int need_extract = mInfo[component].needed; if (mInfo[component].inDest) { need_extract |= ((need_blending ? (blending & (BLEND_SRC|FACTOR_SRC)) : need_expander)); need_extract |= (mTextureMachine.mask != mTextureMachine.replaced); need_extract |= mInfo[component].smooth; need_extract |= mInfo[component].fog; need_extract |= mDithering; need_extract |= multiTexture; } if (need_extract) { Scratch& regs = blend_needs_alpha_source ? global_regs : scratches; component_t fragment; // iterated color build_iterated_color(fragment, parts, component, regs); // texture environement (decal, modulate, replace) build_texture_environment(fragment, parts, component, regs); // expand the source if the destination has more bits if (need_expander && (fragment.size() < dst_size)) { // we're here only if we fetched a texel // (so we know for sure fragment is CORRUPTIBLE) expand(fragment, fragment, dst_size); } // We have a few specific things to do for the alpha-channel if ((component==GGLFormat::ALPHA) && (mInfo[component].needed || fragment.size()<dst_size)) { // convert to integer_t first and make sure // we don't corrupt a needed register if (fragment.l) { component_t incoming(fragment); modify(fragment, regs); MOV(AL, 0, fragment.reg, reg_imm(incoming.reg, LSR, incoming.l)); fragment.h -= fragment.l; fragment.l = 0; } // coverage factor application build_coverage_application(fragment, parts, regs); // alpha-test build_alpha_test(fragment, parts); if (blend_needs_alpha_source) { // We keep only 8 bits for the blending stage const int shift = fragment.h <= 8 ? 0 : fragment.h-8; if (fragment.flags & CORRUPTIBLE) { fragment.flags &= ~CORRUPTIBLE; mAlphaSource.setTo(fragment.reg, fragment.size(), fragment.flags); if (shift) { MOV(AL, 0, mAlphaSource.reg, reg_imm(mAlphaSource.reg, LSR, shift)); } } else { // XXX: it would better to do this in build_blend_factor() // so we can avoid the extra MOV below. mAlphaSource.setTo(regs.obtain(), fragment.size(), CORRUPTIBLE); if (shift) { MOV(AL, 0, mAlphaSource.reg, reg_imm(fragment.reg, LSR, shift)); } else { MOV(AL, 0, mAlphaSource.reg, fragment.reg); } } mAlphaSource.s -= shift; } } // fog... build_fog( fragment, component, regs ); temp = fragment; } else { if (mInfo[component].inDest) { // extraction not needed and replace // we just select the right component if ((mTextureMachine.replaced & component_mask) == 0) { // component wasn't replaced, so use it! temp = component_t(parts.iterated, component); } for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { const texture_unit_t& tmu = mTextureMachine.tmu[i]; if ((tmu.mask & component_mask) && ((tmu.replaced & component_mask) == 0)) { temp = component_t(parts.texel[i], component); } } } } } bool GGLAssembler::isAlphaSourceNeeded() const { // XXX: also needed for alpha-test const int bs = mBlendSrc; const int bd = mBlendDst; return bs==GGL_SRC_ALPHA_SATURATE || bs==GGL_SRC_ALPHA || bs==GGL_ONE_MINUS_SRC_ALPHA || bd==GGL_SRC_ALPHA || bd==GGL_ONE_MINUS_SRC_ALPHA ; } // --------------------------------------------------------------------------- void GGLAssembler::build_smooth_shade(const fragment_parts_t& parts) { if (mSmooth && !parts.iterated_packed) { // update the iterated color in a pipelined way... comment("update iterated color"); Scratch scratches(registerFile()); const int reload = parts.reload; for (int i=0 ; i<4 ; i++) { if (!mInfo[i].iterated) continue; int c = parts.argb[i].reg; int dx = parts.argb_dx[i].reg; if (reload & 1) { c = scratches.obtain(); CONTEXT_LOAD(c, generated_vars.argb[i].c); } if (reload & 2) { dx = scratches.obtain(); CONTEXT_LOAD(dx, generated_vars.argb[i].dx); } if (mSmooth) { ADD(AL, 0, c, c, dx); } if (reload & 1) { CONTEXT_STORE(c, generated_vars.argb[i].c); scratches.recycle(c); } if (reload & 2) { scratches.recycle(dx); } } } } // --------------------------------------------------------------------------- void GGLAssembler::build_coverage_application(component_t& fragment, const fragment_parts_t& parts, Scratch& regs) { // here fragment.l is guarenteed to be 0 if (mAA) { // coverages are 1.15 fixed-point numbers comment("coverage application"); component_t incoming(fragment); modify(fragment, regs); Scratch scratches(registerFile()); int cf = scratches.obtain(); LDRH(AL, cf, parts.covPtr.reg, immed8_post(2)); if (fragment.h > 31) { fragment.h--; SMULWB(AL, fragment.reg, incoming.reg, cf); } else { MOV(AL, 0, fragment.reg, reg_imm(incoming.reg, LSL, 1)); SMULWB(AL, fragment.reg, fragment.reg, cf); } } } // --------------------------------------------------------------------------- void GGLAssembler::build_alpha_test(component_t& fragment, const fragment_parts_t& parts) { if (mAlphaTest != GGL_ALWAYS) { comment("Alpha Test"); Scratch scratches(registerFile()); int ref = scratches.obtain(); const int shift = GGL_COLOR_BITS-fragment.size(); CONTEXT_LOAD(ref, state.alpha_test.ref); if (shift) CMP(AL, fragment.reg, reg_imm(ref, LSR, shift)); else CMP(AL, fragment.reg, ref); int cc = NV; switch (mAlphaTest) { case GGL_NEVER: cc = NV; break; case GGL_LESS: cc = LT; break; case GGL_EQUAL: cc = EQ; break; case GGL_LEQUAL: cc = LS; break; case GGL_GREATER: cc = HI; break; case GGL_NOTEQUAL: cc = NE; break; case GGL_GEQUAL: cc = HS; break; } B(cc^1, "discard_after_textures"); } } // --------------------------------------------------------------------------- void GGLAssembler::build_depth_test( const fragment_parts_t& parts, uint32_t mask) { mask &= Z_TEST|Z_WRITE; const needs_t& needs = mBuilderContext.needs; const int zmask = GGL_READ_NEEDS(P_MASK_Z, needs.p); Scratch scratches(registerFile()); if (mDepthTest != GGL_ALWAYS || zmask) { int cc=AL, ic=AL; switch (mDepthTest) { case GGL_LESS: ic = HI; break; case GGL_EQUAL: ic = EQ; break; case GGL_LEQUAL: ic = HS; break; case GGL_GREATER: ic = LT; break; case GGL_NOTEQUAL: ic = NE; break; case GGL_GEQUAL: ic = LS; break; case GGL_NEVER: // this never happens, because it's taken care of when // computing the needs. but we keep it for completness. comment("Depth Test (NEVER)"); B(AL, "discard_before_textures"); return; case GGL_ALWAYS: // we're here because zmask is enabled mask &= ~Z_TEST; // test always passes. break; } // inverse the condition cc = ic^1; if ((mask & Z_WRITE) && !zmask) { mask &= ~Z_WRITE; } if (!mask) return; comment("Depth Test"); int zbase = scratches.obtain(); int depth = scratches.obtain(); int z = parts.z.reg; CONTEXT_LOAD(zbase, generated_vars.zbase); // stall SUB(AL, 0, zbase, zbase, reg_imm(parts.count.reg, LSR, 15)); // above does zbase = zbase + ((count >> 16) << 1) if (mask & Z_TEST) { LDRH(AL, depth, zbase); // stall CMP(AL, depth, reg_imm(z, LSR, 16)); B(cc, "discard_before_textures"); } if (mask & Z_WRITE) { if (mask == Z_WRITE) { // only z-write asked, cc is meaningless ic = AL; } MOV(AL, 0, depth, reg_imm(z, LSR, 16)); STRH(ic, depth, zbase); } } } void GGLAssembler::build_iterate_z(const fragment_parts_t& parts) { const needs_t& needs = mBuilderContext.needs; if ((mDepthTest != GGL_ALWAYS) || GGL_READ_NEEDS(P_MASK_Z, needs.p)) { Scratch scratches(registerFile()); int dzdx = scratches.obtain(); CONTEXT_LOAD(dzdx, generated_vars.dzdx); // stall ADD(AL, 0, parts.z.reg, parts.z.reg, dzdx); } } void GGLAssembler::build_iterate_f(const fragment_parts_t& parts) { const needs_t& needs = mBuilderContext.needs; if (GGL_READ_NEEDS(P_FOG, needs.p)) { Scratch scratches(registerFile()); int dfdx = scratches.obtain(); int f = scratches.obtain(); CONTEXT_LOAD(f, generated_vars.f); CONTEXT_LOAD(dfdx, generated_vars.dfdx); // stall ADD(AL, 0, f, f, dfdx); CONTEXT_STORE(f, generated_vars.f); } } // --------------------------------------------------------------------------- void GGLAssembler::build_logic_op(pixel_t& pixel, Scratch& regs) { const needs_t& needs = mBuilderContext.needs; const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR; if (opcode == GGL_COPY) return; comment("logic operation"); pixel_t s(pixel); if (!(pixel.flags & CORRUPTIBLE)) { pixel.reg = regs.obtain(); pixel.flags |= CORRUPTIBLE; } pixel_t d(mDstPixel); switch(opcode) { case GGL_CLEAR: MOV(AL, 0, pixel.reg, imm(0)); break; case GGL_AND: AND(AL, 0, pixel.reg, s.reg, d.reg); break; case GGL_AND_REVERSE: BIC(AL, 0, pixel.reg, s.reg, d.reg); break; case GGL_COPY: break; case GGL_AND_INVERTED: BIC(AL, 0, pixel.reg, d.reg, s.reg); break; case GGL_NOOP: MOV(AL, 0, pixel.reg, d.reg); break; case GGL_XOR: EOR(AL, 0, pixel.reg, s.reg, d.reg); break; case GGL_OR: ORR(AL, 0, pixel.reg, s.reg, d.reg); break; case GGL_NOR: ORR(AL, 0, pixel.reg, s.reg, d.reg); MVN(AL, 0, pixel.reg, pixel.reg); break; case GGL_EQUIV: EOR(AL, 0, pixel.reg, s.reg, d.reg); MVN(AL, 0, pixel.reg, pixel.reg); break; case GGL_INVERT: MVN(AL, 0, pixel.reg, d.reg); break; case GGL_OR_REVERSE: // s | ~d == ~(~s & d) BIC(AL, 0, pixel.reg, d.reg, s.reg); MVN(AL, 0, pixel.reg, pixel.reg); break; case GGL_COPY_INVERTED: MVN(AL, 0, pixel.reg, s.reg); break; case GGL_OR_INVERTED: // ~s | d == ~(s & ~d) BIC(AL, 0, pixel.reg, s.reg, d.reg); MVN(AL, 0, pixel.reg, pixel.reg); break; case GGL_NAND: AND(AL, 0, pixel.reg, s.reg, d.reg); MVN(AL, 0, pixel.reg, pixel.reg); break; case GGL_SET: MVN(AL, 0, pixel.reg, imm(0)); break; }; } // --------------------------------------------------------------------------- static uint32_t find_bottom(uint32_t val) { uint32_t i = 0; while (!(val & (3<<i))) i+= 2; return i; } static void normalize(uint32_t& val, uint32_t& rot) { rot = 0; while (!(val&3) || (val & 0xFC000000)) { uint32_t newval; newval = val >> 2; newval |= (val&3) << 30; val = newval; rot += 2; if (rot == 32) { rot = 0; break; } } } void GGLAssembler::build_and_immediate(int d, int s, uint32_t mask, int bits) { uint32_t rot; uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1; mask &= size; if (mask == size) { if (d != s) MOV( AL, 0, d, s); return; } if (getCodegenArch() == CODEGEN_ARCH_MIPS) { // MIPS can do 16-bit imm in 1 instr, 32-bit in 3 instr // the below ' while (mask)' code is buggy on mips // since mips returns true on isValidImmediate() // then we get multiple AND instr (positive logic) AND( AL, 0, d, s, imm(mask) ); return; } int negative_logic = !isValidImmediate(mask); if (negative_logic) { mask = ~mask & size; } normalize(mask, rot); if (mask) { while (mask) { uint32_t bitpos = find_bottom(mask); int shift = rot + bitpos; uint32_t m = mask & (0xff << bitpos); mask &= ~m; m >>= bitpos; int32_t newMask = (m<<shift) | (m>>(32-shift)); if (!negative_logic) { AND( AL, 0, d, s, imm(newMask) ); } else { BIC( AL, 0, d, s, imm(newMask) ); } s = d; } } else { MOV( AL, 0, d, imm(0)); } } void GGLAssembler::build_masking(pixel_t& pixel, Scratch& regs) { if (!mMasking || mAllMasked) { return; } comment("color mask"); pixel_t fb(mDstPixel); pixel_t s(pixel); if (!(pixel.flags & CORRUPTIBLE)) { pixel.reg = regs.obtain(); pixel.flags |= CORRUPTIBLE; } int mask = 0; for (int i=0 ; i<4 ; i++) { const int component_mask = 1<<i; const int h = fb.format.c[i].h; const int l = fb.format.c[i].l; if (h && (!(mMasking & component_mask))) { mask |= ((1<<(h-l))-1) << l; } } // There is no need to clear the masked components of the source // (unless we applied a logic op), because they're already zeroed // by construction (masked components are not computed) if (mLogicOp) { const needs_t& needs = mBuilderContext.needs; const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR; if (opcode != GGL_CLEAR) { // clear masked component of source build_and_immediate(pixel.reg, s.reg, mask, fb.size()); s = pixel; } } // clear non masked components of destination build_and_immediate(fb.reg, fb.reg, ~mask, fb.size()); // or back the channels that were masked if (s.reg == fb.reg) { // this is in fact a MOV if (s.reg == pixel.reg) { // ugh. this in in fact a nop } else { MOV(AL, 0, pixel.reg, fb.reg); } } else { ORR(AL, 0, pixel.reg, s.reg, fb.reg); } } // --------------------------------------------------------------------------- void GGLAssembler::base_offset( const pointer_t& d, const pointer_t& b, const reg_t& o) { switch (b.size) { case 32: ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 2)); break; case 24: if (d.reg == b.reg) { ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 1)); ADD(AL, 0, d.reg, d.reg, o.reg); } else { ADD(AL, 0, d.reg, o.reg, reg_imm(o.reg, LSL, 1)); ADD(AL, 0, d.reg, d.reg, b.reg); } break; case 16: ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 1)); break; case 8: ADD(AL, 0, d.reg, b.reg, o.reg); break; } } // ---------------------------------------------------------------------------- // cheezy register allocator... // ---------------------------------------------------------------------------- // Modified to support MIPS processors, in a very simple way. We retain the // (Arm) limit of 16 total registers, but shift the mapping of those registers // from 0-15, to 2-17. Register 0 on Mips cannot be used as GP registers, and // register 1 has a traditional use as a temp). RegisterAllocator::RegisterAllocator(int arch) : mRegs(arch) { } void RegisterAllocator::reset() { mRegs.reset(); } int RegisterAllocator::reserveReg(int reg) { return mRegs.reserve(reg); } int RegisterAllocator::obtainReg() { return mRegs.obtain(); } void RegisterAllocator::recycleReg(int reg) { mRegs.recycle(reg); } RegisterAllocator::RegisterFile& RegisterAllocator::registerFile() { return mRegs; } // ---------------------------------------------------------------------------- RegisterAllocator::RegisterFile::RegisterFile(int codegen_arch) : mRegs(0), mTouched(0), mStatus(0), mArch(codegen_arch), mRegisterOffset(0) { if (mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS) { mRegisterOffset = 2; // ARM has regs 0..15, MIPS offset to 2..17 } reserve(ARMAssemblerInterface::SP); reserve(ARMAssemblerInterface::PC); } RegisterAllocator::RegisterFile::RegisterFile(const RegisterFile& rhs, int codegen_arch) : mRegs(rhs.mRegs), mTouched(rhs.mTouched), mArch(codegen_arch), mRegisterOffset(0) { if (mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS) { mRegisterOffset = 2; // ARM has regs 0..15, MIPS offset to 2..17 } } RegisterAllocator::RegisterFile::~RegisterFile() { } bool RegisterAllocator::RegisterFile::operator == (const RegisterFile& rhs) const { return (mRegs == rhs.mRegs); } void RegisterAllocator::RegisterFile::reset() { mRegs = mTouched = mStatus = 0; reserve(ARMAssemblerInterface::SP); reserve(ARMAssemblerInterface::PC); } // RegisterFile::reserve() take a register parameter in the // range 0-15 (Arm compatible), but on a Mips processor, will // return the actual allocated register in the range 2-17. int RegisterAllocator::RegisterFile::reserve(int reg) { reg += mRegisterOffset; LOG_ALWAYS_FATAL_IF(isUsed(reg), "reserving register %d, but already in use", reg); mRegs |= (1<<reg); mTouched |= mRegs; return reg; } // This interface uses regMask in range 2-17 on MIPS, no translation. void RegisterAllocator::RegisterFile::reserveSeveral(uint32_t regMask) { mRegs |= regMask; mTouched |= regMask; } int RegisterAllocator::RegisterFile::isUsed(int reg) const { LOG_ALWAYS_FATAL_IF(reg>=16+(int)mRegisterOffset, "invalid register %d", reg); return mRegs & (1<<reg); } int RegisterAllocator::RegisterFile::obtain() { const char priorityList[14] = { 0, 1, 2, 3, 12, 14, 4, 5, 6, 7, 8, 9, 10, 11 }; const int nbreg = sizeof(priorityList); int i, r, reg; for (i=0 ; i<nbreg ; i++) { r = priorityList[i]; if (!isUsed(r + mRegisterOffset)) { break; } } // this is not an error anymore because, we'll try again with // a lower optimization level. //ALOGE_IF(i >= nbreg, "pixelflinger ran out of registers\n"); if (i >= nbreg) { mStatus |= OUT_OF_REGISTERS; // we return SP so we can more easily debug things // the code will never be run anyway. return ARMAssemblerInterface::SP; } reg = reserve(r); // Param in Arm range 0-15, returns range 2-17 on Mips. return reg; } bool RegisterAllocator::RegisterFile::hasFreeRegs() const { uint32_t regs = mRegs >> mRegisterOffset; // MIPS fix. return ((regs & 0xFFFF) == 0xFFFF) ? false : true; } int RegisterAllocator::RegisterFile::countFreeRegs() const { uint32_t regs = mRegs >> mRegisterOffset; // MIPS fix. int f = ~regs & 0xFFFF; // now count number of 1 f = (f & 0x5555) + ((f>>1) & 0x5555); f = (f & 0x3333) + ((f>>2) & 0x3333); f = (f & 0x0F0F) + ((f>>4) & 0x0F0F); f = (f & 0x00FF) + ((f>>8) & 0x00FF); return f; } void RegisterAllocator::RegisterFile::recycle(int reg) { // commented out, since common failure of running out of regs // triggers this assertion. Since the code is not execectued // in that case, it does not matter. No reason to FATAL err. // LOG_FATAL_IF(!isUsed(reg), // "recycling unallocated register %d", // reg); mRegs &= ~(1<<reg); } void RegisterAllocator::RegisterFile::recycleSeveral(uint32_t regMask) { // commented out, since common failure of running out of regs // triggers this assertion. Since the code is not execectued // in that case, it does not matter. No reason to FATAL err. // LOG_FATAL_IF((mRegs & regMask)!=regMask, // "recycling unallocated registers " // "(recycle=%08x, allocated=%08x, unallocated=%08x)", // regMask, mRegs, mRegs®Mask); mRegs &= ~regMask; } uint32_t RegisterAllocator::RegisterFile::touched() const { return mTouched; } // ---------------------------------------------------------------------------- }; // namespace android