// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// The ProgramEvaluator runs the cost functions contained in each residual block
// and stores the result into a jacobian. The particular type of jacobian is
// abstracted out using two template parameters:
//
// - An "EvaluatePreparer" that is responsible for creating the array with
// pointers to the jacobian blocks where the cost function evaluates to.
// - A "JacobianWriter" that is responsible for storing the resulting
// jacobian blocks in the passed sparse matrix.
//
// This abstraction affords an efficient evaluator implementation while still
// supporting writing to multiple sparse matrix formats. For example, when the
// ProgramEvaluator is parameterized for writing to block sparse matrices, the
// residual jacobians are written directly into their final position in the
// block sparse matrix by the user's CostFunction; there is no copying.
//
// The evaluation is threaded with OpenMP.
//
// The EvaluatePreparer and JacobianWriter interfaces are as follows:
//
// class EvaluatePreparer {
// // Prepare the jacobians array for use as the destination of a call to
// // a cost function's evaluate method.
// void Prepare(const ResidualBlock* residual_block,
// int residual_block_index,
// SparseMatrix* jacobian,
// double** jacobians);
// }
//
// class JacobianWriter {
// // Create a jacobian that this writer can write. Same as
// // Evaluator::CreateJacobian.
// SparseMatrix* CreateJacobian() const;
//
// // Create num_threads evaluate preparers. Caller owns result which must
// // be freed with delete[]. Resulting preparers are valid while *this is.
// EvaluatePreparer* CreateEvaluatePreparers(int num_threads);
//
// // Write the block jacobians from a residual block evaluation to the
// // larger sparse jacobian.
// void Write(int residual_id,
// int residual_offset,
// double** jacobians,
// SparseMatrix* jacobian);
// }
//
// Note: The ProgramEvaluator is not thread safe, since internally it maintains
// some per-thread scratch space.
#ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_
#define CERES_INTERNAL_PROGRAM_EVALUATOR_H_
#ifdef CERES_USE_OPENMP
#include <omp.h>
#endif
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/scoped_ptr.h"
namespace ceres {
namespace internal {
template<typename EvaluatePreparer, typename JacobianWriter>
class ProgramEvaluator : public Evaluator {
public:
ProgramEvaluator(const Evaluator::Options &options, Program* program)
: options_(options),
program_(program),
jacobian_writer_(options, program),
evaluate_preparers_(
jacobian_writer_.CreateEvaluatePreparers(options.num_threads)) {
#ifndef CERES_USE_OPENMP
CHECK_EQ(1, options_.num_threads)
<< "OpenMP support is not compiled into this binary; "
<< "only options.num_threads=1 is supported.";
#endif
BuildResidualLayout(*program, &residual_layout_);
evaluate_scratch_.reset(CreateEvaluatorScratch(*program,
options.num_threads));
}
// Implementation of Evaluator interface.
SparseMatrix* CreateJacobian() const {
return jacobian_writer_.CreateJacobian();
}
bool Evaluate(const double* state,
double* cost,
double* residuals,
double* gradient,
SparseMatrix* jacobian) {
// The parameters are stateful, so set the state before evaluating.
if (!program_->StateVectorToParameterBlocks(state)) {
return false;
}
if (residuals != NULL) {
VectorRef(residuals, program_->NumResiduals()).setZero();
}
if (jacobian != NULL) {
jacobian->SetZero();
}
// Each thread gets it's own cost and evaluate scratch space.
for (int i = 0; i < options_.num_threads; ++i) {
evaluate_scratch_[i].cost = 0.0;
}
// This bool is used to disable the loop if an error is encountered
// without breaking out of it. The remaining loop iterations are still run,
// but with an empty body, and so will finish quickly.
bool abort = false;
int num_residual_blocks = program_->NumResidualBlocks();
#pragma omp parallel for num_threads(options_.num_threads)
for (int i = 0; i < num_residual_blocks; ++i) {
// Disable the loop instead of breaking, as required by OpenMP.
#pragma omp flush(abort)
if (abort) {
continue;
}
#ifdef CERES_USE_OPENMP
int thread_id = omp_get_thread_num();
#else
int thread_id = 0;
#endif
EvaluatePreparer* preparer = &evaluate_preparers_[thread_id];
EvaluateScratch* scratch = &evaluate_scratch_[thread_id];
// Prepare block residuals if requested.
const ResidualBlock* residual_block = program_->residual_blocks()[i];
double* block_residuals = NULL;
if (residuals != NULL) {
block_residuals = residuals + residual_layout_[i];
} else if (gradient != NULL) {
block_residuals = scratch->residual_block_residuals.get();
}
// Prepare block jacobians if requested.
double** block_jacobians = NULL;
if (jacobian != NULL || gradient != NULL) {
preparer->Prepare(residual_block,
i,
jacobian,
scratch->jacobian_block_ptrs.get());
block_jacobians = scratch->jacobian_block_ptrs.get();
}
// Evaluate the cost, residuals, and jacobians.
double block_cost;
if (!residual_block->Evaluate(
&block_cost,
block_residuals,
block_jacobians,
scratch->residual_block_evaluate_scratch.get())) {
abort = true;
// This ensures that the OpenMP threads have a consistent view of 'abort'. Do
// the flush inside the failure case so that there is usually only one
// synchronization point per loop iteration instead of two.
#pragma omp flush(abort)
continue;
}
scratch->cost += block_cost;
// Store the jacobians, if they were requested.
if (jacobian != NULL) {
jacobian_writer_.Write(i,
residual_layout_[i],
block_jacobians,
jacobian);
}
// Compute and store the gradient, if it was requested.
if (gradient != NULL) {
int num_residuals = residual_block->NumResiduals();
int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int j = 0; j < num_parameter_blocks; ++j) {
const ParameterBlock* parameter_block =
residual_block->parameter_blocks()[j];
if (parameter_block->IsConstant()) {
continue;
}
MatrixRef block_jacobian(block_jacobians[j],
num_residuals,
parameter_block->LocalSize());
VectorRef block_gradient(scratch->gradient.get() +
parameter_block->delta_offset(),
parameter_block->LocalSize());
VectorRef block_residual(block_residuals, num_residuals);
block_gradient += block_residual.transpose() * block_jacobian;
}
}
}
if (!abort) {
// Sum the cost and gradient (if requested) from each thread.
(*cost) = 0.0;
int num_parameters = program_->NumEffectiveParameters();
if (gradient != NULL) {
VectorRef(gradient, num_parameters).setZero();
}
for (int i = 0; i < options_.num_threads; ++i) {
(*cost) += evaluate_scratch_[i].cost;
if (gradient != NULL) {
VectorRef(gradient, num_parameters) +=
VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters);
}
}
}
return !abort;
}
bool Plus(const double* state,
const double* delta,
double* state_plus_delta) const {
return program_->Plus(state, delta, state_plus_delta);
}
int NumParameters() const {
return program_->NumParameters();
}
int NumEffectiveParameters() const {
return program_->NumEffectiveParameters();
}
int NumResiduals() const {
return program_->NumResiduals();
}
private:
// Per-thread scratch space needed to evaluate and store each residual block.
struct EvaluateScratch {
void Init(int max_parameters_per_residual_block,
int max_scratch_doubles_needed_for_evaluate,
int max_residuals_per_residual_block,
int num_parameters) {
residual_block_evaluate_scratch.reset(
new double[max_scratch_doubles_needed_for_evaluate]);
gradient.reset(new double[num_parameters]);
VectorRef(gradient.get(), num_parameters).setZero();
residual_block_residuals.reset(
new double[max_residuals_per_residual_block]);
jacobian_block_ptrs.reset(
new double*[max_parameters_per_residual_block]);
}
double cost;
scoped_array<double> residual_block_evaluate_scratch;
// The gradient in the local parameterization.
scoped_array<double> gradient;
// Enough space to store the residual for the largest residual block.
scoped_array<double> residual_block_residuals;
scoped_array<double*> jacobian_block_ptrs;
};
static void BuildResidualLayout(const Program& program,
vector<int>* residual_layout) {
const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();
residual_layout->resize(program.NumResidualBlocks());
int residual_pos = 0;
for (int i = 0; i < residual_blocks.size(); ++i) {
const int num_residuals = residual_blocks[i]->NumResiduals();
(*residual_layout)[i] = residual_pos;
residual_pos += num_residuals;
}
}
// Create scratch space for each thread evaluating the program.
static EvaluateScratch* CreateEvaluatorScratch(const Program& program,
int num_threads) {
int max_parameters_per_residual_block =
program.MaxParametersPerResidualBlock();
int max_scratch_doubles_needed_for_evaluate =
program.MaxScratchDoublesNeededForEvaluate();
int max_residuals_per_residual_block =
program.MaxResidualsPerResidualBlock();
int num_parameters = program.NumEffectiveParameters();
EvaluateScratch* evaluate_scratch = new EvaluateScratch[num_threads];
for (int i = 0; i < num_threads; i++) {
evaluate_scratch[i].Init(max_parameters_per_residual_block,
max_scratch_doubles_needed_for_evaluate,
max_residuals_per_residual_block,
num_parameters);
}
return evaluate_scratch;
}
Evaluator::Options options_;
Program* program_;
JacobianWriter jacobian_writer_;
scoped_array<EvaluatePreparer> evaluate_preparers_;
scoped_array<EvaluateScratch> evaluate_scratch_;
vector<int> residual_layout_;
};
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_PROGRAM_EVALUATOR_H_