/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* from: @(#)fdlibm.h 5.1 93/09/24
* $FreeBSD$
*/
#ifndef _MATH_PRIVATE_H_
#define _MATH_PRIVATE_H_
#include <sys/types.h>
#include <machine/endian.h>
/*
* The original fdlibm code used statements like:
* n0 = ((*(int*)&one)>>29)^1; * index of high word *
* ix0 = *(n0+(int*)&x); * high word of x *
* ix1 = *((1-n0)+(int*)&x); * low word of x *
* to dig two 32 bit words out of the 64 bit IEEE floating point
* value. That is non-ANSI, and, moreover, the gcc instruction
* scheduler gets it wrong. We instead use the following macros.
* Unlike the original code, we determine the endianness at compile
* time, not at run time; I don't see much benefit to selecting
* endianness at run time.
*/
/*
* A union which permits us to convert between a double and two 32 bit
* ints.
*/
#ifdef __arm__
#if defined(__VFP_FP__)
#define IEEE_WORD_ORDER BYTE_ORDER
#else
#define IEEE_WORD_ORDER BIG_ENDIAN
#endif
#else /* __arm__ */
#define IEEE_WORD_ORDER BYTE_ORDER
#endif
#if IEEE_WORD_ORDER == BIG_ENDIAN
typedef union
{
double value;
struct
{
u_int32_t msw;
u_int32_t lsw;
} parts;
struct
{
u_int64_t w;
} xparts;
} ieee_double_shape_type;
#endif
#if IEEE_WORD_ORDER == LITTLE_ENDIAN
typedef union
{
double value;
struct
{
u_int32_t lsw;
u_int32_t msw;
} parts;
struct
{
u_int64_t w;
} xparts;
} ieee_double_shape_type;
#endif
/* Get two 32 bit ints from a double. */
#define EXTRACT_WORDS(ix0,ix1,d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix0) = ew_u.parts.msw; \
(ix1) = ew_u.parts.lsw; \
} while (0)
/* Get a 64-bit int from a double. */
#define EXTRACT_WORD64(ix,d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix) = ew_u.xparts.w; \
} while (0)
/* Get the more significant 32 bit int from a double. */
#define GET_HIGH_WORD(i,d) \
do { \
ieee_double_shape_type gh_u; \
gh_u.value = (d); \
(i) = gh_u.parts.msw; \
} while (0)
/* Get the less significant 32 bit int from a double. */
#define GET_LOW_WORD(i,d) \
do { \
ieee_double_shape_type gl_u; \
gl_u.value = (d); \
(i) = gl_u.parts.lsw; \
} while (0)
/* Set a double from two 32 bit ints. */
#define INSERT_WORDS(d,ix0,ix1) \
do { \
ieee_double_shape_type iw_u; \
iw_u.parts.msw = (ix0); \
iw_u.parts.lsw = (ix1); \
(d) = iw_u.value; \
} while (0)
/* Set a double from a 64-bit int. */
#define INSERT_WORD64(d,ix) \
do { \
ieee_double_shape_type iw_u; \
iw_u.xparts.w = (ix); \
(d) = iw_u.value; \
} while (0)
/* Set the more significant 32 bits of a double from an int. */
#define SET_HIGH_WORD(d,v) \
do { \
ieee_double_shape_type sh_u; \
sh_u.value = (d); \
sh_u.parts.msw = (v); \
(d) = sh_u.value; \
} while (0)
/* Set the less significant 32 bits of a double from an int. */
#define SET_LOW_WORD(d,v) \
do { \
ieee_double_shape_type sl_u; \
sl_u.value = (d); \
sl_u.parts.lsw = (v); \
(d) = sl_u.value; \
} while (0)
/*
* A union which permits us to convert between a float and a 32 bit
* int.
*/
typedef union
{
float value;
/* FIXME: Assumes 32 bit int. */
unsigned int word;
} ieee_float_shape_type;
/* Get a 32 bit int from a float. */
#define GET_FLOAT_WORD(i,d) \
do { \
ieee_float_shape_type gf_u; \
gf_u.value = (d); \
(i) = gf_u.word; \
} while (0)
/* Set a float from a 32 bit int. */
#define SET_FLOAT_WORD(d,i) \
do { \
ieee_float_shape_type sf_u; \
sf_u.word = (i); \
(d) = sf_u.value; \
} while (0)
/* Get expsign as a 16 bit int from a long double. */
#define GET_LDBL_EXPSIGN(i,d) \
do { \
union IEEEl2bits ge_u; \
ge_u.e = (d); \
(i) = ge_u.xbits.expsign; \
} while (0)
/* Set expsign of a long double from a 16 bit int. */
#define SET_LDBL_EXPSIGN(d,v) \
do { \
union IEEEl2bits se_u; \
se_u.e = (d); \
se_u.xbits.expsign = (v); \
(d) = se_u.e; \
} while (0)
#ifdef __i386__
/* Long double constants are broken on i386. */
#define LD80C(m, ex, v) { \
.xbits.man = __CONCAT(m, ULL), \
.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
}
#else
/* The above works on non-i386 too, but we use this to check v. */
#define LD80C(m, ex, v) { .e = (v), }
#endif
#ifdef FLT_EVAL_METHOD
/*
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
*/
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
#else
#define STRICT_ASSIGN(type, lval, rval) do { \
volatile type __lval; \
\
if (sizeof(type) >= sizeof(long double)) \
(lval) = (rval); \
else { \
__lval = (rval); \
(lval) = __lval; \
} \
} while (0)
#endif
#endif /* FLT_EVAL_METHOD */
/* Support switching the mode to FP_PE if necessary. */
#if defined(__i386__) && !defined(NO_FPSETPREC)
#define ENTERI() \
long double __retval; \
fp_prec_t __oprec; \
\
if ((__oprec = fpgetprec()) != FP_PE) \
fpsetprec(FP_PE)
#define RETURNI(x) do { \
__retval = (x); \
if (__oprec != FP_PE) \
fpsetprec(__oprec); \
RETURNF(__retval); \
} while (0)
#else
#define ENTERI(x)
#define RETURNI(x) RETURNF(x)
#endif
/* Default return statement if hack*_t() is not used. */
#define RETURNF(v) return (v)
/*
* Common routine to process the arguments to nan(), nanf(), and nanl().
*/
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
#ifdef _COMPLEX_H
/*
* C99 specifies that complex numbers have the same representation as
* an array of two elements, where the first element is the real part
* and the second element is the imaginary part.
*/
typedef union {
float complex f;
float a[2];
} float_complex;
typedef union {
double complex f;
double a[2];
} double_complex;
typedef union {
long double complex f;
long double a[2];
} long_double_complex;
#define REALPART(z) ((z).a[0])
#define IMAGPART(z) ((z).a[1])
/*
* Inline functions that can be used to construct complex values.
*
* The C99 standard intends x+I*y to be used for this, but x+I*y is
* currently unusable in general since gcc introduces many overflow,
* underflow, sign and efficiency bugs by rewriting I*y as
* (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
* In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
* to -0.0+I*0.0.
*/
static __inline float complex
cpackf(float x, float y)
{
float_complex z;
REALPART(z) = x;
IMAGPART(z) = y;
return (z.f);
}
static __inline double complex
cpack(double x, double y)
{
double_complex z;
REALPART(z) = x;
IMAGPART(z) = y;
return (z.f);
}
static __inline long double complex
cpackl(long double x, long double y)
{
long_double_complex z;
REALPART(z) = x;
IMAGPART(z) = y;
return (z.f);
}
#endif /* _COMPLEX_H */
#ifdef __GNUCLIKE_ASM
/* Asm versions of some functions. */
#ifdef __amd64__
static __inline int
irint(double x)
{
int n;
asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
return (n);
}
#define HAVE_EFFICIENT_IRINT
#endif
#ifdef __i386__
static __inline int
irint(double x)
{
int n;
asm("fistl %0" : "=m" (n) : "t" (x));
return (n);
}
#define HAVE_EFFICIENT_IRINT
#endif
#if defined(__amd64__) || defined(__i386__)
static __inline int
irintl(long double x)
{
int n;
asm("fistl %0" : "=m" (n) : "t" (x));
return (n);
}
#define HAVE_EFFICIENT_IRINTL
#endif
#endif /* __GNUCLIKE_ASM */
/*
* ieee style elementary functions
*
* We rename functions here to improve other sources' diffability
* against fdlibm.
*/
#define __ieee754_sqrt sqrt
#define __ieee754_acos acos
#define __ieee754_acosh acosh
#define __ieee754_log log
#define __ieee754_log2 log2
#define __ieee754_atanh atanh
#define __ieee754_asin asin
#define __ieee754_atan2 atan2
#define __ieee754_exp exp
#define __ieee754_cosh cosh
#define __ieee754_fmod fmod
#define __ieee754_pow pow
#define __ieee754_lgamma lgamma
#define __ieee754_gamma gamma
#define __ieee754_lgamma_r lgamma_r
#define __ieee754_gamma_r gamma_r
#define __ieee754_log10 log10
#define __ieee754_sinh sinh
#define __ieee754_hypot hypot
#define __ieee754_j0 j0
#define __ieee754_j1 j1
#define __ieee754_y0 y0
#define __ieee754_y1 y1
#define __ieee754_jn jn
#define __ieee754_yn yn
#define __ieee754_remainder remainder
#define __ieee754_scalb scalb
#define __ieee754_sqrtf sqrtf
#define __ieee754_acosf acosf
#define __ieee754_acoshf acoshf
#define __ieee754_logf logf
#define __ieee754_atanhf atanhf
#define __ieee754_asinf asinf
#define __ieee754_atan2f atan2f
#define __ieee754_expf expf
#define __ieee754_coshf coshf
#define __ieee754_fmodf fmodf
#define __ieee754_powf powf
#define __ieee754_lgammaf lgammaf
#define __ieee754_gammaf gammaf
#define __ieee754_lgammaf_r lgammaf_r
#define __ieee754_gammaf_r gammaf_r
#define __ieee754_log10f log10f
#define __ieee754_log2f log2f
#define __ieee754_sinhf sinhf
#define __ieee754_hypotf hypotf
#define __ieee754_j0f j0f
#define __ieee754_j1f j1f
#define __ieee754_y0f y0f
#define __ieee754_y1f y1f
#define __ieee754_jnf jnf
#define __ieee754_ynf ynf
#define __ieee754_remainderf remainderf
#define __ieee754_scalbf scalbf
/* fdlibm kernel function */
int __kernel_rem_pio2(double*,double*,int,int,int);
/* double precision kernel functions */
#ifndef INLINE_REM_PIO2
int __ieee754_rem_pio2(double,double*);
#endif
double __kernel_sin(double,double,int);
double __kernel_cos(double,double);
double __kernel_tan(double,double,int);
double __ldexp_exp(double,int);
#ifdef _COMPLEX_H
double complex __ldexp_cexp(double complex,int);
#endif
/* float precision kernel functions */
#ifndef INLINE_REM_PIO2F
int __ieee754_rem_pio2f(float,double*);
#endif
#ifndef INLINE_KERNEL_SINDF
float __kernel_sindf(double);
#endif
#ifndef INLINE_KERNEL_COSDF
float __kernel_cosdf(double);
#endif
#ifndef INLINE_KERNEL_TANDF
float __kernel_tandf(double,int);
#endif
float __ldexp_expf(float,int);
#ifdef _COMPLEX_H
float complex __ldexp_cexpf(float complex,int);
#endif
/* long double precision kernel functions */
long double __kernel_sinl(long double, long double, int);
long double __kernel_cosl(long double, long double);
long double __kernel_tanl(long double, long double, int);
#endif /* !_MATH_PRIVATE_H_ */