/* libs/pixelflinger/codeflinger/MIPSAssembler.h ** ** Copyright 2012, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #ifndef ANDROID_MIPSASSEMBLER_H #define ANDROID_MIPSASSEMBLER_H #include <stdint.h> #include <sys/types.h> #include "tinyutils/KeyedVector.h" #include "tinyutils/Vector.h" #include "tinyutils/smartpointer.h" #include "ARMAssemblerInterface.h" #include "CodeCache.h" namespace android { class MIPSAssembler; // forward reference // this class mimics ARMAssembler interface // intent is to translate each ARM instruction to 1 or more MIPS instr // implementation calls MIPSAssembler class to generate mips code class ArmToMipsAssembler : public ARMAssemblerInterface { public: ArmToMipsAssembler(const sp<Assembly>& assembly, char *abuf = 0, int linesz = 0, int instr_count = 0); virtual ~ArmToMipsAssembler(); uint32_t* base() const; uint32_t* pc() const; void disassemble(const char* name); virtual void reset(); virtual int generate(const char* name); virtual int getCodegenArch(); virtual void prolog(); virtual void epilog(uint32_t touched); virtual void comment(const char* string); // ----------------------------------------------------------------------- // shifters and addressing modes // ----------------------------------------------------------------------- // shifters... virtual bool isValidImmediate(uint32_t immed); virtual int buildImmediate(uint32_t i, uint32_t& rot, uint32_t& imm); virtual uint32_t imm(uint32_t immediate); virtual uint32_t reg_imm(int Rm, int type, uint32_t shift); virtual uint32_t reg_rrx(int Rm); virtual uint32_t reg_reg(int Rm, int type, int Rs); // addressing modes... // LDR(B)/STR(B)/PLD // (immediate and Rm can be negative, which indicates U=0) virtual uint32_t immed12_pre(int32_t immed12, int W=0); virtual uint32_t immed12_post(int32_t immed12); virtual uint32_t reg_scale_pre(int Rm, int type=0, uint32_t shift=0, int W=0); virtual uint32_t reg_scale_post(int Rm, int type=0, uint32_t shift=0); // LDRH/LDRSB/LDRSH/STRH // (immediate and Rm can be negative, which indicates U=0) virtual uint32_t immed8_pre(int32_t immed8, int W=0); virtual uint32_t immed8_post(int32_t immed8); virtual uint32_t reg_pre(int Rm, int W=0); virtual uint32_t reg_post(int Rm); virtual void dataProcessing(int opcode, int cc, int s, int Rd, int Rn, uint32_t Op2); virtual void MLA(int cc, int s, int Rd, int Rm, int Rs, int Rn); virtual void MUL(int cc, int s, int Rd, int Rm, int Rs); virtual void UMULL(int cc, int s, int RdLo, int RdHi, int Rm, int Rs); virtual void UMUAL(int cc, int s, int RdLo, int RdHi, int Rm, int Rs); virtual void SMULL(int cc, int s, int RdLo, int RdHi, int Rm, int Rs); virtual void SMUAL(int cc, int s, int RdLo, int RdHi, int Rm, int Rs); virtual void B(int cc, uint32_t* pc); virtual void BL(int cc, uint32_t* pc); virtual void BX(int cc, int Rn); virtual void label(const char* theLabel); virtual void B(int cc, const char* label); virtual void BL(int cc, const char* label); virtual uint32_t* pcForLabel(const char* label); virtual void LDR (int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDRB(int cc, int Rd, int Rn, uint32_t offset = 0); virtual void STR (int cc, int Rd, int Rn, uint32_t offset = 0); virtual void STRB(int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDRH (int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDRSB(int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDRSH(int cc, int Rd, int Rn, uint32_t offset = 0); virtual void STRH (int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDM(int cc, int dir, int Rn, int W, uint32_t reg_list); virtual void STM(int cc, int dir, int Rn, int W, uint32_t reg_list); virtual void SWP(int cc, int Rn, int Rd, int Rm); virtual void SWPB(int cc, int Rn, int Rd, int Rm); virtual void SWI(int cc, uint32_t comment); virtual void PLD(int Rn, uint32_t offset); virtual void CLZ(int cc, int Rd, int Rm); virtual void QADD(int cc, int Rd, int Rm, int Rn); virtual void QDADD(int cc, int Rd, int Rm, int Rn); virtual void QSUB(int cc, int Rd, int Rm, int Rn); virtual void QDSUB(int cc, int Rd, int Rm, int Rn); virtual void SMUL(int cc, int xy, int Rd, int Rm, int Rs); virtual void SMULW(int cc, int y, int Rd, int Rm, int Rs); virtual void SMLA(int cc, int xy, int Rd, int Rm, int Rs, int Rn); virtual void SMLAL(int cc, int xy, int RdHi, int RdLo, int Rs, int Rm); virtual void SMLAW(int cc, int y, int Rd, int Rm, int Rs, int Rn); // byte/half word extract... virtual void UXTB16(int cc, int Rd, int Rm, int rotate); // bit manipulation... virtual void UBFX(int cc, int Rd, int Rn, int lsb, int width); // this is some crap to share is MIPSAssembler class for debug char * mArmDisassemblyBuffer; int mArmLineLength; int mArmInstrCount; int mInum; // current arm instuction number (0..n) uint32_t** mArmPC; // array: PC for 1st mips instr of // each translated ARM instr private: ArmToMipsAssembler(const ArmToMipsAssembler& rhs); ArmToMipsAssembler& operator = (const ArmToMipsAssembler& rhs); void init_conditional_labels(void); void protectConditionalOperands(int Rd); // reg__tmp set to MIPS AT, reg 1 int dataProcAdrModes(int op, int& source, bool sign = false, int reg_tmp = 1); sp<Assembly> mAssembly; MIPSAssembler* mMips; enum misc_constants_t { ARM_MAX_INSTUCTIONS = 512 // based on ASSEMBLY_SCRATCH_SIZE }; enum { SRC_REG = 0, SRC_IMM, SRC_ERROR = -1 }; enum addr_modes { // start above the range of legal mips reg #'s (0-31) AMODE_REG = 0x20, AMODE_IMM, AMODE_REG_IMM, // for data processing AMODE_IMM_12_PRE, AMODE_IMM_12_POST, // for load/store AMODE_REG_SCALE_PRE, AMODE_IMM_8_PRE, AMODE_IMM_8_POST, AMODE_REG_PRE, AMODE_UNSUPPORTED }; struct addr_mode_t { // address modes for current ARM instruction int reg; int stype; uint32_t value; bool writeback; // writeback the adr reg after modification } amode; enum cond_types { CMP_COND = 1, SBIT_COND }; struct cond_mode_t { // conditional-execution info for current ARM instruction cond_types type; int r1; int r2; int labelnum; char label[100][10]; } cond; }; // ---------------------------------------------------------------------------- // ---------------------------------------------------------------------------- // ---------------------------------------------------------------------------- // This is the basic MIPS assembler, which just creates the opcodes in memory. // All the more complicated work is done in ArmToMipsAssember above. class MIPSAssembler { public: MIPSAssembler(const sp<Assembly>& assembly, ArmToMipsAssembler *parent); virtual ~MIPSAssembler(); uint32_t* base() const; uint32_t* pc() const; void reset(); void disassemble(const char* name); void prolog(); void epilog(uint32_t touched); int generate(const char* name); void comment(const char* string); void label(const char* string); // valid only after generate() has been called uint32_t* pcForLabel(const char* label); // ------------------------------------------------------------------------ // MIPSAssemblerInterface... // ------------------------------------------------------------------------ #if 0 #pragma mark - #pragma mark Arithmetic... #endif void ADDU(int Rd, int Rs, int Rt); void ADDIU(int Rt, int Rs, int16_t imm); void SUBU(int Rd, int Rs, int Rt); void SUBIU(int Rt, int Rs, int16_t imm); void NEGU(int Rd, int Rs); void MUL(int Rd, int Rs, int Rt); void MULT(int Rs, int Rt); // dest is hi,lo void MULTU(int Rs, int Rt); // dest is hi,lo void MADD(int Rs, int Rt); // hi,lo = hi,lo + Rs * Rt void MADDU(int Rs, int Rt); // hi,lo = hi,lo + Rs * Rt void MSUB(int Rs, int Rt); // hi,lo = hi,lo - Rs * Rt void MSUBU(int Rs, int Rt); // hi,lo = hi,lo - Rs * Rt void SEB(int Rd, int Rt); // sign-extend byte (mips32r2) void SEH(int Rd, int Rt); // sign-extend half-word (mips32r2) #if 0 #pragma mark - #pragma mark Comparisons... #endif void SLT(int Rd, int Rs, int Rt); void SLTI(int Rt, int Rs, int16_t imm); void SLTU(int Rd, int Rs, int Rt); void SLTIU(int Rt, int Rs, int16_t imm); #if 0 #pragma mark - #pragma mark Logical... #endif void AND(int Rd, int Rs, int Rt); void ANDI(int Rd, int Rs, uint16_t imm); void OR(int Rd, int Rs, int Rt); void ORI(int Rt, int Rs, uint16_t imm); void NOR(int Rd, int Rs, int Rt); void NOT(int Rd, int Rs); void XOR(int Rd, int Rs, int Rt); void XORI(int Rt, int Rs, uint16_t imm); void SLL(int Rd, int Rt, int shft); void SLLV(int Rd, int Rt, int Rs); void SRL(int Rd, int Rt, int shft); void SRLV(int Rd, int Rt, int Rs); void SRA(int Rd, int Rt, int shft); void SRAV(int Rd, int Rt, int Rs); void ROTR(int Rd, int Rt, int shft); // mips32r2 void ROTRV(int Rd, int Rt, int Rs); // mips32r2 void RORsyn(int Rd, int Rs, int Rt); // synthetic: d = s rotated by t void RORIsyn(int Rd, int Rt, int rot); // synthetic: d = s rotated by immed void CLO(int Rd, int Rs); void CLZ(int Rd, int Rs); void WSBH(int Rd, int Rt); #if 0 #pragma mark - #pragma mark Load/store... #endif void LW(int Rt, int Rbase, int16_t offset); void SW(int Rt, int Rbase, int16_t offset); void LB(int Rt, int Rbase, int16_t offset); void LBU(int Rt, int Rbase, int16_t offset); void SB(int Rt, int Rbase, int16_t offset); void LH(int Rt, int Rbase, int16_t offset); void LHU(int Rt, int Rbase, int16_t offset); void SH(int Rt, int Rbase, int16_t offset); void LUI(int Rt, int16_t offset); #if 0 #pragma mark - #pragma mark Register moves... #endif void MOVE(int Rd, int Rs); void MOVN(int Rd, int Rs, int Rt); void MOVZ(int Rd, int Rs, int Rt); void MFHI(int Rd); void MFLO(int Rd); void MTHI(int Rs); void MTLO(int Rs); #if 0 #pragma mark - #pragma mark Branch... #endif void B(const char* label); void BEQ(int Rs, int Rt, const char* label); void BNE(int Rs, int Rt, const char* label); void BGEZ(int Rs, const char* label); void BGTZ(int Rs, const char* label); void BLEZ(int Rs, const char* label); void BLTZ(int Rs, const char* label); void JR(int Rs); #if 0 #pragma mark - #pragma mark Synthesized Branch... #endif // synthetic variants of above (using slt & friends) void BEQZ(int Rs, const char* label); void BNEZ(int Rs, const char* label); void BGE(int Rs, int Rt, const char* label); void BGEU(int Rs, int Rt, const char* label); void BGT(int Rs, int Rt, const char* label); void BGTU(int Rs, int Rt, const char* label); void BLE(int Rs, int Rt, const char* label); void BLEU(int Rs, int Rt, const char* label); void BLT(int Rs, int Rt, const char* label); void BLTU(int Rs, int Rt, const char* label); #if 0 #pragma mark - #pragma mark Misc... #endif void NOP(void); void NOP2(void); void UNIMPL(void); private: void string_detab(char *s); void string_pad(char *s, int padded_len); ArmToMipsAssembler *mParent; sp<Assembly> mAssembly; uint32_t* mBase; uint32_t* mPC; uint32_t* mPrologPC; int64_t mDuration; #if defined(WITH_LIB_HARDWARE) bool mQemuTracing; #endif struct branch_target_t { inline branch_target_t() : label(0), pc(0) { } inline branch_target_t(const char* l, uint32_t* p) : label(l), pc(p) { } const char* label; uint32_t* pc; }; Vector<branch_target_t> mBranchTargets; KeyedVector< const char*, uint32_t* > mLabels; KeyedVector< uint32_t*, const char* > mLabelsInverseMapping; KeyedVector< uint32_t*, const char* > mComments; // opcode field of all instructions enum opcode_field { spec_op, regimm_op, j_op, jal_op, // 00 beq_op, bne_op, blez_op, bgtz_op, addi_op, addiu_op, slti_op, sltiu_op, // 08 andi_op, ori_op, xori_op, lui_op, cop0_op, cop1_op, cop2_op, cop1x_op, // 10 beql_op, bnel_op, blezl_op, bgtzl_op, daddi_op, daddiu_op, ldl_op, ldr_op, // 18 spec2_op, jalx_op, mdmx_op, spec3_op, lb_op, lh_op, lwl_op, lw_op, // 20 lbu_op, lhu_op, lwr_op, lwu_op, sb_op, sh_op, swl_op, sw_op, // 28 sdl_op, sdr_op, swr_op, cache_op, ll_op, lwc1_op, lwc2_op, pref_op, // 30 lld_op, ldc1_op, ldc2_op, ld_op, sc_op, swc1_op, swc2_op, rsrv_3b_op, // 38 scd_op, sdc1_op, sdc2_op, sd_op }; // func field for special opcode enum func_spec_op { sll_fn, movc_fn, srl_fn, sra_fn, // 00 sllv_fn, pmon_fn, srlv_fn, srav_fn, jr_fn, jalr_fn, movz_fn, movn_fn, // 08 syscall_fn, break_fn, spim_fn, sync_fn, mfhi_fn, mthi_fn, mflo_fn, mtlo_fn, // 10 dsllv_fn, rsrv_spec_2, dsrlv_fn, dsrav_fn, mult_fn, multu_fn, div_fn, divu_fn, // 18 dmult_fn, dmultu_fn, ddiv_fn, ddivu_fn, add_fn, addu_fn, sub_fn, subu_fn, // 20 and_fn, or_fn, xor_fn, nor_fn, rsrv_spec_3, rsrv_spec_4, slt_fn, sltu_fn, // 28 dadd_fn, daddu_fn, dsub_fn, dsubu_fn, tge_fn, tgeu_fn, tlt_fn, tltu_fn, // 30 teq_fn, rsrv_spec_5, tne_fn, rsrv_spec_6, dsll_fn, rsrv_spec_7, dsrl_fn, dsra_fn, // 38 dsll32_fn, rsrv_spec_8, dsrl32_fn, dsra32_fn }; // func field for spec2 opcode enum func_spec2_op { madd_fn, maddu_fn, mul_fn, rsrv_spec2_3, msub_fn, msubu_fn, clz_fn = 0x20, clo_fn, dclz_fn = 0x24, dclo_fn, sdbbp_fn = 0x3f }; // func field for spec3 opcode enum func_spec3_op { ext_fn, dextm_fn, dextu_fn, dext_fn, ins_fn, dinsm_fn, dinsu_fn, dins_fn, bshfl_fn = 0x20, dbshfl_fn = 0x24, rdhwr_fn = 0x3b }; // sa field for spec3 opcodes, with BSHFL function enum func_spec3_bshfl { wsbh_fn = 0x02, seb_fn = 0x10, seh_fn = 0x18 }; // rt field of regimm opcodes. enum regimm_fn { bltz_fn, bgez_fn, bltzl_fn, bgezl_fn, rsrv_ri_fn4, rsrv_ri_fn5, rsrv_ri_fn6, rsrv_ri_fn7, tgei_fn, tgeiu_fn, tlti_fn, tltiu_fn, teqi_fn, rsrv_ri_fn_0d, tnei_fn, rsrv_ri_fn0f, bltzal_fn, bgezal_fn, bltzall_fn, bgezall_fn, bposge32_fn= 0x1c, synci_fn = 0x1f }; // func field for mad opcodes (MIPS IV). enum mad_func { madd_fp_op = 0x08, msub_fp_op = 0x0a, nmadd_fp_op = 0x0c, nmsub_fp_op = 0x0e }; enum mips_inst_shifts { OP_SHF = 26, JTARGET_SHF = 0, RS_SHF = 21, RT_SHF = 16, RD_SHF = 11, RE_SHF = 6, SA_SHF = RE_SHF, // synonym IMM_SHF = 0, FUNC_SHF = 0, // mask values MSK_16 = 0xffff, CACHEOP_SHF = 18, CACHESEL_SHF = 16, }; }; enum mips_regnames { R_zero = 0, R_at, R_v0, R_v1, R_a0, R_a1, R_a2, R_a3, R_t0, R_t1, R_t2, R_t3, R_t4, R_t5, R_t6, R_t7, R_s0, R_s1, R_s2, R_s3, R_s4, R_s5, R_s6, R_s7, R_t8, R_t9, R_k0, R_k1, R_gp, R_sp, R_s8, R_ra, R_lr = R_s8, // arm regs 0-15 are mips regs 2-17 (meaning s0 & s1 are used) R_at2 = R_s2, // R_at2 = 18 = s2 R_cmp = R_s3, // R_cmp = 19 = s3 R_cmp2 = R_s4 // R_cmp2 = 20 = s4 }; }; // namespace android #endif //ANDROID_MIPSASSEMBLER_H