HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Jelly Bean MR2
|
4.3_r1
下载
查看原文件
收藏
根目录
external
clang
tools
libclang
CIndex.cpp
//===- CIndex.cpp - Clang-C Source Indexing Library -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the main API hooks in the Clang-C Source Indexing // library. // //===----------------------------------------------------------------------===// #include "CIndexer.h" #include "CIndexDiagnostic.h" #include "CLog.h" #include "CXComment.h" #include "CXCursor.h" #include "CXSourceLocation.h" #include "CXString.h" #include "CXTranslationUnit.h" #include "CXType.h" #include "CursorVisitor.h" #include "SimpleFormatContext.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/Version.h" #include "clang/Frontend/ASTUnit.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Config/config.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/CrashRecoveryContext.h" #include "llvm/Support/Format.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Program.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/Signals.h" #include "llvm/Support/Threading.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #if HAVE_PTHREAD_H #include
#endif using namespace clang; using namespace clang::cxcursor; using namespace clang::cxtu; using namespace clang::cxindex; CXTranslationUnit cxtu::MakeCXTranslationUnit(CIndexer *CIdx, ASTUnit *AU) { if (!AU) return 0; CXTranslationUnit D = new CXTranslationUnitImpl(); D->CIdx = CIdx; D->TheASTUnit = AU; D->StringPool = new cxstring::CXStringPool(); D->Diagnostics = 0; D->OverridenCursorsPool = createOverridenCXCursorsPool(); D->FormatContext = 0; D->FormatInMemoryUniqueId = 0; return D; } cxtu::CXTUOwner::~CXTUOwner() { if (TU) clang_disposeTranslationUnit(TU); } /// \brief Compare two source ranges to determine their relative position in /// the translation unit. static RangeComparisonResult RangeCompare(SourceManager &SM, SourceRange R1, SourceRange R2) { assert(R1.isValid() && "First range is invalid?"); assert(R2.isValid() && "Second range is invalid?"); if (R1.getEnd() != R2.getBegin() && SM.isBeforeInTranslationUnit(R1.getEnd(), R2.getBegin())) return RangeBefore; if (R2.getEnd() != R1.getBegin() && SM.isBeforeInTranslationUnit(R2.getEnd(), R1.getBegin())) return RangeAfter; return RangeOverlap; } /// \brief Determine if a source location falls within, before, or after a /// a given source range. static RangeComparisonResult LocationCompare(SourceManager &SM, SourceLocation L, SourceRange R) { assert(R.isValid() && "First range is invalid?"); assert(L.isValid() && "Second range is invalid?"); if (L == R.getBegin() || L == R.getEnd()) return RangeOverlap; if (SM.isBeforeInTranslationUnit(L, R.getBegin())) return RangeBefore; if (SM.isBeforeInTranslationUnit(R.getEnd(), L)) return RangeAfter; return RangeOverlap; } /// \brief Translate a Clang source range into a CIndex source range. /// /// Clang internally represents ranges where the end location points to the /// start of the token at the end. However, for external clients it is more /// useful to have a CXSourceRange be a proper half-open interval. This routine /// does the appropriate translation. CXSourceRange cxloc::translateSourceRange(const SourceManager &SM, const LangOptions &LangOpts, const CharSourceRange &R) { // We want the last character in this location, so we will adjust the // location accordingly. SourceLocation EndLoc = R.getEnd(); if (EndLoc.isValid() && EndLoc.isMacroID() && !SM.isMacroArgExpansion(EndLoc)) EndLoc = SM.getExpansionRange(EndLoc).second; if (R.isTokenRange() && !EndLoc.isInvalid()) { unsigned Length = Lexer::MeasureTokenLength(SM.getSpellingLoc(EndLoc), SM, LangOpts); EndLoc = EndLoc.getLocWithOffset(Length); } CXSourceRange Result = { { &SM, &LangOpts }, R.getBegin().getRawEncoding(), EndLoc.getRawEncoding() }; return Result; } //===----------------------------------------------------------------------===// // Cursor visitor. //===----------------------------------------------------------------------===// static SourceRange getRawCursorExtent(CXCursor C); static SourceRange getFullCursorExtent(CXCursor C, SourceManager &SrcMgr); RangeComparisonResult CursorVisitor::CompareRegionOfInterest(SourceRange R) { return RangeCompare(AU->getSourceManager(), R, RegionOfInterest); } /// \brief Visit the given cursor and, if requested by the visitor, /// its children. /// /// \param Cursor the cursor to visit. /// /// \param CheckedRegionOfInterest if true, then the caller already checked /// that this cursor is within the region of interest. /// /// \returns true if the visitation should be aborted, false if it /// should continue. bool CursorVisitor::Visit(CXCursor Cursor, bool CheckedRegionOfInterest) { if (clang_isInvalid(Cursor.kind)) return false; if (clang_isDeclaration(Cursor.kind)) { const Decl *D = getCursorDecl(Cursor); if (!D) { assert(0 && "Invalid declaration cursor"); return true; // abort. } // Ignore implicit declarations, unless it's an objc method because // currently we should report implicit methods for properties when indexing. if (D->isImplicit() && !isa
(D)) return false; } // If we have a range of interest, and this cursor doesn't intersect with it, // we're done. if (RegionOfInterest.isValid() && !CheckedRegionOfInterest) { SourceRange Range = getRawCursorExtent(Cursor); if (Range.isInvalid() || CompareRegionOfInterest(Range)) return false; } switch (Visitor(Cursor, Parent, ClientData)) { case CXChildVisit_Break: return true; case CXChildVisit_Continue: return false; case CXChildVisit_Recurse: { bool ret = VisitChildren(Cursor); if (PostChildrenVisitor) if (PostChildrenVisitor(Cursor, ClientData)) return true; return ret; } } llvm_unreachable("Invalid CXChildVisitResult!"); } static bool visitPreprocessedEntitiesInRange(SourceRange R, PreprocessingRecord &PPRec, CursorVisitor &Visitor) { SourceManager &SM = Visitor.getASTUnit()->getSourceManager(); FileID FID; if (!Visitor.shouldVisitIncludedEntities()) { // If the begin/end of the range lie in the same FileID, do the optimization // where we skip preprocessed entities that do not come from the same FileID. FID = SM.getFileID(SM.getFileLoc(R.getBegin())); if (FID != SM.getFileID(SM.getFileLoc(R.getEnd()))) FID = FileID(); } std::pair
Entities = PPRec.getPreprocessedEntitiesInRange(R); return Visitor.visitPreprocessedEntities(Entities.first, Entities.second, PPRec, FID); } bool CursorVisitor::visitFileRegion() { if (RegionOfInterest.isInvalid()) return false; ASTUnit *Unit = cxtu::getASTUnit(TU); SourceManager &SM = Unit->getSourceManager(); std::pair
Begin = SM.getDecomposedLoc(SM.getFileLoc(RegionOfInterest.getBegin())), End = SM.getDecomposedLoc(SM.getFileLoc(RegionOfInterest.getEnd())); if (End.first != Begin.first) { // If the end does not reside in the same file, try to recover by // picking the end of the file of begin location. End.first = Begin.first; End.second = SM.getFileIDSize(Begin.first); } assert(Begin.first == End.first); if (Begin.second > End.second) return false; FileID File = Begin.first; unsigned Offset = Begin.second; unsigned Length = End.second - Begin.second; if (!VisitDeclsOnly && !VisitPreprocessorLast) if (visitPreprocessedEntitiesInRegion()) return true; // visitation break. if (visitDeclsFromFileRegion(File, Offset, Length)) return true; // visitation break. if (!VisitDeclsOnly && VisitPreprocessorLast) return visitPreprocessedEntitiesInRegion(); return false; } static bool isInLexicalContext(Decl *D, DeclContext *DC) { if (!DC) return false; for (DeclContext *DeclDC = D->getLexicalDeclContext(); DeclDC; DeclDC = DeclDC->getLexicalParent()) { if (DeclDC == DC) return true; } return false; } bool CursorVisitor::visitDeclsFromFileRegion(FileID File, unsigned Offset, unsigned Length) { ASTUnit *Unit = cxtu::getASTUnit(TU); SourceManager &SM = Unit->getSourceManager(); SourceRange Range = RegionOfInterest; SmallVector
Decls; Unit->findFileRegionDecls(File, Offset, Length, Decls); // If we didn't find any file level decls for the file, try looking at the // file that it was included from. while (Decls.empty() || Decls.front()->isTopLevelDeclInObjCContainer()) { bool Invalid = false; const SrcMgr::SLocEntry &SLEntry = SM.getSLocEntry(File, &Invalid); if (Invalid) return false; SourceLocation Outer; if (SLEntry.isFile()) Outer = SLEntry.getFile().getIncludeLoc(); else Outer = SLEntry.getExpansion().getExpansionLocStart(); if (Outer.isInvalid()) return false; llvm::tie(File, Offset) = SM.getDecomposedExpansionLoc(Outer); Length = 0; Unit->findFileRegionDecls(File, Offset, Length, Decls); } assert(!Decls.empty()); bool VisitedAtLeastOnce = false; DeclContext *CurDC = 0; SmallVector
::iterator DIt = Decls.begin(); for (SmallVector
::iterator DE = Decls.end(); DIt != DE; ++DIt) { Decl *D = *DIt; if (D->getSourceRange().isInvalid()) continue; if (isInLexicalContext(D, CurDC)) continue; CurDC = dyn_cast
(D); if (TagDecl *TD = dyn_cast
(D)) if (!TD->isFreeStanding()) continue; RangeComparisonResult CompRes = RangeCompare(SM, D->getSourceRange(),Range); if (CompRes == RangeBefore) continue; if (CompRes == RangeAfter) break; assert(CompRes == RangeOverlap); VisitedAtLeastOnce = true; if (isa
(D)) { FileDI_current = &DIt; FileDE_current = DE; } else { FileDI_current = 0; } if (Visit(MakeCXCursor(D, TU, Range), /*CheckedRegionOfInterest=*/true)) return true; // visitation break. } if (VisitedAtLeastOnce) return false; // No Decls overlapped with the range. Move up the lexical context until there // is a context that contains the range or we reach the translation unit // level. DeclContext *DC = DIt == Decls.begin() ? (*DIt)->getLexicalDeclContext() : (*(DIt-1))->getLexicalDeclContext(); while (DC && !DC->isTranslationUnit()) { Decl *D = cast
(DC); SourceRange CurDeclRange = D->getSourceRange(); if (CurDeclRange.isInvalid()) break; if (RangeCompare(SM, CurDeclRange, Range) == RangeOverlap) { if (Visit(MakeCXCursor(D, TU, Range), /*CheckedRegionOfInterest=*/true)) return true; // visitation break. } DC = D->getLexicalDeclContext(); } return false; } bool CursorVisitor::visitPreprocessedEntitiesInRegion() { if (!AU->getPreprocessor().getPreprocessingRecord()) return false; PreprocessingRecord &PPRec = *AU->getPreprocessor().getPreprocessingRecord(); SourceManager &SM = AU->getSourceManager(); if (RegionOfInterest.isValid()) { SourceRange MappedRange = AU->mapRangeToPreamble(RegionOfInterest); SourceLocation B = MappedRange.getBegin(); SourceLocation E = MappedRange.getEnd(); if (AU->isInPreambleFileID(B)) { if (SM.isLoadedSourceLocation(E)) return visitPreprocessedEntitiesInRange(SourceRange(B, E), PPRec, *this); // Beginning of range lies in the preamble but it also extends beyond // it into the main file. Split the range into 2 parts, one covering // the preamble and another covering the main file. This allows subsequent // calls to visitPreprocessedEntitiesInRange to accept a source range that // lies in the same FileID, allowing it to skip preprocessed entities that // do not come from the same FileID. bool breaked = visitPreprocessedEntitiesInRange( SourceRange(B, AU->getEndOfPreambleFileID()), PPRec, *this); if (breaked) return true; return visitPreprocessedEntitiesInRange( SourceRange(AU->getStartOfMainFileID(), E), PPRec, *this); } return visitPreprocessedEntitiesInRange(SourceRange(B, E), PPRec, *this); } bool OnlyLocalDecls = !AU->isMainFileAST() && AU->getOnlyLocalDecls(); if (OnlyLocalDecls) return visitPreprocessedEntities(PPRec.local_begin(), PPRec.local_end(), PPRec); return visitPreprocessedEntities(PPRec.begin(), PPRec.end(), PPRec); } template
bool CursorVisitor::visitPreprocessedEntities(InputIterator First, InputIterator Last, PreprocessingRecord &PPRec, FileID FID) { for (; First != Last; ++First) { if (!FID.isInvalid() && !PPRec.isEntityInFileID(First, FID)) continue; PreprocessedEntity *PPE = *First; if (MacroExpansion *ME = dyn_cast
(PPE)) { if (Visit(MakeMacroExpansionCursor(ME, TU))) return true; continue; } if (MacroDefinition *MD = dyn_cast
(PPE)) { if (Visit(MakeMacroDefinitionCursor(MD, TU))) return true; continue; } if (InclusionDirective *ID = dyn_cast
(PPE)) { if (Visit(MakeInclusionDirectiveCursor(ID, TU))) return true; continue; } } return false; } /// \brief Visit the children of the given cursor. /// /// \returns true if the visitation should be aborted, false if it /// should continue. bool CursorVisitor::VisitChildren(CXCursor Cursor) { if (clang_isReference(Cursor.kind) && Cursor.kind != CXCursor_CXXBaseSpecifier) { // By definition, references have no children. return false; } // Set the Parent field to Cursor, then back to its old value once we're // done. SetParentRAII SetParent(Parent, StmtParent, Cursor); if (clang_isDeclaration(Cursor.kind)) { Decl *D = const_cast
(getCursorDecl(Cursor)); if (!D) return false; return VisitAttributes(D) || Visit(D); } if (clang_isStatement(Cursor.kind)) { if (const Stmt *S = getCursorStmt(Cursor)) return Visit(S); return false; } if (clang_isExpression(Cursor.kind)) { if (const Expr *E = getCursorExpr(Cursor)) return Visit(E); return false; } if (clang_isTranslationUnit(Cursor.kind)) { CXTranslationUnit TU = getCursorTU(Cursor); ASTUnit *CXXUnit = cxtu::getASTUnit(TU); int VisitOrder[2] = { VisitPreprocessorLast, !VisitPreprocessorLast }; for (unsigned I = 0; I != 2; ++I) { if (VisitOrder[I]) { if (!CXXUnit->isMainFileAST() && CXXUnit->getOnlyLocalDecls() && RegionOfInterest.isInvalid()) { for (ASTUnit::top_level_iterator TL = CXXUnit->top_level_begin(), TLEnd = CXXUnit->top_level_end(); TL != TLEnd; ++TL) { if (Visit(MakeCXCursor(*TL, TU, RegionOfInterest), true)) return true; } } else if (VisitDeclContext( CXXUnit->getASTContext().getTranslationUnitDecl())) return true; continue; } // Walk the preprocessing record. if (CXXUnit->getPreprocessor().getPreprocessingRecord()) visitPreprocessedEntitiesInRegion(); } return false; } if (Cursor.kind == CXCursor_CXXBaseSpecifier) { if (const CXXBaseSpecifier *Base = getCursorCXXBaseSpecifier(Cursor)) { if (TypeSourceInfo *BaseTSInfo = Base->getTypeSourceInfo()) { return Visit(BaseTSInfo->getTypeLoc()); } } } if (Cursor.kind == CXCursor_IBOutletCollectionAttr) { const IBOutletCollectionAttr *A = cast
(cxcursor::getCursorAttr(Cursor)); if (const ObjCInterfaceType *InterT = A->getInterface()->getAs
()) return Visit(cxcursor::MakeCursorObjCClassRef(InterT->getInterface(), A->getInterfaceLoc(), TU)); } // If pointing inside a macro definition, check if the token is an identifier // that was ever defined as a macro. In such a case, create a "pseudo" macro // expansion cursor for that token. SourceLocation BeginLoc = RegionOfInterest.getBegin(); if (Cursor.kind == CXCursor_MacroDefinition && BeginLoc == RegionOfInterest.getEnd()) { SourceLocation Loc = AU->mapLocationToPreamble(BeginLoc); const MacroInfo *MI = getMacroInfo(cxcursor::getCursorMacroDefinition(Cursor), TU); if (MacroDefinition *MacroDef = checkForMacroInMacroDefinition(MI, Loc, TU)) return Visit(cxcursor::MakeMacroExpansionCursor(MacroDef, BeginLoc, TU)); } // Nothing to visit at the moment. return false; } bool CursorVisitor::VisitBlockDecl(BlockDecl *B) { if (TypeSourceInfo *TSInfo = B->getSignatureAsWritten()) if (Visit(TSInfo->getTypeLoc())) return true; if (Stmt *Body = B->getBody()) return Visit(MakeCXCursor(Body, StmtParent, TU, RegionOfInterest)); return false; } Optional
CursorVisitor::shouldVisitCursor(CXCursor Cursor) { if (RegionOfInterest.isValid()) { SourceRange Range = getFullCursorExtent(Cursor, AU->getSourceManager()); if (Range.isInvalid()) return None; switch (CompareRegionOfInterest(Range)) { case RangeBefore: // This declaration comes before the region of interest; skip it. return None; case RangeAfter: // This declaration comes after the region of interest; we're done. return false; case RangeOverlap: // This declaration overlaps the region of interest; visit it. break; } } return true; } bool CursorVisitor::VisitDeclContext(DeclContext *DC) { DeclContext::decl_iterator I = DC->decls_begin(), E = DC->decls_end(); // FIXME: Eventually remove. This part of a hack to support proper // iteration over all Decls contained lexically within an ObjC container. SaveAndRestore
DI_saved(DI_current, &I); SaveAndRestore
DE_saved(DE_current, E); for ( ; I != E; ++I) { Decl *D = *I; if (D->getLexicalDeclContext() != DC) continue; CXCursor Cursor = MakeCXCursor(D, TU, RegionOfInterest); // Ignore synthesized ivars here, otherwise if we have something like: // @synthesize prop = _prop; // and '_prop' is not declared, we will encounter a '_prop' ivar before // encountering the 'prop' synthesize declaration and we will think that // we passed the region-of-interest. if (ObjCIvarDecl *ivarD = dyn_cast
(D)) { if (ivarD->getSynthesize()) continue; } // FIXME: ObjCClassRef/ObjCProtocolRef for forward class/protocol // declarations is a mismatch with the compiler semantics. if (Cursor.kind == CXCursor_ObjCInterfaceDecl) { ObjCInterfaceDecl *ID = cast
(D); if (!ID->isThisDeclarationADefinition()) Cursor = MakeCursorObjCClassRef(ID, ID->getLocation(), TU); } else if (Cursor.kind == CXCursor_ObjCProtocolDecl) { ObjCProtocolDecl *PD = cast
(D); if (!PD->isThisDeclarationADefinition()) Cursor = MakeCursorObjCProtocolRef(PD, PD->getLocation(), TU); } const Optional
&V = shouldVisitCursor(Cursor); if (!V.hasValue()) continue; if (!V.getValue()) return false; if (Visit(Cursor, true)) return true; } return false; } bool CursorVisitor::VisitTranslationUnitDecl(TranslationUnitDecl *D) { llvm_unreachable("Translation units are visited directly by Visit()"); } bool CursorVisitor::VisitTypeAliasDecl(TypeAliasDecl *D) { if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitTypedefDecl(TypedefDecl *D) { if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitTagDecl(TagDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { bool ShouldVisitBody = false; switch (D->getSpecializationKind()) { case TSK_Undeclared: case TSK_ImplicitInstantiation: // Nothing to visit return false; case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: break; case TSK_ExplicitSpecialization: ShouldVisitBody = true; break; } // Visit the template arguments used in the specialization. if (TypeSourceInfo *SpecType = D->getTypeAsWritten()) { TypeLoc TL = SpecType->getTypeLoc(); if (TemplateSpecializationTypeLoc TSTLoc = TL.getAs
()) { for (unsigned I = 0, N = TSTLoc.getNumArgs(); I != N; ++I) if (VisitTemplateArgumentLoc(TSTLoc.getArgLoc(I))) return true; } } if (ShouldVisitBody && VisitCXXRecordDecl(D)) return true; return false; } bool CursorVisitor::VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D) { // FIXME: Visit the "outer" template parameter lists on the TagDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; // Visit the partial specialization arguments. const TemplateArgumentLoc *TemplateArgs = D->getTemplateArgsAsWritten(); for (unsigned I = 0, N = D->getNumTemplateArgsAsWritten(); I != N; ++I) if (VisitTemplateArgumentLoc(TemplateArgs[I])) return true; return VisitCXXRecordDecl(D); } bool CursorVisitor::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) { // Visit the default argument. if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) if (TypeSourceInfo *DefArg = D->getDefaultArgumentInfo()) if (Visit(DefArg->getTypeLoc())) return true; return false; } bool CursorVisitor::VisitEnumConstantDecl(EnumConstantDecl *D) { if (Expr *Init = D->getInitExpr()) return Visit(MakeCXCursor(Init, StmtParent, TU, RegionOfInterest)); return false; } bool CursorVisitor::VisitDeclaratorDecl(DeclaratorDecl *DD) { if (TypeSourceInfo *TSInfo = DD->getTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; // Visit the nested-name-specifier, if present. if (NestedNameSpecifierLoc QualifierLoc = DD->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; return false; } /// \brief Compare two base or member initializers based on their source order. static int CompareCXXCtorInitializers(const void* Xp, const void *Yp) { CXXCtorInitializer const * const *X = static_cast
(Xp); CXXCtorInitializer const * const *Y = static_cast
(Yp); if ((*X)->getSourceOrder() < (*Y)->getSourceOrder()) return -1; else if ((*X)->getSourceOrder() > (*Y)->getSourceOrder()) return 1; else return 0; } bool CursorVisitor::VisitFunctionDecl(FunctionDecl *ND) { if (TypeSourceInfo *TSInfo = ND->getTypeSourceInfo()) { // Visit the function declaration's syntactic components in the order // written. This requires a bit of work. TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); FunctionTypeLoc FTL = TL.getAs
(); // If we have a function declared directly (without the use of a typedef), // visit just the return type. Otherwise, just visit the function's type // now. if ((FTL && !isa
(ND) && Visit(FTL.getResultLoc())) || (!FTL && Visit(TL))) return true; // Visit the nested-name-specifier, if present. if (NestedNameSpecifierLoc QualifierLoc = ND->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(ND->getNameInfo())) return true; // FIXME: Visit explicitly-specified template arguments! // Visit the function parameters, if we have a function type. if (FTL && VisitFunctionTypeLoc(FTL, true)) return true; // FIXME: Attributes? } if (ND->doesThisDeclarationHaveABody() && !ND->isLateTemplateParsed()) { if (CXXConstructorDecl *Constructor = dyn_cast
(ND)) { // Find the initializers that were written in the source. SmallVector
WrittenInits; for (CXXConstructorDecl::init_iterator I = Constructor->init_begin(), IEnd = Constructor->init_end(); I != IEnd; ++I) { if (!(*I)->isWritten()) continue; WrittenInits.push_back(*I); } // Sort the initializers in source order llvm::array_pod_sort(WrittenInits.begin(), WrittenInits.end(), &CompareCXXCtorInitializers); // Visit the initializers in source order for (unsigned I = 0, N = WrittenInits.size(); I != N; ++I) { CXXCtorInitializer *Init = WrittenInits[I]; if (Init->isAnyMemberInitializer()) { if (Visit(MakeCursorMemberRef(Init->getAnyMember(), Init->getMemberLocation(), TU))) return true; } else if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo()) { if (Visit(TInfo->getTypeLoc())) return true; } // Visit the initializer value. if (Expr *Initializer = Init->getInit()) if (Visit(MakeCXCursor(Initializer, ND, TU, RegionOfInterest))) return true; } } if (Visit(MakeCXCursor(ND->getBody(), StmtParent, TU, RegionOfInterest))) return true; } return false; } bool CursorVisitor::VisitFieldDecl(FieldDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (Expr *BitWidth = D->getBitWidth()) return Visit(MakeCXCursor(BitWidth, StmtParent, TU, RegionOfInterest)); return false; } bool CursorVisitor::VisitVarDecl(VarDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (Expr *Init = D->getInit()) return Visit(MakeCXCursor(Init, StmtParent, TU, RegionOfInterest)); return false; } bool CursorVisitor::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) if (Expr *DefArg = D->getDefaultArgument()) return Visit(MakeCXCursor(DefArg, StmtParent, TU, RegionOfInterest)); return false; } bool CursorVisitor::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { // FIXME: Visit the "outer" template parameter lists on the FunctionDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; return VisitFunctionDecl(D->getTemplatedDecl()); } bool CursorVisitor::VisitClassTemplateDecl(ClassTemplateDecl *D) { // FIXME: Visit the "outer" template parameter lists on the TagDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; return VisitCXXRecordDecl(D->getTemplatedDecl()); } bool CursorVisitor::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) { if (VisitTemplateParameters(D->getTemplateParameters())) return true; if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited() && VisitTemplateArgumentLoc(D->getDefaultArgument())) return true; return false; } bool CursorVisitor::VisitObjCMethodDecl(ObjCMethodDecl *ND) { if (TypeSourceInfo *TSInfo = ND->getResultTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; for (ObjCMethodDecl::param_iterator P = ND->param_begin(), PEnd = ND->param_end(); P != PEnd; ++P) { if (Visit(MakeCXCursor(*P, TU, RegionOfInterest))) return true; } if (ND->isThisDeclarationADefinition() && Visit(MakeCXCursor(ND->getBody(), StmtParent, TU, RegionOfInterest))) return true; return false; } template
static void addRangedDeclsInContainer(DeclIt *DI_current, DeclIt DE_current, SourceManager &SM, SourceLocation EndLoc, SmallVectorImpl
&Decls) { DeclIt next = *DI_current; while (++next != DE_current) { Decl *D_next = *next; if (!D_next) break; SourceLocation L = D_next->getLocStart(); if (!L.isValid()) break; if (SM.isBeforeInTranslationUnit(L, EndLoc)) { *DI_current = next; Decls.push_back(D_next); continue; } break; } } namespace { struct ContainerDeclsSort { SourceManager &SM; ContainerDeclsSort(SourceManager &sm) : SM(sm) {} bool operator()(Decl *A, Decl *B) { SourceLocation L_A = A->getLocStart(); SourceLocation L_B = B->getLocStart(); assert(L_A.isValid() && L_B.isValid()); return SM.isBeforeInTranslationUnit(L_A, L_B); } }; } bool CursorVisitor::VisitObjCContainerDecl(ObjCContainerDecl *D) { // FIXME: Eventually convert back to just 'VisitDeclContext()'. Essentially // an @implementation can lexically contain Decls that are not properly // nested in the AST. When we identify such cases, we need to retrofit // this nesting here. if (!DI_current && !FileDI_current) return VisitDeclContext(D); // Scan the Decls that immediately come after the container // in the current DeclContext. If any fall within the // container's lexical region, stash them into a vector // for later processing. SmallVector
DeclsInContainer; SourceLocation EndLoc = D->getSourceRange().getEnd(); SourceManager &SM = AU->getSourceManager(); if (EndLoc.isValid()) { if (DI_current) { addRangedDeclsInContainer(DI_current, DE_current, SM, EndLoc, DeclsInContainer); } else { addRangedDeclsInContainer(FileDI_current, FileDE_current, SM, EndLoc, DeclsInContainer); } } // The common case. if (DeclsInContainer.empty()) return VisitDeclContext(D); // Get all the Decls in the DeclContext, and sort them with the // additional ones we've collected. Then visit them. for (DeclContext::decl_iterator I = D->decls_begin(), E = D->decls_end(); I!=E; ++I) { Decl *subDecl = *I; if (!subDecl || subDecl->getLexicalDeclContext() != D || subDecl->getLocStart().isInvalid()) continue; DeclsInContainer.push_back(subDecl); } // Now sort the Decls so that they appear in lexical order. std::sort(DeclsInContainer.begin(), DeclsInContainer.end(), ContainerDeclsSort(SM)); // Now visit the decls. for (SmallVectorImpl
::iterator I = DeclsInContainer.begin(), E = DeclsInContainer.end(); I != E; ++I) { CXCursor Cursor = MakeCXCursor(*I, TU, RegionOfInterest); const Optional
&V = shouldVisitCursor(Cursor); if (!V.hasValue()) continue; if (!V.getValue()) return false; if (Visit(Cursor, true)) return true; } return false; } bool CursorVisitor::VisitObjCCategoryDecl(ObjCCategoryDecl *ND) { if (Visit(MakeCursorObjCClassRef(ND->getClassInterface(), ND->getLocation(), TU))) return true; ObjCCategoryDecl::protocol_loc_iterator PL = ND->protocol_loc_begin(); for (ObjCCategoryDecl::protocol_iterator I = ND->protocol_begin(), E = ND->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(ND); } bool CursorVisitor::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) { if (!PID->isThisDeclarationADefinition()) return Visit(MakeCursorObjCProtocolRef(PID, PID->getLocation(), TU)); ObjCProtocolDecl::protocol_loc_iterator PL = PID->protocol_loc_begin(); for (ObjCProtocolDecl::protocol_iterator I = PID->protocol_begin(), E = PID->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(PID); } bool CursorVisitor::VisitObjCPropertyDecl(ObjCPropertyDecl *PD) { if (PD->getTypeSourceInfo() && Visit(PD->getTypeSourceInfo()->getTypeLoc())) return true; // FIXME: This implements a workaround with @property declarations also being // installed in the DeclContext for the @interface. Eventually this code // should be removed. ObjCCategoryDecl *CDecl = dyn_cast
(PD->getDeclContext()); if (!CDecl || !CDecl->IsClassExtension()) return false; ObjCInterfaceDecl *ID = CDecl->getClassInterface(); if (!ID) return false; IdentifierInfo *PropertyId = PD->getIdentifier(); ObjCPropertyDecl *prevDecl = ObjCPropertyDecl::findPropertyDecl(cast
(ID), PropertyId); if (!prevDecl) return false; // Visit synthesized methods since they will be skipped when visiting // the @interface. if (ObjCMethodDecl *MD = prevDecl->getGetterMethodDecl()) if (MD->isPropertyAccessor() && MD->getLexicalDeclContext() == CDecl) if (Visit(MakeCXCursor(MD, TU, RegionOfInterest))) return true; if (ObjCMethodDecl *MD = prevDecl->getSetterMethodDecl()) if (MD->isPropertyAccessor() && MD->getLexicalDeclContext() == CDecl) if (Visit(MakeCXCursor(MD, TU, RegionOfInterest))) return true; return false; } bool CursorVisitor::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) { if (!D->isThisDeclarationADefinition()) { // Forward declaration is treated like a reference. return Visit(MakeCursorObjCClassRef(D, D->getLocation(), TU)); } // Issue callbacks for super class. if (D->getSuperClass() && Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(), D->getSuperClassLoc(), TU))) return true; ObjCInterfaceDecl::protocol_loc_iterator PL = D->protocol_loc_begin(); for (ObjCInterfaceDecl::protocol_iterator I = D->protocol_begin(), E = D->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(D); } bool CursorVisitor::VisitObjCImplDecl(ObjCImplDecl *D) { return VisitObjCContainerDecl(D); } bool CursorVisitor::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { // 'ID' could be null when dealing with invalid code. if (ObjCInterfaceDecl *ID = D->getClassInterface()) if (Visit(MakeCursorObjCClassRef(ID, D->getLocation(), TU))) return true; return VisitObjCImplDecl(D); } bool CursorVisitor::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { #if 0 // Issue callbacks for super class. // FIXME: No source location information! if (D->getSuperClass() && Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(), D->getSuperClassLoc(), TU))) return true; #endif return VisitObjCImplDecl(D); } bool CursorVisitor::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *PD) { if (ObjCIvarDecl *Ivar = PD->getPropertyIvarDecl()) if (PD->isIvarNameSpecified()) return Visit(MakeCursorMemberRef(Ivar, PD->getPropertyIvarDeclLoc(), TU)); return false; } bool CursorVisitor::VisitNamespaceDecl(NamespaceDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; return Visit(MakeCursorNamespaceRef(D->getAliasedNamespace(), D->getTargetNameLoc(), TU)); } bool CursorVisitor::VisitUsingDecl(UsingDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) { if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; } if (Visit(MakeCursorOverloadedDeclRef(D, D->getLocation(), TU))) return true; return VisitDeclarationNameInfo(D->getNameInfo()); } bool CursorVisitor::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; return Visit(MakeCursorNamespaceRef(D->getNominatedNamespaceAsWritten(), D->getIdentLocation(), TU)); } bool CursorVisitor::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) { if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; } return VisitDeclarationNameInfo(D->getNameInfo()); } bool CursorVisitor::VisitUnresolvedUsingTypenameDecl( UnresolvedUsingTypenameDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; return false; } bool CursorVisitor::VisitDeclarationNameInfo(DeclarationNameInfo Name) { switch (Name.getName().getNameKind()) { case clang::DeclarationName::Identifier: case clang::DeclarationName::CXXLiteralOperatorName: case clang::DeclarationName::CXXOperatorName: case clang::DeclarationName::CXXUsingDirective: return false; case clang::DeclarationName::CXXConstructorName: case clang::DeclarationName::CXXDestructorName: case clang::DeclarationName::CXXConversionFunctionName: if (TypeSourceInfo *TSInfo = Name.getNamedTypeInfo()) return Visit(TSInfo->getTypeLoc()); return false; case clang::DeclarationName::ObjCZeroArgSelector: case clang::DeclarationName::ObjCOneArgSelector: case clang::DeclarationName::ObjCMultiArgSelector: // FIXME: Per-identifier location info? return false; } llvm_unreachable("Invalid DeclarationName::Kind!"); } bool CursorVisitor::VisitNestedNameSpecifier(NestedNameSpecifier *NNS, SourceRange Range) { // FIXME: This whole routine is a hack to work around the lack of proper // source information in nested-name-specifiers (PR5791). Since we do have // a beginning source location, we can visit the first component of the // nested-name-specifier, if it's a single-token component. if (!NNS) return false; // Get the first component in the nested-name-specifier. while (NestedNameSpecifier *Prefix = NNS->getPrefix()) NNS = Prefix; switch (NNS->getKind()) { case NestedNameSpecifier::Namespace: return Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(), Range.getBegin(), TU)); case NestedNameSpecifier::NamespaceAlias: return Visit(MakeCursorNamespaceRef(NNS->getAsNamespaceAlias(), Range.getBegin(), TU)); case NestedNameSpecifier::TypeSpec: { // If the type has a form where we know that the beginning of the source // range matches up with a reference cursor. Visit the appropriate reference // cursor. const Type *T = NNS->getAsType(); if (const TypedefType *Typedef = dyn_cast
(T)) return Visit(MakeCursorTypeRef(Typedef->getDecl(), Range.getBegin(), TU)); if (const TagType *Tag = dyn_cast
(T)) return Visit(MakeCursorTypeRef(Tag->getDecl(), Range.getBegin(), TU)); if (const TemplateSpecializationType *TST = dyn_cast
(T)) return VisitTemplateName(TST->getTemplateName(), Range.getBegin()); break; } case NestedNameSpecifier::TypeSpecWithTemplate: case NestedNameSpecifier::Global: case NestedNameSpecifier::Identifier: break; } return false; } bool CursorVisitor::VisitNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier) { SmallVector
Qualifiers; for (; Qualifier; Qualifier = Qualifier.getPrefix()) Qualifiers.push_back(Qualifier); while (!Qualifiers.empty()) { NestedNameSpecifierLoc Q = Qualifiers.pop_back_val(); NestedNameSpecifier *NNS = Q.getNestedNameSpecifier(); switch (NNS->getKind()) { case NestedNameSpecifier::Namespace: if (Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(), Q.getLocalBeginLoc(), TU))) return true; break; case NestedNameSpecifier::NamespaceAlias: if (Visit(MakeCursorNamespaceRef(NNS->getAsNamespaceAlias(), Q.getLocalBeginLoc(), TU))) return true; break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: if (Visit(Q.getTypeLoc())) return true; break; case NestedNameSpecifier::Global: case NestedNameSpecifier::Identifier: break; } } return false; } bool CursorVisitor::VisitTemplateParameters( const TemplateParameterList *Params) { if (!Params) return false; for (TemplateParameterList::const_iterator P = Params->begin(), PEnd = Params->end(); P != PEnd; ++P) { if (Visit(MakeCXCursor(*P, TU, RegionOfInterest))) return true; } return false; } bool CursorVisitor::VisitTemplateName(TemplateName Name, SourceLocation Loc) { switch (Name.getKind()) { case TemplateName::Template: return Visit(MakeCursorTemplateRef(Name.getAsTemplateDecl(), Loc, TU)); case TemplateName::OverloadedTemplate: // Visit the overloaded template set. if (Visit(MakeCursorOverloadedDeclRef(Name, Loc, TU))) return true; return false; case TemplateName::DependentTemplate: // FIXME: Visit nested-name-specifier. return false; case TemplateName::QualifiedTemplate: // FIXME: Visit nested-name-specifier. return Visit(MakeCursorTemplateRef( Name.getAsQualifiedTemplateName()->getDecl(), Loc, TU)); case TemplateName::SubstTemplateTemplateParm: return Visit(MakeCursorTemplateRef( Name.getAsSubstTemplateTemplateParm()->getParameter(), Loc, TU)); case TemplateName::SubstTemplateTemplateParmPack: return Visit(MakeCursorTemplateRef( Name.getAsSubstTemplateTemplateParmPack()->getParameterPack(), Loc, TU)); } llvm_unreachable("Invalid TemplateName::Kind!"); } bool CursorVisitor::VisitTemplateArgumentLoc(const TemplateArgumentLoc &TAL) { switch (TAL.getArgument().getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Pack: return false; case TemplateArgument::Type: if (TypeSourceInfo *TSInfo = TAL.getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; case TemplateArgument::Declaration: if (Expr *E = TAL.getSourceDeclExpression()) return Visit(MakeCXCursor(E, StmtParent, TU, RegionOfInterest)); return false; case TemplateArgument::NullPtr: if (Expr *E = TAL.getSourceNullPtrExpression()) return Visit(MakeCXCursor(E, StmtParent, TU, RegionOfInterest)); return false; case TemplateArgument::Expression: if (Expr *E = TAL.getSourceExpression()) return Visit(MakeCXCursor(E, StmtParent, TU, RegionOfInterest)); return false; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: if (VisitNestedNameSpecifierLoc(TAL.getTemplateQualifierLoc())) return true; return VisitTemplateName(TAL.getArgument().getAsTemplateOrTemplatePattern(), TAL.getTemplateNameLoc()); } llvm_unreachable("Invalid TemplateArgument::Kind!"); } bool CursorVisitor::VisitLinkageSpecDecl(LinkageSpecDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return Visit(TL.getUnqualifiedLoc()); } bool CursorVisitor::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { ASTContext &Context = AU->getASTContext(); // Some builtin types (such as Objective-C's "id", "sel", and // "Class") have associated declarations. Create cursors for those. QualType VisitType; switch (TL.getTypePtr()->getKind()) { case BuiltinType::Void: case BuiltinType::NullPtr: case BuiltinType::Dependent: case BuiltinType::OCLImage1d: case BuiltinType::OCLImage1dArray: case BuiltinType::OCLImage1dBuffer: case BuiltinType::OCLImage2d: case BuiltinType::OCLImage2dArray: case BuiltinType::OCLImage3d: case BuiltinType::OCLSampler: case BuiltinType::OCLEvent: #define BUILTIN_TYPE(Id, SingletonId) #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id: #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" break; case BuiltinType::ObjCId: VisitType = Context.getObjCIdType(); break; case BuiltinType::ObjCClass: VisitType = Context.getObjCClassType(); break; case BuiltinType::ObjCSel: VisitType = Context.getObjCSelType(); break; } if (!VisitType.isNull()) { if (const TypedefType *Typedef = VisitType->getAs
()) return Visit(MakeCursorTypeRef(Typedef->getDecl(), TL.getBuiltinLoc(), TU)); } return false; } bool CursorVisitor::VisitTypedefTypeLoc(TypedefTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getTypedefNameDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitTagTypeLoc(TagTypeLoc TL) { if (TL.isDefinition()) return Visit(MakeCXCursor(TL.getDecl(), TU, RegionOfInterest)); return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { if (Visit(MakeCursorObjCClassRef(TL.getIFaceDecl(), TL.getNameLoc(), TU))) return true; return false; } bool CursorVisitor::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { if (TL.hasBaseTypeAsWritten() && Visit(TL.getBaseLoc())) return true; for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) { if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I), TU))) return true; } return false; } bool CursorVisitor::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitParenTypeLoc(ParenTypeLoc TL) { return Visit(TL.getInnerLoc()); } bool CursorVisitor::VisitPointerTypeLoc(PointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitAttributedTypeLoc(AttributedTypeLoc TL) { return Visit(TL.getModifiedLoc()); } bool CursorVisitor::VisitFunctionTypeLoc(FunctionTypeLoc TL, bool SkipResultType) { if (!SkipResultType && Visit(TL.getResultLoc())) return true; for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (Decl *D = TL.getArg(I)) if (Visit(MakeCXCursor(D, TU, RegionOfInterest))) return true; return false; } bool CursorVisitor::VisitArrayTypeLoc(ArrayTypeLoc TL) { if (Visit(TL.getElementLoc())) return true; if (Expr *Size = TL.getSizeExpr()) return Visit(MakeCXCursor(Size, StmtParent, TU, RegionOfInterest)); return false; } bool CursorVisitor::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { // Visit the template name. if (VisitTemplateName(TL.getTypePtr()->getTemplateName(), TL.getTemplateNameLoc())) return true; // Visit the template arguments. for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (VisitTemplateArgumentLoc(TL.getArgLoc(I))) return true; return false; } bool CursorVisitor::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { return Visit(MakeCXCursor(TL.getUnderlyingExpr(), StmtParent, TU)); } bool CursorVisitor::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { if (VisitNestedNameSpecifierLoc(TL.getQualifierLoc())) return true; return false; } bool CursorVisitor::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { // Visit the nested-name-specifier, if there is one. if (TL.getQualifierLoc() && VisitNestedNameSpecifierLoc(TL.getQualifierLoc())) return true; // Visit the template arguments. for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (VisitTemplateArgumentLoc(TL.getArgLoc(I))) return true; return false; } bool CursorVisitor::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { if (VisitNestedNameSpecifierLoc(TL.getQualifierLoc())) return true; return Visit(TL.getNamedTypeLoc()); } bool CursorVisitor::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { return Visit(TL.getPatternLoc()); } bool CursorVisitor::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { if (Expr *E = TL.getUnderlyingExpr()) return Visit(MakeCXCursor(E, StmtParent, TU)); return false; } bool CursorVisitor::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitAtomicTypeLoc(AtomicTypeLoc TL) { return Visit(TL.getValueLoc()); } #define DEFAULT_TYPELOC_IMPL(CLASS, PARENT) \ bool CursorVisitor::Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { \ return Visit##PARENT##Loc(TL); \ } DEFAULT_TYPELOC_IMPL(Complex, Type) DEFAULT_TYPELOC_IMPL(ConstantArray, ArrayType) DEFAULT_TYPELOC_IMPL(IncompleteArray, ArrayType) DEFAULT_TYPELOC_IMPL(VariableArray, ArrayType) DEFAULT_TYPELOC_IMPL(DependentSizedArray, ArrayType) DEFAULT_TYPELOC_IMPL(DependentSizedExtVector, Type) DEFAULT_TYPELOC_IMPL(Vector, Type) DEFAULT_TYPELOC_IMPL(ExtVector, VectorType) DEFAULT_TYPELOC_IMPL(FunctionProto, FunctionType) DEFAULT_TYPELOC_IMPL(FunctionNoProto, FunctionType) DEFAULT_TYPELOC_IMPL(Record, TagType) DEFAULT_TYPELOC_IMPL(Enum, TagType) DEFAULT_TYPELOC_IMPL(SubstTemplateTypeParm, Type) DEFAULT_TYPELOC_IMPL(SubstTemplateTypeParmPack, Type) DEFAULT_TYPELOC_IMPL(Auto, Type) bool CursorVisitor::VisitCXXRecordDecl(CXXRecordDecl *D) { // Visit the nested-name-specifier, if present. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; if (D->isCompleteDefinition()) { for (CXXRecordDecl::base_class_iterator I = D->bases_begin(), E = D->bases_end(); I != E; ++I) { if (Visit(cxcursor::MakeCursorCXXBaseSpecifier(I, TU))) return true; } } return VisitTagDecl(D); } bool CursorVisitor::VisitAttributes(Decl *D) { for (AttrVec::const_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i) if (Visit(MakeCXCursor(*i, D, TU))) return true; return false; } //===----------------------------------------------------------------------===// // Data-recursive visitor methods. //===----------------------------------------------------------------------===// namespace { #define DEF_JOB(NAME, DATA, KIND)\ class NAME : public VisitorJob {\ public:\ NAME(const DATA *d, CXCursor parent) : \ VisitorJob(parent, VisitorJob::KIND, d) {} \ static bool classof(const VisitorJob *VJ) { return VJ->getKind() == KIND; }\ const DATA *get() const { return static_cast
(data[0]); }\ }; DEF_JOB(StmtVisit, Stmt, StmtVisitKind) DEF_JOB(MemberExprParts, MemberExpr, MemberExprPartsKind) DEF_JOB(DeclRefExprParts, DeclRefExpr, DeclRefExprPartsKind) DEF_JOB(OverloadExprParts, OverloadExpr, OverloadExprPartsKind) DEF_JOB(ExplicitTemplateArgsVisit, ASTTemplateArgumentListInfo, ExplicitTemplateArgsVisitKind) DEF_JOB(SizeOfPackExprParts, SizeOfPackExpr, SizeOfPackExprPartsKind) DEF_JOB(LambdaExprParts, LambdaExpr, LambdaExprPartsKind) DEF_JOB(PostChildrenVisit, void, PostChildrenVisitKind) #undef DEF_JOB class DeclVisit : public VisitorJob { public: DeclVisit(const Decl *D, CXCursor parent, bool isFirst) : VisitorJob(parent, VisitorJob::DeclVisitKind, D, isFirst ? (void*) 1 : (void*) 0) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == DeclVisitKind; } const Decl *get() const { return static_cast
(data[0]); } bool isFirst() const { return data[1] ? true : false; } }; class TypeLocVisit : public VisitorJob { public: TypeLocVisit(TypeLoc tl, CXCursor parent) : VisitorJob(parent, VisitorJob::TypeLocVisitKind, tl.getType().getAsOpaquePtr(), tl.getOpaqueData()) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == TypeLocVisitKind; } TypeLoc get() const { QualType T = QualType::getFromOpaquePtr(data[0]); return TypeLoc(T, const_cast
(data[1])); } }; class LabelRefVisit : public VisitorJob { public: LabelRefVisit(LabelDecl *LD, SourceLocation labelLoc, CXCursor parent) : VisitorJob(parent, VisitorJob::LabelRefVisitKind, LD, labelLoc.getPtrEncoding()) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::LabelRefVisitKind; } const LabelDecl *get() const { return static_cast
(data[0]); } SourceLocation getLoc() const { return SourceLocation::getFromPtrEncoding(data[1]); } }; class NestedNameSpecifierLocVisit : public VisitorJob { public: NestedNameSpecifierLocVisit(NestedNameSpecifierLoc Qualifier, CXCursor parent) : VisitorJob(parent, VisitorJob::NestedNameSpecifierLocVisitKind, Qualifier.getNestedNameSpecifier(), Qualifier.getOpaqueData()) { } static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::NestedNameSpecifierLocVisitKind; } NestedNameSpecifierLoc get() const { return NestedNameSpecifierLoc( const_cast
( static_cast
(data[0])), const_cast
(data[1])); } }; class DeclarationNameInfoVisit : public VisitorJob { public: DeclarationNameInfoVisit(const Stmt *S, CXCursor parent) : VisitorJob(parent, VisitorJob::DeclarationNameInfoVisitKind, S) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::DeclarationNameInfoVisitKind; } DeclarationNameInfo get() const { const Stmt *S = static_cast
(data[0]); switch (S->getStmtClass()) { default: llvm_unreachable("Unhandled Stmt"); case clang::Stmt::MSDependentExistsStmtClass: return cast
(S)->getNameInfo(); case Stmt::CXXDependentScopeMemberExprClass: return cast
(S)->getMemberNameInfo(); case Stmt::DependentScopeDeclRefExprClass: return cast
(S)->getNameInfo(); } } }; class MemberRefVisit : public VisitorJob { public: MemberRefVisit(const FieldDecl *D, SourceLocation L, CXCursor parent) : VisitorJob(parent, VisitorJob::MemberRefVisitKind, D, L.getPtrEncoding()) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::MemberRefVisitKind; } const FieldDecl *get() const { return static_cast
(data[0]); } SourceLocation getLoc() const { return SourceLocation::getFromRawEncoding((unsigned)(uintptr_t) data[1]); } }; class EnqueueVisitor : public ConstStmtVisitor
{ VisitorWorkList &WL; CXCursor Parent; public: EnqueueVisitor(VisitorWorkList &wl, CXCursor parent) : WL(wl), Parent(parent) {} void VisitAddrLabelExpr(const AddrLabelExpr *E); void VisitBlockExpr(const BlockExpr *B); void VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); void VisitCompoundStmt(const CompoundStmt *S); void VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { /* Do nothing. */ } void VisitMSDependentExistsStmt(const MSDependentExistsStmt *S); void VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E); void VisitCXXNewExpr(const CXXNewExpr *E); void VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E); void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E); void VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E); void VisitCXXTypeidExpr(const CXXTypeidExpr *E); void VisitCXXUnresolvedConstructExpr(const CXXUnresolvedConstructExpr *E); void VisitCXXUuidofExpr(const CXXUuidofExpr *E); void VisitCXXCatchStmt(const CXXCatchStmt *S); void VisitDeclRefExpr(const DeclRefExpr *D); void VisitDeclStmt(const DeclStmt *S); void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E); void VisitDesignatedInitExpr(const DesignatedInitExpr *E); void VisitExplicitCastExpr(const ExplicitCastExpr *E); void VisitForStmt(const ForStmt *FS); void VisitGotoStmt(const GotoStmt *GS); void VisitIfStmt(const IfStmt *If); void VisitInitListExpr(const InitListExpr *IE); void VisitMemberExpr(const MemberExpr *M); void VisitOffsetOfExpr(const OffsetOfExpr *E); void VisitObjCEncodeExpr(const ObjCEncodeExpr *E); void VisitObjCMessageExpr(const ObjCMessageExpr *M); void VisitOverloadExpr(const OverloadExpr *E); void VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); void VisitStmt(const Stmt *S); void VisitSwitchStmt(const SwitchStmt *S); void VisitWhileStmt(const WhileStmt *W); void VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E); void VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E); void VisitTypeTraitExpr(const TypeTraitExpr *E); void VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E); void VisitExpressionTraitExpr(const ExpressionTraitExpr *E); void VisitUnresolvedMemberExpr(const UnresolvedMemberExpr *U); void VisitVAArgExpr(const VAArgExpr *E); void VisitSizeOfPackExpr(const SizeOfPackExpr *E); void VisitPseudoObjectExpr(const PseudoObjectExpr *E); void VisitOpaqueValueExpr(const OpaqueValueExpr *E); void VisitLambdaExpr(const LambdaExpr *E); private: void AddDeclarationNameInfo(const Stmt *S); void AddNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier); void AddExplicitTemplateArgs(const ASTTemplateArgumentListInfo *A); void AddMemberRef(const FieldDecl *D, SourceLocation L); void AddStmt(const Stmt *S); void AddDecl(const Decl *D, bool isFirst = true); void AddTypeLoc(TypeSourceInfo *TI); void EnqueueChildren(const Stmt *S); }; } // end anonyous namespace void EnqueueVisitor::AddDeclarationNameInfo(const Stmt *S) { // 'S' should always be non-null, since it comes from the // statement we are visiting. WL.push_back(DeclarationNameInfoVisit(S, Parent)); } void EnqueueVisitor::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier) { if (Qualifier) WL.push_back(NestedNameSpecifierLocVisit(Qualifier, Parent)); } void EnqueueVisitor::AddStmt(const Stmt *S) { if (S) WL.push_back(StmtVisit(S, Parent)); } void EnqueueVisitor::AddDecl(const Decl *D, bool isFirst) { if (D) WL.push_back(DeclVisit(D, Parent, isFirst)); } void EnqueueVisitor:: AddExplicitTemplateArgs(const ASTTemplateArgumentListInfo *A) { if (A) WL.push_back(ExplicitTemplateArgsVisit(A, Parent)); } void EnqueueVisitor::AddMemberRef(const FieldDecl *D, SourceLocation L) { if (D) WL.push_back(MemberRefVisit(D, L, Parent)); } void EnqueueVisitor::AddTypeLoc(TypeSourceInfo *TI) { if (TI) WL.push_back(TypeLocVisit(TI->getTypeLoc(), Parent)); } void EnqueueVisitor::EnqueueChildren(const Stmt *S) { unsigned size = WL.size(); for (Stmt::const_child_range Child = S->children(); Child; ++Child) { AddStmt(*Child); } if (size == WL.size()) return; // Now reverse the entries we just added. This will match the DFS // ordering performed by the worklist. VisitorWorkList::iterator I = WL.begin() + size, E = WL.end(); std::reverse(I, E); } void EnqueueVisitor::VisitAddrLabelExpr(const AddrLabelExpr *E) { WL.push_back(LabelRefVisit(E->getLabel(), E->getLabelLoc(), Parent)); } void EnqueueVisitor::VisitBlockExpr(const BlockExpr *B) { AddDecl(B->getBlockDecl()); } void EnqueueVisitor::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { EnqueueChildren(E); AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitCompoundStmt(const CompoundStmt *S) { for (CompoundStmt::const_reverse_body_iterator I = S->body_rbegin(), E = S->body_rend(); I != E; ++I) { AddStmt(*I); } } void EnqueueVisitor:: VisitMSDependentExistsStmt(const MSDependentExistsStmt *S) { AddStmt(S->getSubStmt()); AddDeclarationNameInfo(S); if (NestedNameSpecifierLoc QualifierLoc = S->getQualifierLoc()) AddNestedNameSpecifierLoc(QualifierLoc); } void EnqueueVisitor:: VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) { AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs()); AddDeclarationNameInfo(E); if (NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc()) AddNestedNameSpecifierLoc(QualifierLoc); if (!E->isImplicitAccess()) AddStmt(E->getBase()); } void EnqueueVisitor::VisitCXXNewExpr(const CXXNewExpr *E) { // Enqueue the initializer , if any. AddStmt(E->getInitializer()); // Enqueue the array size, if any. AddStmt(E->getArraySize()); // Enqueue the allocated type. AddTypeLoc(E->getAllocatedTypeSourceInfo()); // Enqueue the placement arguments. for (unsigned I = E->getNumPlacementArgs(); I > 0; --I) AddStmt(E->getPlacementArg(I-1)); } void EnqueueVisitor::VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CE) { for (unsigned I = CE->getNumArgs(); I > 1 /* Yes, this is 1 */; --I) AddStmt(CE->getArg(I-1)); AddStmt(CE->getCallee()); AddStmt(CE->getArg(0)); } void EnqueueVisitor::VisitCXXPseudoDestructorExpr( const CXXPseudoDestructorExpr *E) { // Visit the name of the type being destroyed. AddTypeLoc(E->getDestroyedTypeInfo()); // Visit the scope type that looks disturbingly like the nested-name-specifier // but isn't. AddTypeLoc(E->getScopeTypeInfo()); // Visit the nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc()) AddNestedNameSpecifierLoc(QualifierLoc); // Visit base expression. AddStmt(E->getBase()); } void EnqueueVisitor::VisitCXXScalarValueInitExpr( const CXXScalarValueInitExpr *E) { AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitCXXTemporaryObjectExpr( const CXXTemporaryObjectExpr *E) { EnqueueChildren(E); AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { EnqueueChildren(E); if (E->isTypeOperand()) AddTypeLoc(E->getTypeOperandSourceInfo()); } void EnqueueVisitor::VisitCXXUnresolvedConstructExpr( const CXXUnresolvedConstructExpr *E) { EnqueueChildren(E); AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { EnqueueChildren(E); if (E->isTypeOperand()) AddTypeLoc(E->getTypeOperandSourceInfo()); } void EnqueueVisitor::VisitCXXCatchStmt(const CXXCatchStmt *S) { EnqueueChildren(S); AddDecl(S->getExceptionDecl()); } void EnqueueVisitor::VisitDeclRefExpr(const DeclRefExpr *DR) { if (DR->hasExplicitTemplateArgs()) { AddExplicitTemplateArgs(&DR->getExplicitTemplateArgs()); } WL.push_back(DeclRefExprParts(DR, Parent)); } void EnqueueVisitor::VisitDependentScopeDeclRefExpr( const DependentScopeDeclRefExpr *E) { AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs()); AddDeclarationNameInfo(E); AddNestedNameSpecifierLoc(E->getQualifierLoc()); } void EnqueueVisitor::VisitDeclStmt(const DeclStmt *S) { unsigned size = WL.size(); bool isFirst = true; for (DeclStmt::const_decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); D != DEnd; ++D) { AddDecl(*D, isFirst); isFirst = false; } if (size == WL.size()) return; // Now reverse the entries we just added. This will match the DFS // ordering performed by the worklist. VisitorWorkList::iterator I = WL.begin() + size, E = WL.end(); std::reverse(I, E); } void EnqueueVisitor::VisitDesignatedInitExpr(const DesignatedInitExpr *E) { AddStmt(E->getInit()); typedef DesignatedInitExpr::Designator Designator; for (DesignatedInitExpr::const_reverse_designators_iterator D = E->designators_rbegin(), DEnd = E->designators_rend(); D != DEnd; ++D) { if (D->isFieldDesignator()) { if (FieldDecl *Field = D->getField()) AddMemberRef(Field, D->getFieldLoc()); continue; } if (D->isArrayDesignator()) { AddStmt(E->getArrayIndex(*D)); continue; } assert(D->isArrayRangeDesignator() && "Unknown designator kind"); AddStmt(E->getArrayRangeEnd(*D)); AddStmt(E->getArrayRangeStart(*D)); } } void EnqueueVisitor::VisitExplicitCastExpr(const ExplicitCastExpr *E) { EnqueueChildren(E); AddTypeLoc(E->getTypeInfoAsWritten()); } void EnqueueVisitor::VisitForStmt(const ForStmt *FS) { AddStmt(FS->getBody()); AddStmt(FS->getInc()); AddStmt(FS->getCond()); AddDecl(FS->getConditionVariable()); AddStmt(FS->getInit()); } void EnqueueVisitor::VisitGotoStmt(const GotoStmt *GS) { WL.push_back(LabelRefVisit(GS->getLabel(), GS->getLabelLoc(), Parent)); } void EnqueueVisitor::VisitIfStmt(const IfStmt *If) { AddStmt(If->getElse()); AddStmt(If->getThen()); AddStmt(If->getCond()); AddDecl(If->getConditionVariable()); } void EnqueueVisitor::VisitInitListExpr(const InitListExpr *IE) { // We care about the syntactic form of the initializer list, only. if (InitListExpr *Syntactic = IE->getSyntacticForm()) IE = Syntactic; EnqueueChildren(IE); } void EnqueueVisitor::VisitMemberExpr(const MemberExpr *M) { WL.push_back(MemberExprParts(M, Parent)); // If the base of the member access expression is an implicit 'this', don't // visit it. // FIXME: If we ever want to show these implicit accesses, this will be // unfortunate. However, clang_getCursor() relies on this behavior. if (!M->isImplicitAccess()) AddStmt(M->getBase()); } void EnqueueVisitor::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { AddTypeLoc(E->getEncodedTypeSourceInfo()); } void EnqueueVisitor::VisitObjCMessageExpr(const ObjCMessageExpr *M) { EnqueueChildren(M); AddTypeLoc(M->getClassReceiverTypeInfo()); } void EnqueueVisitor::VisitOffsetOfExpr(const OffsetOfExpr *E) { // Visit the components of the offsetof expression. for (unsigned N = E->getNumComponents(), I = N; I > 0; --I) { typedef OffsetOfExpr::OffsetOfNode OffsetOfNode; const OffsetOfNode &Node = E->getComponent(I-1); switch (Node.getKind()) { case OffsetOfNode::Array: AddStmt(E->getIndexExpr(Node.getArrayExprIndex())); break; case OffsetOfNode::Field: AddMemberRef(Node.getField(), Node.getSourceRange().getEnd()); break; case OffsetOfNode::Identifier: case OffsetOfNode::Base: continue; } } // Visit the type into which we're computing the offset. AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitOverloadExpr(const OverloadExpr *E) { AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs()); WL.push_back(OverloadExprParts(E, Parent)); } void EnqueueVisitor::VisitUnaryExprOrTypeTraitExpr( const UnaryExprOrTypeTraitExpr *E) { EnqueueChildren(E); if (E->isArgumentType()) AddTypeLoc(E->getArgumentTypeInfo()); } void EnqueueVisitor::VisitStmt(const Stmt *S) { EnqueueChildren(S); } void EnqueueVisitor::VisitSwitchStmt(const SwitchStmt *S) { AddStmt(S->getBody()); AddStmt(S->getCond()); AddDecl(S->getConditionVariable()); } void EnqueueVisitor::VisitWhileStmt(const WhileStmt *W) { AddStmt(W->getBody()); AddStmt(W->getCond()); AddDecl(W->getConditionVariable()); } void EnqueueVisitor::VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { AddTypeLoc(E->getQueriedTypeSourceInfo()); } void EnqueueVisitor::VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { AddTypeLoc(E->getRhsTypeSourceInfo()); AddTypeLoc(E->getLhsTypeSourceInfo()); } void EnqueueVisitor::VisitTypeTraitExpr(const TypeTraitExpr *E) { for (unsigned I = E->getNumArgs(); I > 0; --I) AddTypeLoc(E->getArg(I-1)); } void EnqueueVisitor::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { AddTypeLoc(E->getQueriedTypeSourceInfo()); } void EnqueueVisitor::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { EnqueueChildren(E); } void EnqueueVisitor::VisitUnresolvedMemberExpr(const UnresolvedMemberExpr *U) { VisitOverloadExpr(U); if (!U->isImplicitAccess()) AddStmt(U->getBase()); } void EnqueueVisitor::VisitVAArgExpr(const VAArgExpr *E) { AddStmt(E->getSubExpr()); AddTypeLoc(E->getWrittenTypeInfo()); } void EnqueueVisitor::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { WL.push_back(SizeOfPackExprParts(E, Parent)); } void EnqueueVisitor::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { // If the opaque value has a source expression, just transparently // visit that. This is useful for (e.g.) pseudo-object expressions. if (Expr *SourceExpr = E->getSourceExpr()) return Visit(SourceExpr); } void EnqueueVisitor::VisitLambdaExpr(const LambdaExpr *E) { AddStmt(E->getBody()); WL.push_back(LambdaExprParts(E, Parent)); } void EnqueueVisitor::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { // Treat the expression like its syntactic form. Visit(E->getSyntacticForm()); } void CursorVisitor::EnqueueWorkList(VisitorWorkList &WL, const Stmt *S) { EnqueueVisitor(WL, MakeCXCursor(S, StmtParent, TU,RegionOfInterest)).Visit(S); } bool CursorVisitor::IsInRegionOfInterest(CXCursor C) { if (RegionOfInterest.isValid()) { SourceRange Range = getRawCursorExtent(C); if (Range.isInvalid() || CompareRegionOfInterest(Range)) return false; } return true; } bool CursorVisitor::RunVisitorWorkList(VisitorWorkList &WL) { while (!WL.empty()) { // Dequeue the worklist item. VisitorJob LI = WL.back(); WL.pop_back(); // Set the Parent field, then back to its old value once we're done. SetParentRAII SetParent(Parent, StmtParent, LI.getParent()); switch (LI.getKind()) { case VisitorJob::DeclVisitKind: { const Decl *D = cast
(&LI)->get(); if (!D) continue; // For now, perform default visitation for Decls. if (Visit(MakeCXCursor(D, TU, RegionOfInterest, cast
(&LI)->isFirst()))) return true; continue; } case VisitorJob::ExplicitTemplateArgsVisitKind: { const ASTTemplateArgumentListInfo *ArgList = cast
(&LI)->get(); for (const TemplateArgumentLoc *Arg = ArgList->getTemplateArgs(), *ArgEnd = Arg + ArgList->NumTemplateArgs; Arg != ArgEnd; ++Arg) { if (VisitTemplateArgumentLoc(*Arg)) return true; } continue; } case VisitorJob::TypeLocVisitKind: { // Perform default visitation for TypeLocs. if (Visit(cast
(&LI)->get())) return true; continue; } case VisitorJob::LabelRefVisitKind: { const LabelDecl *LS = cast
(&LI)->get(); if (LabelStmt *stmt = LS->getStmt()) { if (Visit(MakeCursorLabelRef(stmt, cast
(&LI)->getLoc(), TU))) { return true; } } continue; } case VisitorJob::NestedNameSpecifierLocVisitKind: { NestedNameSpecifierLocVisit *V = cast
(&LI); if (VisitNestedNameSpecifierLoc(V->get())) return true; continue; } case VisitorJob::DeclarationNameInfoVisitKind: { if (VisitDeclarationNameInfo(cast
(&LI) ->get())) return true; continue; } case VisitorJob::MemberRefVisitKind: { MemberRefVisit *V = cast
(&LI); if (Visit(MakeCursorMemberRef(V->get(), V->getLoc(), TU))) return true; continue; } case VisitorJob::StmtVisitKind: { const Stmt *S = cast
(&LI)->get(); if (!S) continue; // Update the current cursor. CXCursor Cursor = MakeCXCursor(S, StmtParent, TU, RegionOfInterest); if (!IsInRegionOfInterest(Cursor)) continue; switch (Visitor(Cursor, Parent, ClientData)) { case CXChildVisit_Break: return true; case CXChildVisit_Continue: break; case CXChildVisit_Recurse: if (PostChildrenVisitor) WL.push_back(PostChildrenVisit(0, Cursor)); EnqueueWorkList(WL, S); break; } continue; } case VisitorJob::MemberExprPartsKind: { // Handle the other pieces in the MemberExpr besides the base. const MemberExpr *M = cast
(&LI)->get(); // Visit the nested-name-specifier if (NestedNameSpecifierLoc QualifierLoc = M->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(M->getMemberNameInfo())) return true; // Visit the explicitly-specified template arguments, if any. if (M->hasExplicitTemplateArgs()) { for (const TemplateArgumentLoc *Arg = M->getTemplateArgs(), *ArgEnd = Arg + M->getNumTemplateArgs(); Arg != ArgEnd; ++Arg) { if (VisitTemplateArgumentLoc(*Arg)) return true; } } continue; } case VisitorJob::DeclRefExprPartsKind: { const DeclRefExpr *DR = cast
(&LI)->get(); // Visit nested-name-specifier, if present. if (NestedNameSpecifierLoc QualifierLoc = DR->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; // Visit declaration name. if (VisitDeclarationNameInfo(DR->getNameInfo())) return true; continue; } case VisitorJob::OverloadExprPartsKind: { const OverloadExpr *O = cast
(&LI)->get(); // Visit the nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = O->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(O->getNameInfo())) return true; // Visit the overloaded declaration reference. if (Visit(MakeCursorOverloadedDeclRef(O, TU))) return true; continue; } case VisitorJob::SizeOfPackExprPartsKind: { const SizeOfPackExpr *E = cast
(&LI)->get(); NamedDecl *Pack = E->getPack(); if (isa
(Pack)) { if (Visit(MakeCursorTypeRef(cast
(Pack), E->getPackLoc(), TU))) return true; continue; } if (isa
(Pack)) { if (Visit(MakeCursorTemplateRef(cast
(Pack), E->getPackLoc(), TU))) return true; continue; } // Non-type template parameter packs and function parameter packs are // treated like DeclRefExpr cursors. continue; } case VisitorJob::LambdaExprPartsKind: { // Visit captures. const LambdaExpr *E = cast
(&LI)->get(); for (LambdaExpr::capture_iterator C = E->explicit_capture_begin(), CEnd = E->explicit_capture_end(); C != CEnd; ++C) { if (C->capturesThis()) continue; if (Visit(MakeCursorVariableRef(C->getCapturedVar(), C->getLocation(), TU))) return true; } // Visit parameters and return type, if present. if (E->hasExplicitParameters() || E->hasExplicitResultType()) { TypeLoc TL = E->getCallOperator()->getTypeSourceInfo()->getTypeLoc(); if (E->hasExplicitParameters() && E->hasExplicitResultType()) { // Visit the whole type. if (Visit(TL)) return true; } else if (FunctionProtoTypeLoc Proto = TL.getAs
()) { if (E->hasExplicitParameters()) { // Visit parameters. for (unsigned I = 0, N = Proto.getNumArgs(); I != N; ++I) if (Visit(MakeCXCursor(Proto.getArg(I), TU))) return true; } else { // Visit result type. if (Visit(Proto.getResultLoc())) return true; } } } break; } case VisitorJob::PostChildrenVisitKind: if (PostChildrenVisitor(Parent, ClientData)) return true; break; } } return false; } bool CursorVisitor::Visit(const Stmt *S) { VisitorWorkList *WL = 0; if (!WorkListFreeList.empty()) { WL = WorkListFreeList.back(); WL->clear(); WorkListFreeList.pop_back(); } else { WL = new VisitorWorkList(); WorkListCache.push_back(WL); } EnqueueWorkList(*WL, S); bool result = RunVisitorWorkList(*WL); WorkListFreeList.push_back(WL); return result; } namespace { typedef SmallVector
RefNamePieces; RefNamePieces buildPieces(unsigned NameFlags, bool IsMemberRefExpr, const DeclarationNameInfo &NI, const SourceRange &QLoc, const ASTTemplateArgumentListInfo *TemplateArgs = 0){ const bool WantQualifier = NameFlags & CXNameRange_WantQualifier; const bool WantTemplateArgs = NameFlags & CXNameRange_WantTemplateArgs; const bool WantSinglePiece = NameFlags & CXNameRange_WantSinglePiece; const DeclarationName::NameKind Kind = NI.getName().getNameKind(); RefNamePieces Pieces; if (WantQualifier && QLoc.isValid()) Pieces.push_back(QLoc); if (Kind != DeclarationName::CXXOperatorName || IsMemberRefExpr) Pieces.push_back(NI.getLoc()); if (WantTemplateArgs && TemplateArgs) Pieces.push_back(SourceRange(TemplateArgs->LAngleLoc, TemplateArgs->RAngleLoc)); if (Kind == DeclarationName::CXXOperatorName) { Pieces.push_back(SourceLocation::getFromRawEncoding( NI.getInfo().CXXOperatorName.BeginOpNameLoc)); Pieces.push_back(SourceLocation::getFromRawEncoding( NI.getInfo().CXXOperatorName.EndOpNameLoc)); } if (WantSinglePiece) { SourceRange R(Pieces.front().getBegin(), Pieces.back().getEnd()); Pieces.clear(); Pieces.push_back(R); } return Pieces; } } //===----------------------------------------------------------------------===// // Misc. API hooks. //===----------------------------------------------------------------------===// static llvm::sys::Mutex EnableMultithreadingMutex; static bool EnabledMultithreading; static void fatal_error_handler(void *user_data, const std::string& reason) { // Write the result out to stderr avoiding errs() because raw_ostreams can // call report_fatal_error. fprintf(stderr, "LIBCLANG FATAL ERROR: %s\n", reason.c_str()); ::abort(); } extern "C" { CXIndex clang_createIndex(int excludeDeclarationsFromPCH, int displayDiagnostics) { // Disable pretty stack trace functionality, which will otherwise be a very // poor citizen of the world and set up all sorts of signal handlers. llvm::DisablePrettyStackTrace = true; // We use crash recovery to make some of our APIs more reliable, implicitly // enable it. llvm::CrashRecoveryContext::Enable(); // Enable support for multithreading in LLVM. { llvm::sys::ScopedLock L(EnableMultithreadingMutex); if (!EnabledMultithreading) { llvm::install_fatal_error_handler(fatal_error_handler, 0); llvm::llvm_start_multithreaded(); EnabledMultithreading = true; } } CIndexer *CIdxr = new CIndexer(); if (excludeDeclarationsFromPCH) CIdxr->setOnlyLocalDecls(); if (displayDiagnostics) CIdxr->setDisplayDiagnostics(); if (getenv("LIBCLANG_BGPRIO_INDEX")) CIdxr->setCXGlobalOptFlags(CIdxr->getCXGlobalOptFlags() | CXGlobalOpt_ThreadBackgroundPriorityForIndexing); if (getenv("LIBCLANG_BGPRIO_EDIT")) CIdxr->setCXGlobalOptFlags(CIdxr->getCXGlobalOptFlags() | CXGlobalOpt_ThreadBackgroundPriorityForEditing); return CIdxr; } void clang_disposeIndex(CXIndex CIdx) { if (CIdx) delete static_cast
(CIdx); } void clang_CXIndex_setGlobalOptions(CXIndex CIdx, unsigned options) { if (CIdx) static_cast
(CIdx)->setCXGlobalOptFlags(options); } unsigned clang_CXIndex_getGlobalOptions(CXIndex CIdx) { if (CIdx) return static_cast
(CIdx)->getCXGlobalOptFlags(); return 0; } void clang_toggleCrashRecovery(unsigned isEnabled) { if (isEnabled) llvm::CrashRecoveryContext::Enable(); else llvm::CrashRecoveryContext::Disable(); } CXTranslationUnit clang_createTranslationUnit(CXIndex CIdx, const char *ast_filename) { if (!CIdx) return 0; CIndexer *CXXIdx = static_cast
(CIdx); FileSystemOptions FileSystemOpts; IntrusiveRefCntPtr
Diags; ASTUnit *TU = ASTUnit::LoadFromASTFile(ast_filename, Diags, FileSystemOpts, CXXIdx->getOnlyLocalDecls(), 0, 0, /*CaptureDiagnostics=*/true, /*AllowPCHWithCompilerErrors=*/true, /*UserFilesAreVolatile=*/true); return MakeCXTranslationUnit(CXXIdx, TU); } unsigned clang_defaultEditingTranslationUnitOptions() { return CXTranslationUnit_PrecompiledPreamble | CXTranslationUnit_CacheCompletionResults; } CXTranslationUnit clang_createTranslationUnitFromSourceFile(CXIndex CIdx, const char *source_filename, int num_command_line_args, const char * const *command_line_args, unsigned num_unsaved_files, struct CXUnsavedFile *unsaved_files) { unsigned Options = CXTranslationUnit_DetailedPreprocessingRecord; return clang_parseTranslationUnit(CIdx, source_filename, command_line_args, num_command_line_args, unsaved_files, num_unsaved_files, Options); } struct ParseTranslationUnitInfo { CXIndex CIdx; const char *source_filename; const char *const *command_line_args; int num_command_line_args; struct CXUnsavedFile *unsaved_files; unsigned num_unsaved_files; unsigned options; CXTranslationUnit result; }; static void clang_parseTranslationUnit_Impl(void *UserData) { ParseTranslationUnitInfo *PTUI = static_cast
(UserData); CXIndex CIdx = PTUI->CIdx; const char *source_filename = PTUI->source_filename; const char * const *command_line_args = PTUI->command_line_args; int num_command_line_args = PTUI->num_command_line_args; struct CXUnsavedFile *unsaved_files = PTUI->unsaved_files; unsigned num_unsaved_files = PTUI->num_unsaved_files; unsigned options = PTUI->options; PTUI->result = 0; if (!CIdx) return; CIndexer *CXXIdx = static_cast
(CIdx); if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForIndexing)) setThreadBackgroundPriority(); bool PrecompilePreamble = options & CXTranslationUnit_PrecompiledPreamble; // FIXME: Add a flag for modules. TranslationUnitKind TUKind = (options & CXTranslationUnit_Incomplete)? TU_Prefix : TU_Complete; bool CacheCodeCompetionResults = options & CXTranslationUnit_CacheCompletionResults; bool IncludeBriefCommentsInCodeCompletion = options & CXTranslationUnit_IncludeBriefCommentsInCodeCompletion; bool SkipFunctionBodies = options & CXTranslationUnit_SkipFunctionBodies; bool ForSerialization = options & CXTranslationUnit_ForSerialization; // Configure the diagnostics. IntrusiveRefCntPtr
Diags(CompilerInstance::createDiagnostics(new DiagnosticOptions)); // Recover resources if we crash before exiting this function. llvm::CrashRecoveryContextCleanupRegistrar
> DiagCleanup(Diags.getPtr()); OwningPtr
> RemappedFiles(new std::vector
()); // Recover resources if we crash before exiting this function. llvm::CrashRecoveryContextCleanupRegistrar< std::vector
> RemappedCleanup(RemappedFiles.get()); for (unsigned I = 0; I != num_unsaved_files; ++I) { StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length); const llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename); RemappedFiles->push_back(std::make_pair(unsaved_files[I].Filename, Buffer)); } OwningPtr
> Args(new std::vector
()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar
> ArgsCleanup(Args.get()); // Since the Clang C library is primarily used by batch tools dealing with // (often very broken) source code, where spell-checking can have a // significant negative impact on performance (particularly when // precompiled headers are involved), we disable it by default. // Only do this if we haven't found a spell-checking-related argument. bool FoundSpellCheckingArgument = false; for (int I = 0; I != num_command_line_args; ++I) { if (strcmp(command_line_args[I], "-fno-spell-checking") == 0 || strcmp(command_line_args[I], "-fspell-checking") == 0) { FoundSpellCheckingArgument = true; break; } } if (!FoundSpellCheckingArgument) Args->push_back("-fno-spell-checking"); Args->insert(Args->end(), command_line_args, command_line_args + num_command_line_args); // The 'source_filename' argument is optional. If the caller does not // specify it then it is assumed that the source file is specified // in the actual argument list. // Put the source file after command_line_args otherwise if '-x' flag is // present it will be unused. if (source_filename) Args->push_back(source_filename); // Do we need the detailed preprocessing record? if (options & CXTranslationUnit_DetailedPreprocessingRecord) { Args->push_back("-Xclang"); Args->push_back("-detailed-preprocessing-record"); } unsigned NumErrors = Diags->getClient()->getNumErrors(); OwningPtr
ErrUnit; OwningPtr
Unit( ASTUnit::LoadFromCommandLine(Args->size() ? &(*Args)[0] : 0 /* vector::data() not portable */, Args->size() ? (&(*Args)[0] + Args->size()) :0, Diags, CXXIdx->getClangResourcesPath(), CXXIdx->getOnlyLocalDecls(), /*CaptureDiagnostics=*/true, RemappedFiles->size() ? &(*RemappedFiles)[0]:0, RemappedFiles->size(), /*RemappedFilesKeepOriginalName=*/true, PrecompilePreamble, TUKind, CacheCodeCompetionResults, IncludeBriefCommentsInCodeCompletion, /*AllowPCHWithCompilerErrors=*/true, SkipFunctionBodies, /*UserFilesAreVolatile=*/true, ForSerialization, &ErrUnit)); if (NumErrors != Diags->getClient()->getNumErrors()) { // Make sure to check that 'Unit' is non-NULL. if (CXXIdx->getDisplayDiagnostics()) printDiagsToStderr(Unit ? Unit.get() : ErrUnit.get()); } PTUI->result = MakeCXTranslationUnit(CXXIdx, Unit.take()); } CXTranslationUnit clang_parseTranslationUnit(CXIndex CIdx, const char *source_filename, const char * const *command_line_args, int num_command_line_args, struct CXUnsavedFile *unsaved_files, unsigned num_unsaved_files, unsigned options) { LOG_FUNC_SECTION { *Log << source_filename << ": "; for (int i = 0; i != num_command_line_args; ++i) *Log << command_line_args[i] << " "; } ParseTranslationUnitInfo PTUI = { CIdx, source_filename, command_line_args, num_command_line_args, unsaved_files, num_unsaved_files, options, 0 }; llvm::CrashRecoveryContext CRC; if (!RunSafely(CRC, clang_parseTranslationUnit_Impl, &PTUI)) { fprintf(stderr, "libclang: crash detected during parsing: {\n"); fprintf(stderr, " 'source_filename' : '%s'\n", source_filename); fprintf(stderr, " 'command_line_args' : ["); for (int i = 0; i != num_command_line_args; ++i) { if (i) fprintf(stderr, ", "); fprintf(stderr, "'%s'", command_line_args[i]); } fprintf(stderr, "],\n"); fprintf(stderr, " 'unsaved_files' : ["); for (unsigned i = 0; i != num_unsaved_files; ++i) { if (i) fprintf(stderr, ", "); fprintf(stderr, "('%s', '...', %ld)", unsaved_files[i].Filename, unsaved_files[i].Length); } fprintf(stderr, "],\n"); fprintf(stderr, " 'options' : %d,\n", options); fprintf(stderr, "}\n"); return 0; } else if (getenv("LIBCLANG_RESOURCE_USAGE")) { PrintLibclangResourceUsage(PTUI.result); } return PTUI.result; } unsigned clang_defaultSaveOptions(CXTranslationUnit TU) { return CXSaveTranslationUnit_None; } namespace { struct SaveTranslationUnitInfo { CXTranslationUnit TU; const char *FileName; unsigned options; CXSaveError result; }; } static void clang_saveTranslationUnit_Impl(void *UserData) { SaveTranslationUnitInfo *STUI = static_cast
(UserData); CIndexer *CXXIdx = STUI->TU->CIdx; if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForIndexing)) setThreadBackgroundPriority(); bool hadError = cxtu::getASTUnit(STUI->TU)->Save(STUI->FileName); STUI->result = hadError ? CXSaveError_Unknown : CXSaveError_None; } int clang_saveTranslationUnit(CXTranslationUnit TU, const char *FileName, unsigned options) { LOG_FUNC_SECTION { *Log << TU << ' ' << FileName; } if (!TU) return CXSaveError_InvalidTU; ASTUnit *CXXUnit = cxtu::getASTUnit(TU); ASTUnit::ConcurrencyCheck Check(*CXXUnit); if (!CXXUnit->hasSema()) return CXSaveError_InvalidTU; SaveTranslationUnitInfo STUI = { TU, FileName, options, CXSaveError_None }; if (!CXXUnit->getDiagnostics().hasUnrecoverableErrorOccurred() || getenv("LIBCLANG_NOTHREADS")) { clang_saveTranslationUnit_Impl(&STUI); if (getenv("LIBCLANG_RESOURCE_USAGE")) PrintLibclangResourceUsage(TU); return STUI.result; } // We have an AST that has invalid nodes due to compiler errors. // Use a crash recovery thread for protection. llvm::CrashRecoveryContext CRC; if (!RunSafely(CRC, clang_saveTranslationUnit_Impl, &STUI)) { fprintf(stderr, "libclang: crash detected during AST saving: {\n"); fprintf(stderr, " 'filename' : '%s'\n", FileName); fprintf(stderr, " 'options' : %d,\n", options); fprintf(stderr, "}\n"); return CXSaveError_Unknown; } else if (getenv("LIBCLANG_RESOURCE_USAGE")) { PrintLibclangResourceUsage(TU); } return STUI.result; } void clang_disposeTranslationUnit(CXTranslationUnit CTUnit) { if (CTUnit) { // If the translation unit has been marked as unsafe to free, just discard // it. if (cxtu::getASTUnit(CTUnit)->isUnsafeToFree()) return; delete cxtu::getASTUnit(CTUnit); delete CTUnit->StringPool; delete static_cast
(CTUnit->Diagnostics); disposeOverridenCXCursorsPool(CTUnit->OverridenCursorsPool); delete CTUnit->FormatContext; delete CTUnit; } } unsigned clang_defaultReparseOptions(CXTranslationUnit TU) { return CXReparse_None; } struct ReparseTranslationUnitInfo { CXTranslationUnit TU; unsigned num_unsaved_files; struct CXUnsavedFile *unsaved_files; unsigned options; int result; }; static void clang_reparseTranslationUnit_Impl(void *UserData) { ReparseTranslationUnitInfo *RTUI = static_cast
(UserData); CXTranslationUnit TU = RTUI->TU; if (!TU) return; // Reset the associated diagnostics. delete static_cast
(TU->Diagnostics); TU->Diagnostics = 0; unsigned num_unsaved_files = RTUI->num_unsaved_files; struct CXUnsavedFile *unsaved_files = RTUI->unsaved_files; unsigned options = RTUI->options; (void) options; RTUI->result = 1; CIndexer *CXXIdx = TU->CIdx; if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForEditing)) setThreadBackgroundPriority(); ASTUnit *CXXUnit = cxtu::getASTUnit(TU); ASTUnit::ConcurrencyCheck Check(*CXXUnit); OwningPtr
> RemappedFiles(new std::vector
()); // Recover resources if we crash before exiting this function. llvm::CrashRecoveryContextCleanupRegistrar< std::vector
> RemappedCleanup(RemappedFiles.get()); for (unsigned I = 0; I != num_unsaved_files; ++I) { StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length); const llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename); RemappedFiles->push_back(std::make_pair(unsaved_files[I].Filename, Buffer)); } if (!CXXUnit->Reparse(RemappedFiles->size() ? &(*RemappedFiles)[0] : 0, RemappedFiles->size())) RTUI->result = 0; } int clang_reparseTranslationUnit(CXTranslationUnit TU, unsigned num_unsaved_files, struct CXUnsavedFile *unsaved_files, unsigned options) { LOG_FUNC_SECTION { *Log << TU; } ReparseTranslationUnitInfo RTUI = { TU, num_unsaved_files, unsaved_files, options, 0 }; if (getenv("LIBCLANG_NOTHREADS")) { clang_reparseTranslationUnit_Impl(&RTUI); return RTUI.result; } llvm::CrashRecoveryContext CRC; if (!RunSafely(CRC, clang_reparseTranslationUnit_Impl, &RTUI)) { fprintf(stderr, "libclang: crash detected during reparsing\n"); cxtu::getASTUnit(TU)->setUnsafeToFree(true); return 1; } else if (getenv("LIBCLANG_RESOURCE_USAGE")) PrintLibclangResourceUsage(TU); return RTUI.result; } CXString clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit) { if (!CTUnit) return cxstring::createEmpty(); ASTUnit *CXXUnit = cxtu::getASTUnit(CTUnit); return cxstring::createDup(CXXUnit->getOriginalSourceFileName()); } CXCursor clang_getTranslationUnitCursor(CXTranslationUnit TU) { ASTUnit *CXXUnit = cxtu::getASTUnit(TU); return MakeCXCursor(CXXUnit->getASTContext().getTranslationUnitDecl(), TU); } } // end: extern "C" //===----------------------------------------------------------------------===// // CXFile Operations. //===----------------------------------------------------------------------===// extern "C" { CXString clang_getFileName(CXFile SFile) { if (!SFile) return cxstring::createNull(); FileEntry *FEnt = static_cast
(SFile); return cxstring::createRef(FEnt->getName()); } time_t clang_getFileTime(CXFile SFile) { if (!SFile) return 0; FileEntry *FEnt = static_cast
(SFile); return FEnt->getModificationTime(); } CXFile clang_getFile(CXTranslationUnit TU, const char *file_name) { if (!TU) return 0; ASTUnit *CXXUnit = cxtu::getASTUnit(TU); FileManager &FMgr = CXXUnit->getFileManager(); return const_cast
(FMgr.getFile(file_name)); } unsigned clang_isFileMultipleIncludeGuarded(CXTranslationUnit TU, CXFile file) { if (!TU || !file) return 0; ASTUnit *CXXUnit = cxtu::getASTUnit(TU); FileEntry *FEnt = static_cast
(file); return CXXUnit->getPreprocessor().getHeaderSearchInfo() .isFileMultipleIncludeGuarded(FEnt); } int clang_getFileUniqueID(CXFile file, CXFileUniqueID *outID) { if (!file || !outID) return 1; #ifdef LLVM_ON_WIN32 return 1; // inodes not supported on windows. #else FileEntry *FEnt = static_cast
(file); outID->data[0] = FEnt->getDevice(); outID->data[1] = FEnt->getInode(); outID->data[2] = FEnt->getModificationTime(); return 0; #endif } } // end: extern "C" //===----------------------------------------------------------------------===// // CXCursor Operations. //===----------------------------------------------------------------------===// static const Decl *getDeclFromExpr(const Stmt *E) { if (const ImplicitCastExpr *CE = dyn_cast
(E)) return getDeclFromExpr(CE->getSubExpr()); if (const DeclRefExpr *RefExpr = dyn_cast
(E)) return RefExpr->getDecl(); if (const MemberExpr *ME = dyn_cast
(E)) return ME->getMemberDecl(); if (const ObjCIvarRefExpr *RE = dyn_cast
(E)) return RE->getDecl(); if (const ObjCPropertyRefExpr *PRE = dyn_cast
(E)) { if (PRE->isExplicitProperty()) return PRE->getExplicitProperty(); // It could be messaging both getter and setter as in: // ++myobj.myprop; // in which case prefer to associate the setter since it is less obvious // from inspecting the source that the setter is going to get called. if (PRE->isMessagingSetter()) return PRE->getImplicitPropertySetter(); return PRE->getImplicitPropertyGetter(); } if (const PseudoObjectExpr *POE = dyn_cast
(E)) return getDeclFromExpr(POE->getSyntacticForm()); if (const OpaqueValueExpr *OVE = dyn_cast
(E)) if (Expr *Src = OVE->getSourceExpr()) return getDeclFromExpr(Src); if (const CallExpr *CE = dyn_cast
(E)) return getDeclFromExpr(CE->getCallee()); if (const CXXConstructExpr *CE = dyn_cast
(E)) if (!CE->isElidable()) return CE->getConstructor(); if (const ObjCMessageExpr *OME = dyn_cast
(E)) return OME->getMethodDecl(); if (const ObjCProtocolExpr *PE = dyn_cast
(E)) return PE->getProtocol(); if (const SubstNonTypeTemplateParmPackExpr *NTTP = dyn_cast
(E)) return NTTP->getParameterPack(); if (const SizeOfPackExpr *SizeOfPack = dyn_cast
(E)) if (isa
(SizeOfPack->getPack()) || isa
(SizeOfPack->getPack())) return SizeOfPack->getPack(); return 0; } static SourceLocation getLocationFromExpr(const Expr *E) { if (const ImplicitCastExpr *CE = dyn_cast
(E)) return getLocationFromExpr(CE->getSubExpr()); if (const ObjCMessageExpr *Msg = dyn_cast
(E)) return /*FIXME:*/Msg->getLeftLoc(); if (const DeclRefExpr *DRE = dyn_cast
(E)) return DRE->getLocation(); if (const MemberExpr *Member = dyn_cast
(E)) return Member->getMemberLoc(); if (const ObjCIvarRefExpr *Ivar = dyn_cast
(E)) return Ivar->getLocation(); if (const SizeOfPackExpr *SizeOfPack = dyn_cast
(E)) return SizeOfPack->getPackLoc(); if (const ObjCPropertyRefExpr *PropRef = dyn_cast
(E)) return PropRef->getLocation(); return E->getLocStart(); } extern "C" { unsigned clang_visitChildren(CXCursor parent, CXCursorVisitor visitor, CXClientData client_data) { CursorVisitor CursorVis(getCursorTU(parent), visitor, client_data, /*VisitPreprocessorLast=*/false); return CursorVis.VisitChildren(parent); } #ifndef __has_feature #define __has_feature(x) 0 #endif #if __has_feature(blocks) typedef enum CXChildVisitResult (^CXCursorVisitorBlock)(CXCursor cursor, CXCursor parent); static enum CXChildVisitResult visitWithBlock(CXCursor cursor, CXCursor parent, CXClientData client_data) { CXCursorVisitorBlock block = (CXCursorVisitorBlock)client_data; return block(cursor, parent); } #else // If we are compiled with a compiler that doesn't have native blocks support, // define and call the block manually, so the typedef struct _CXChildVisitResult { void *isa; int flags; int reserved; enum CXChildVisitResult(*invoke)(struct _CXChildVisitResult*, CXCursor, CXCursor); } *CXCursorVisitorBlock; static enum CXChildVisitResult visitWithBlock(CXCursor cursor, CXCursor parent, CXClientData client_data) { CXCursorVisitorBlock block = (CXCursorVisitorBlock)client_data; return block->invoke(block, cursor, parent); } #endif unsigned clang_visitChildrenWithBlock(CXCursor parent, CXCursorVisitorBlock block) { return clang_visitChildren(parent, visitWithBlock, block); } static CXString getDeclSpelling(const Decl *D) { if (!D) return cxstring::createEmpty(); const NamedDecl *ND = dyn_cast
(D); if (!ND) { if (const ObjCPropertyImplDecl *PropImpl = dyn_cast
(D)) if (ObjCPropertyDecl *Property = PropImpl->getPropertyDecl()) return cxstring::createDup(Property->getIdentifier()->getName()); if (const ImportDecl *ImportD = dyn_cast
(D)) if (Module *Mod = ImportD->getImportedModule()) return cxstring::createDup(Mod->getFullModuleName()); return cxstring::createEmpty(); } if (const ObjCMethodDecl *OMD = dyn_cast
(ND)) return cxstring::createDup(OMD->getSelector().getAsString()); if (const ObjCCategoryImplDecl *CIMP = dyn_cast
(ND)) // No, this isn't the same as the code below. getIdentifier() is non-virtual // and returns different names. NamedDecl returns the class name and // ObjCCategoryImplDecl returns the category name. return cxstring::createRef(CIMP->getIdentifier()->getNameStart()); if (isa
(D)) return cxstring::createEmpty(); SmallString<1024> S; llvm::raw_svector_ostream os(S); ND->printName(os); return cxstring::createDup(os.str()); } CXString clang_getCursorSpelling(CXCursor C) { if (clang_isTranslationUnit(C.kind)) return clang_getTranslationUnitSpelling(getCursorTU(C)); if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { const ObjCInterfaceDecl *Super = getCursorObjCSuperClassRef(C).first; return cxstring::createRef(Super->getIdentifier()->getNameStart()); } case CXCursor_ObjCClassRef: { const ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first; return cxstring::createRef(Class->getIdentifier()->getNameStart()); } case CXCursor_ObjCProtocolRef: { const ObjCProtocolDecl *OID = getCursorObjCProtocolRef(C).first; assert(OID && "getCursorSpelling(): Missing protocol decl"); return cxstring::createRef(OID->getIdentifier()->getNameStart()); } case CXCursor_CXXBaseSpecifier: { const CXXBaseSpecifier *B = getCursorCXXBaseSpecifier(C); return cxstring::createDup(B->getType().getAsString()); } case CXCursor_TypeRef: { const TypeDecl *Type = getCursorTypeRef(C).first; assert(Type && "Missing type decl"); return cxstring::createDup(getCursorContext(C).getTypeDeclType(Type). getAsString()); } case CXCursor_TemplateRef: { const TemplateDecl *Template = getCursorTemplateRef(C).first; assert(Template && "Missing template decl"); return cxstring::createDup(Template->getNameAsString()); } case CXCursor_NamespaceRef: { const NamedDecl *NS = getCursorNamespaceRef(C).first; assert(NS && "Missing namespace decl"); return cxstring::createDup(NS->getNameAsString()); } case CXCursor_MemberRef: { const FieldDecl *Field = getCursorMemberRef(C).first; assert(Field && "Missing member decl"); return cxstring::createDup(Field->getNameAsString()); } case CXCursor_LabelRef: { const LabelStmt *Label = getCursorLabelRef(C).first; assert(Label && "Missing label"); return cxstring::createRef(Label->getName()); } case CXCursor_OverloadedDeclRef: { OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(C).first; if (const Decl *D = Storage.dyn_cast
()) { if (const NamedDecl *ND = dyn_cast
(D)) return cxstring::createDup(ND->getNameAsString()); return cxstring::createEmpty(); } if (const OverloadExpr *E = Storage.dyn_cast
()) return cxstring::createDup(E->getName().getAsString()); OverloadedTemplateStorage *Ovl = Storage.get
(); if (Ovl->size() == 0) return cxstring::createEmpty(); return cxstring::createDup((*Ovl->begin())->getNameAsString()); } case CXCursor_VariableRef: { const VarDecl *Var = getCursorVariableRef(C).first; assert(Var && "Missing variable decl"); return cxstring::createDup(Var->getNameAsString()); } default: return cxstring::createRef("
"); } } if (clang_isExpression(C.kind)) { const Decl *D = getDeclFromExpr(getCursorExpr(C)); if (D) return getDeclSpelling(D); return cxstring::createEmpty(); } if (clang_isStatement(C.kind)) { const Stmt *S = getCursorStmt(C); if (const LabelStmt *Label = dyn_cast_or_null
(S)) return cxstring::createRef(Label->getName()); return cxstring::createEmpty(); } if (C.kind == CXCursor_MacroExpansion) return cxstring::createRef(getCursorMacroExpansion(C).getName() ->getNameStart()); if (C.kind == CXCursor_MacroDefinition) return cxstring::createRef(getCursorMacroDefinition(C)->getName() ->getNameStart()); if (C.kind == CXCursor_InclusionDirective) return cxstring::createDup(getCursorInclusionDirective(C)->getFileName()); if (clang_isDeclaration(C.kind)) return getDeclSpelling(getCursorDecl(C)); if (C.kind == CXCursor_AnnotateAttr) { const AnnotateAttr *AA = cast
(cxcursor::getCursorAttr(C)); return cxstring::createDup(AA->getAnnotation()); } if (C.kind == CXCursor_AsmLabelAttr) { const AsmLabelAttr *AA = cast
(cxcursor::getCursorAttr(C)); return cxstring::createDup(AA->getLabel()); } return cxstring::createEmpty(); } CXSourceRange clang_Cursor_getSpellingNameRange(CXCursor C, unsigned pieceIndex, unsigned options) { if (clang_Cursor_isNull(C)) return clang_getNullRange(); ASTContext &Ctx = getCursorContext(C); if (clang_isStatement(C.kind)) { const Stmt *S = getCursorStmt(C); if (const LabelStmt *Label = dyn_cast_or_null
(S)) { if (pieceIndex > 0) return clang_getNullRange(); return cxloc::translateSourceRange(Ctx, Label->getIdentLoc()); } return clang_getNullRange(); } if (C.kind == CXCursor_ObjCMessageExpr) { if (const ObjCMessageExpr * ME = dyn_cast_or_null
(getCursorExpr(C))) { if (pieceIndex >= ME->getNumSelectorLocs()) return clang_getNullRange(); return cxloc::translateSourceRange(Ctx, ME->getSelectorLoc(pieceIndex)); } } if (C.kind == CXCursor_ObjCInstanceMethodDecl || C.kind == CXCursor_ObjCClassMethodDecl) { if (const ObjCMethodDecl * MD = dyn_cast_or_null
(getCursorDecl(C))) { if (pieceIndex >= MD->getNumSelectorLocs()) return clang_getNullRange(); return cxloc::translateSourceRange(Ctx, MD->getSelectorLoc(pieceIndex)); } } if (C.kind == CXCursor_ObjCCategoryDecl || C.kind == CXCursor_ObjCCategoryImplDecl) { if (pieceIndex > 0) return clang_getNullRange(); if (const ObjCCategoryDecl * CD = dyn_cast_or_null
(getCursorDecl(C))) return cxloc::translateSourceRange(Ctx, CD->getCategoryNameLoc()); if (const ObjCCategoryImplDecl * CID = dyn_cast_or_null
(getCursorDecl(C))) return cxloc::translateSourceRange(Ctx, CID->getCategoryNameLoc()); } if (C.kind == CXCursor_ModuleImportDecl) { if (pieceIndex > 0) return clang_getNullRange(); if (const ImportDecl *ImportD = dyn_cast_or_null
(getCursorDecl(C))) { ArrayRef
Locs = ImportD->getIdentifierLocs(); if (!Locs.empty()) return cxloc::translateSourceRange(Ctx, SourceRange(Locs.front(), Locs.back())); } return clang_getNullRange(); } // FIXME: A CXCursor_InclusionDirective should give the location of the // filename, but we don't keep track of this. // FIXME: A CXCursor_AnnotateAttr should give the location of the annotation // but we don't keep track of this. // FIXME: A CXCursor_AsmLabelAttr should give the location of the label // but we don't keep track of this. // Default handling, give the location of the cursor. if (pieceIndex > 0) return clang_getNullRange(); CXSourceLocation CXLoc = clang_getCursorLocation(C); SourceLocation Loc = cxloc::translateSourceLocation(CXLoc); return cxloc::translateSourceRange(Ctx, Loc); } CXString clang_getCursorDisplayName(CXCursor C) { if (!clang_isDeclaration(C.kind)) return clang_getCursorSpelling(C); const Decl *D = getCursorDecl(C); if (!D) return cxstring::createEmpty(); PrintingPolicy Policy = getCursorContext(C).getPrintingPolicy(); if (const FunctionTemplateDecl *FunTmpl = dyn_cast
(D)) D = FunTmpl->getTemplatedDecl(); if (const FunctionDecl *Function = dyn_cast
(D)) { SmallString<64> Str; llvm::raw_svector_ostream OS(Str); OS << *Function; if (Function->getPrimaryTemplate()) OS << "<>"; OS << "("; for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) { if (I) OS << ", "; OS << Function->getParamDecl(I)->getType().getAsString(Policy); } if (Function->isVariadic()) { if (Function->getNumParams()) OS << ", "; OS << "..."; } OS << ")"; return cxstring::createDup(OS.str()); } if (const ClassTemplateDecl *ClassTemplate = dyn_cast
(D)) { SmallString<64> Str; llvm::raw_svector_ostream OS(Str); OS << *ClassTemplate; OS << "<"; TemplateParameterList *Params = ClassTemplate->getTemplateParameters(); for (unsigned I = 0, N = Params->size(); I != N; ++I) { if (I) OS << ", "; NamedDecl *Param = Params->getParam(I); if (Param->getIdentifier()) { OS << Param->getIdentifier()->getName(); continue; } // There is no parameter name, which makes this tricky. Try to come up // with something useful that isn't too long. if (TemplateTypeParmDecl *TTP = dyn_cast
(Param)) OS << (TTP->wasDeclaredWithTypename()? "typename" : "class"); else if (NonTypeTemplateParmDecl *NTTP = dyn_cast
(Param)) OS << NTTP->getType().getAsString(Policy); else OS << "template<...> class"; } OS << ">"; return cxstring::createDup(OS.str()); } if (const ClassTemplateSpecializationDecl *ClassSpec = dyn_cast
(D)) { // If the type was explicitly written, use that. if (TypeSourceInfo *TSInfo = ClassSpec->getTypeAsWritten()) return cxstring::createDup(TSInfo->getType().getAsString(Policy)); SmallString<128> Str; llvm::raw_svector_ostream OS(Str); OS << *ClassSpec; TemplateSpecializationType::PrintTemplateArgumentList(OS, ClassSpec->getTemplateArgs().data(), ClassSpec->getTemplateArgs().size(), Policy); return cxstring::createDup(OS.str()); } return clang_getCursorSpelling(C); } CXString clang_getCursorKindSpelling(enum CXCursorKind Kind) { switch (Kind) { case CXCursor_FunctionDecl: return cxstring::createRef("FunctionDecl"); case CXCursor_TypedefDecl: return cxstring::createRef("TypedefDecl"); case CXCursor_EnumDecl: return cxstring::createRef("EnumDecl"); case CXCursor_EnumConstantDecl: return cxstring::createRef("EnumConstantDecl"); case CXCursor_StructDecl: return cxstring::createRef("StructDecl"); case CXCursor_UnionDecl: return cxstring::createRef("UnionDecl"); case CXCursor_ClassDecl: return cxstring::createRef("ClassDecl"); case CXCursor_FieldDecl: return cxstring::createRef("FieldDecl"); case CXCursor_VarDecl: return cxstring::createRef("VarDecl"); case CXCursor_ParmDecl: return cxstring::createRef("ParmDecl"); case CXCursor_ObjCInterfaceDecl: return cxstring::createRef("ObjCInterfaceDecl"); case CXCursor_ObjCCategoryDecl: return cxstring::createRef("ObjCCategoryDecl"); case CXCursor_ObjCProtocolDecl: return cxstring::createRef("ObjCProtocolDecl"); case CXCursor_ObjCPropertyDecl: return cxstring::createRef("ObjCPropertyDecl"); case CXCursor_ObjCIvarDecl: return cxstring::createRef("ObjCIvarDecl"); case CXCursor_ObjCInstanceMethodDecl: return cxstring::createRef("ObjCInstanceMethodDecl"); case CXCursor_ObjCClassMethodDecl: return cxstring::createRef("ObjCClassMethodDecl"); case CXCursor_ObjCImplementationDecl: return cxstring::createRef("ObjCImplementationDecl"); case CXCursor_ObjCCategoryImplDecl: return cxstring::createRef("ObjCCategoryImplDecl"); case CXCursor_CXXMethod: return cxstring::createRef("CXXMethod"); case CXCursor_UnexposedDecl: return cxstring::createRef("UnexposedDecl"); case CXCursor_ObjCSuperClassRef: return cxstring::createRef("ObjCSuperClassRef"); case CXCursor_ObjCProtocolRef: return cxstring::createRef("ObjCProtocolRef"); case CXCursor_ObjCClassRef: return cxstring::createRef("ObjCClassRef"); case CXCursor_TypeRef: return cxstring::createRef("TypeRef"); case CXCursor_TemplateRef: return cxstring::createRef("TemplateRef"); case CXCursor_NamespaceRef: return cxstring::createRef("NamespaceRef"); case CXCursor_MemberRef: return cxstring::createRef("MemberRef"); case CXCursor_LabelRef: return cxstring::createRef("LabelRef"); case CXCursor_OverloadedDeclRef: return cxstring::createRef("OverloadedDeclRef"); case CXCursor_VariableRef: return cxstring::createRef("VariableRef"); case CXCursor_IntegerLiteral: return cxstring::createRef("IntegerLiteral"); case CXCursor_FloatingLiteral: return cxstring::createRef("FloatingLiteral"); case CXCursor_ImaginaryLiteral: return cxstring::createRef("ImaginaryLiteral"); case CXCursor_StringLiteral: return cxstring::createRef("StringLiteral"); case CXCursor_CharacterLiteral: return cxstring::createRef("CharacterLiteral"); case CXCursor_ParenExpr: return cxstring::createRef("ParenExpr"); case CXCursor_UnaryOperator: return cxstring::createRef("UnaryOperator"); case CXCursor_ArraySubscriptExpr: return cxstring::createRef("ArraySubscriptExpr"); case CXCursor_BinaryOperator: return cxstring::createRef("BinaryOperator"); case CXCursor_CompoundAssignOperator: return cxstring::createRef("CompoundAssignOperator"); case CXCursor_ConditionalOperator: return cxstring::createRef("ConditionalOperator"); case CXCursor_CStyleCastExpr: return cxstring::createRef("CStyleCastExpr"); case CXCursor_CompoundLiteralExpr: return cxstring::createRef("CompoundLiteralExpr"); case CXCursor_InitListExpr: return cxstring::createRef("InitListExpr"); case CXCursor_AddrLabelExpr: return cxstring::createRef("AddrLabelExpr"); case CXCursor_StmtExpr: return cxstring::createRef("StmtExpr"); case CXCursor_GenericSelectionExpr: return cxstring::createRef("GenericSelectionExpr"); case CXCursor_GNUNullExpr: return cxstring::createRef("GNUNullExpr"); case CXCursor_CXXStaticCastExpr: return cxstring::createRef("CXXStaticCastExpr"); case CXCursor_CXXDynamicCastExpr: return cxstring::createRef("CXXDynamicCastExpr"); case CXCursor_CXXReinterpretCastExpr: return cxstring::createRef("CXXReinterpretCastExpr"); case CXCursor_CXXConstCastExpr: return cxstring::createRef("CXXConstCastExpr"); case CXCursor_CXXFunctionalCastExpr: return cxstring::createRef("CXXFunctionalCastExpr"); case CXCursor_CXXTypeidExpr: return cxstring::createRef("CXXTypeidExpr"); case CXCursor_CXXBoolLiteralExpr: return cxstring::createRef("CXXBoolLiteralExpr"); case CXCursor_CXXNullPtrLiteralExpr: return cxstring::createRef("CXXNullPtrLiteralExpr"); case CXCursor_CXXThisExpr: return cxstring::createRef("CXXThisExpr"); case CXCursor_CXXThrowExpr: return cxstring::createRef("CXXThrowExpr"); case CXCursor_CXXNewExpr: return cxstring::createRef("CXXNewExpr"); case CXCursor_CXXDeleteExpr: return cxstring::createRef("CXXDeleteExpr"); case CXCursor_UnaryExpr: return cxstring::createRef("UnaryExpr"); case CXCursor_ObjCStringLiteral: return cxstring::createRef("ObjCStringLiteral"); case CXCursor_ObjCBoolLiteralExpr: return cxstring::createRef("ObjCBoolLiteralExpr"); case CXCursor_ObjCEncodeExpr: return cxstring::createRef("ObjCEncodeExpr"); case CXCursor_ObjCSelectorExpr: return cxstring::createRef("ObjCSelectorExpr"); case CXCursor_ObjCProtocolExpr: return cxstring::createRef("ObjCProtocolExpr"); case CXCursor_ObjCBridgedCastExpr: return cxstring::createRef("ObjCBridgedCastExpr"); case CXCursor_BlockExpr: return cxstring::createRef("BlockExpr"); case CXCursor_PackExpansionExpr: return cxstring::createRef("PackExpansionExpr"); case CXCursor_SizeOfPackExpr: return cxstring::createRef("SizeOfPackExpr"); case CXCursor_LambdaExpr: return cxstring::createRef("LambdaExpr"); case CXCursor_UnexposedExpr: return cxstring::createRef("UnexposedExpr"); case CXCursor_DeclRefExpr: return cxstring::createRef("DeclRefExpr"); case CXCursor_MemberRefExpr: return cxstring::createRef("MemberRefExpr"); case CXCursor_CallExpr: return cxstring::createRef("CallExpr"); case CXCursor_ObjCMessageExpr: return cxstring::createRef("ObjCMessageExpr"); case CXCursor_UnexposedStmt: return cxstring::createRef("UnexposedStmt"); case CXCursor_DeclStmt: return cxstring::createRef("DeclStmt"); case CXCursor_LabelStmt: return cxstring::createRef("LabelStmt"); case CXCursor_CompoundStmt: return cxstring::createRef("CompoundStmt"); case CXCursor_CaseStmt: return cxstring::createRef("CaseStmt"); case CXCursor_DefaultStmt: return cxstring::createRef("DefaultStmt"); case CXCursor_IfStmt: return cxstring::createRef("IfStmt"); case CXCursor_SwitchStmt: return cxstring::createRef("SwitchStmt"); case CXCursor_WhileStmt: return cxstring::createRef("WhileStmt"); case CXCursor_DoStmt: return cxstring::createRef("DoStmt"); case CXCursor_ForStmt: return cxstring::createRef("ForStmt"); case CXCursor_GotoStmt: return cxstring::createRef("GotoStmt"); case CXCursor_IndirectGotoStmt: return cxstring::createRef("IndirectGotoStmt"); case CXCursor_ContinueStmt: return cxstring::createRef("ContinueStmt"); case CXCursor_BreakStmt: return cxstring::createRef("BreakStmt"); case CXCursor_ReturnStmt: return cxstring::createRef("ReturnStmt"); case CXCursor_GCCAsmStmt: return cxstring::createRef("GCCAsmStmt"); case CXCursor_MSAsmStmt: return cxstring::createRef("MSAsmStmt"); case CXCursor_ObjCAtTryStmt: return cxstring::createRef("ObjCAtTryStmt"); case CXCursor_ObjCAtCatchStmt: return cxstring::createRef("ObjCAtCatchStmt"); case CXCursor_ObjCAtFinallyStmt: return cxstring::createRef("ObjCAtFinallyStmt"); case CXCursor_ObjCAtThrowStmt: return cxstring::createRef("ObjCAtThrowStmt"); case CXCursor_ObjCAtSynchronizedStmt: return cxstring::createRef("ObjCAtSynchronizedStmt"); case CXCursor_ObjCAutoreleasePoolStmt: return cxstring::createRef("ObjCAutoreleasePoolStmt"); case CXCursor_ObjCForCollectionStmt: return cxstring::createRef("ObjCForCollectionStmt"); case CXCursor_CXXCatchStmt: return cxstring::createRef("CXXCatchStmt"); case CXCursor_CXXTryStmt: return cxstring::createRef("CXXTryStmt"); case CXCursor_CXXForRangeStmt: return cxstring::createRef("CXXForRangeStmt"); case CXCursor_SEHTryStmt: return cxstring::createRef("SEHTryStmt"); case CXCursor_SEHExceptStmt: return cxstring::createRef("SEHExceptStmt"); case CXCursor_SEHFinallyStmt: return cxstring::createRef("SEHFinallyStmt"); case CXCursor_NullStmt: return cxstring::createRef("NullStmt"); case CXCursor_InvalidFile: return cxstring::createRef("InvalidFile"); case CXCursor_InvalidCode: return cxstring::createRef("InvalidCode"); case CXCursor_NoDeclFound: return cxstring::createRef("NoDeclFound"); case CXCursor_NotImplemented: return cxstring::createRef("NotImplemented"); case CXCursor_TranslationUnit: return cxstring::createRef("TranslationUnit"); case CXCursor_UnexposedAttr: return cxstring::createRef("UnexposedAttr"); case CXCursor_IBActionAttr: return cxstring::createRef("attribute(ibaction)"); case CXCursor_IBOutletAttr: return cxstring::createRef("attribute(iboutlet)"); case CXCursor_IBOutletCollectionAttr: return cxstring::createRef("attribute(iboutletcollection)"); case CXCursor_CXXFinalAttr: return cxstring::createRef("attribute(final)"); case CXCursor_CXXOverrideAttr: return cxstring::createRef("attribute(override)"); case CXCursor_AnnotateAttr: return cxstring::createRef("attribute(annotate)"); case CXCursor_AsmLabelAttr: return cxstring::createRef("asm label"); case CXCursor_PreprocessingDirective: return cxstring::createRef("preprocessing directive"); case CXCursor_MacroDefinition: return cxstring::createRef("macro definition"); case CXCursor_MacroExpansion: return cxstring::createRef("macro expansion"); case CXCursor_InclusionDirective: return cxstring::createRef("inclusion directive"); case CXCursor_Namespace: return cxstring::createRef("Namespace"); case CXCursor_LinkageSpec: return cxstring::createRef("LinkageSpec"); case CXCursor_CXXBaseSpecifier: return cxstring::createRef("C++ base class specifier"); case CXCursor_Constructor: return cxstring::createRef("CXXConstructor"); case CXCursor_Destructor: return cxstring::createRef("CXXDestructor"); case CXCursor_ConversionFunction: return cxstring::createRef("CXXConversion"); case CXCursor_TemplateTypeParameter: return cxstring::createRef("TemplateTypeParameter"); case CXCursor_NonTypeTemplateParameter: return cxstring::createRef("NonTypeTemplateParameter"); case CXCursor_TemplateTemplateParameter: return cxstring::createRef("TemplateTemplateParameter"); case CXCursor_FunctionTemplate: return cxstring::createRef("FunctionTemplate"); case CXCursor_ClassTemplate: return cxstring::createRef("ClassTemplate"); case CXCursor_ClassTemplatePartialSpecialization: return cxstring::createRef("ClassTemplatePartialSpecialization"); case CXCursor_NamespaceAlias: return cxstring::createRef("NamespaceAlias"); case CXCursor_UsingDirective: return cxstring::createRef("UsingDirective"); case CXCursor_UsingDeclaration: return cxstring::createRef("UsingDeclaration"); case CXCursor_TypeAliasDecl: return cxstring::createRef("TypeAliasDecl"); case CXCursor_ObjCSynthesizeDecl: return cxstring::createRef("ObjCSynthesizeDecl"); case CXCursor_ObjCDynamicDecl: return cxstring::createRef("ObjCDynamicDecl"); case CXCursor_CXXAccessSpecifier: return cxstring::createRef("CXXAccessSpecifier"); case CXCursor_ModuleImportDecl: return cxstring::createRef("ModuleImport"); } llvm_unreachable("Unhandled CXCursorKind"); } struct GetCursorData { SourceLocation TokenBeginLoc; bool PointsAtMacroArgExpansion; bool VisitedObjCPropertyImplDecl; SourceLocation VisitedDeclaratorDeclStartLoc; CXCursor &BestCursor; GetCursorData(SourceManager &SM, SourceLocation tokenBegin, CXCursor &outputCursor) : TokenBeginLoc(tokenBegin), BestCursor(outputCursor) { PointsAtMacroArgExpansion = SM.isMacroArgExpansion(tokenBegin); VisitedObjCPropertyImplDecl = false; } }; static enum CXChildVisitResult GetCursorVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data) { GetCursorData *Data = static_cast
(client_data); CXCursor *BestCursor = &Data->BestCursor; // If we point inside a macro argument we should provide info of what the // token is so use the actual cursor, don't replace it with a macro expansion // cursor. if (cursor.kind == CXCursor_MacroExpansion && Data->PointsAtMacroArgExpansion) return CXChildVisit_Recurse; if (clang_isDeclaration(cursor.kind)) { // Avoid having the implicit methods override the property decls. if (const ObjCMethodDecl *MD = dyn_cast_or_null
(getCursorDecl(cursor))) { if (MD->isImplicit()) return CXChildVisit_Break; } else if (const ObjCInterfaceDecl *ID = dyn_cast_or_null
(getCursorDecl(cursor))) { // Check that when we have multiple @class references in the same line, // that later ones do not override the previous ones. // If we have: // @class Foo, Bar; // source ranges for both start at '@', so 'Bar' will end up overriding // 'Foo' even though the cursor location was at 'Foo'. if (BestCursor->kind == CXCursor_ObjCInterfaceDecl || BestCursor->kind == CXCursor_ObjCClassRef) if (const ObjCInterfaceDecl *PrevID = dyn_cast_or_null
(getCursorDecl(*BestCursor))){ if (PrevID != ID && !PrevID->isThisDeclarationADefinition() && !ID->isThisDeclarationADefinition()) return CXChildVisit_Break; } } else if (const DeclaratorDecl *DD = dyn_cast_or_null
(getCursorDecl(cursor))) { SourceLocation StartLoc = DD->getSourceRange().getBegin(); // Check that when we have multiple declarators in the same line, // that later ones do not override the previous ones. // If we have: // int Foo, Bar; // source ranges for both start at 'int', so 'Bar' will end up overriding // 'Foo' even though the cursor location was at 'Foo'. if (Data->VisitedDeclaratorDeclStartLoc == StartLoc) return CXChildVisit_Break; Data->VisitedDeclaratorDeclStartLoc = StartLoc; } else if (const ObjCPropertyImplDecl *PropImp = dyn_cast_or_null
(getCursorDecl(cursor))) { (void)PropImp; // Check that when we have multiple @synthesize in the same line, // that later ones do not override the previous ones. // If we have: // @synthesize Foo, Bar; // source ranges for both start at '@', so 'Bar' will end up overriding // 'Foo' even though the cursor location was at 'Foo'. if (Data->VisitedObjCPropertyImplDecl) return CXChildVisit_Break; Data->VisitedObjCPropertyImplDecl = true; } } if (clang_isExpression(cursor.kind) && clang_isDeclaration(BestCursor->kind)) { if (const Decl *D = getCursorDecl(*BestCursor)) { // Avoid having the cursor of an expression replace the declaration cursor // when the expression source range overlaps the declaration range. // This can happen for C++ constructor expressions whose range generally // include the variable declaration, e.g.: // MyCXXClass foo; // Make sure pointing at 'foo' returns a VarDecl cursor. if (D->getLocation().isValid() && Data->TokenBeginLoc.isValid() && D->getLocation() == Data->TokenBeginLoc) return CXChildVisit_Break; } } // If our current best cursor is the construction of a temporary object, // don't replace that cursor with a type reference, because we want // clang_getCursor() to point at the constructor. if (clang_isExpression(BestCursor->kind) && isa
(getCursorExpr(*BestCursor)) && cursor.kind == CXCursor_TypeRef) { // Keep the cursor pointing at CXXTemporaryObjectExpr but also mark it // as having the actual point on the type reference. *BestCursor = getTypeRefedCallExprCursor(*BestCursor); return CXChildVisit_Recurse; } *BestCursor = cursor; return CXChildVisit_Recurse; } CXCursor clang_getCursor(CXTranslationUnit TU, CXSourceLocation Loc) { if (!TU) return clang_getNullCursor(); ASTUnit *CXXUnit = cxtu::getASTUnit(TU); ASTUnit::ConcurrencyCheck Check(*CXXUnit); SourceLocation SLoc = cxloc::translateSourceLocation(Loc); CXCursor Result = cxcursor::getCursor(TU, SLoc); LOG_FUNC_SECTION { CXFile SearchFile; unsigned SearchLine, SearchColumn; CXFile ResultFile; unsigned ResultLine, ResultColumn; CXString SearchFileName, ResultFileName, KindSpelling, USR; const char *IsDef = clang_isCursorDefinition(Result)? " (Definition)" : ""; CXSourceLocation ResultLoc = clang_getCursorLocation(Result); clang_getFileLocation(Loc, &SearchFile, &SearchLine, &SearchColumn, 0); clang_getFileLocation(ResultLoc, &ResultFile, &ResultLine, &ResultColumn, 0); SearchFileName = clang_getFileName(SearchFile); ResultFileName = clang_getFileName(ResultFile); KindSpelling = clang_getCursorKindSpelling(Result.kind); USR = clang_getCursorUSR(Result); *Log << llvm::format("(%s:%d:%d) = %s", clang_getCString(SearchFileName), SearchLine, SearchColumn, clang_getCString(KindSpelling)) << llvm::format("(%s:%d:%d):%s%s", clang_getCString(ResultFileName), ResultLine, ResultColumn, clang_getCString(USR), IsDef); clang_disposeString(SearchFileName); clang_disposeString(ResultFileName); clang_disposeString(KindSpelling); clang_disposeString(USR); CXCursor Definition = clang_getCursorDefinition(Result); if (!clang_equalCursors(Definition, clang_getNullCursor())) { CXSourceLocation DefinitionLoc = clang_getCursorLocation(Definition); CXString DefinitionKindSpelling = clang_getCursorKindSpelling(Definition.kind); CXFile DefinitionFile; unsigned DefinitionLine, DefinitionColumn; clang_getFileLocation(DefinitionLoc, &DefinitionFile, &DefinitionLine, &DefinitionColumn, 0); CXString DefinitionFileName = clang_getFileName(DefinitionFile); *Log << llvm::format(" -> %s(%s:%d:%d)", clang_getCString(DefinitionKindSpelling), clang_getCString(DefinitionFileName), DefinitionLine, DefinitionColumn); clang_disposeString(DefinitionFileName); clang_disposeString(DefinitionKindSpelling); } } return Result; } CXCursor clang_getNullCursor(void) { return MakeCXCursorInvalid(CXCursor_InvalidFile); } unsigned clang_equalCursors(CXCursor X, CXCursor Y) { // Clear out the "FirstInDeclGroup" part in a declaration cursor, since we // can't set consistently. For example, when visiting a DeclStmt we will set // it but we don't set it on the result of clang_getCursorDefinition for // a reference of the same declaration. // FIXME: Setting "FirstInDeclGroup" in CXCursors is a hack that only works // when visiting a DeclStmt currently, the AST should be enhanced to be able // to provide that kind of info. if (clang_isDeclaration(X.kind)) X.data[1] = 0; if (clang_isDeclaration(Y.kind)) Y.data[1] = 0; return X == Y; } unsigned clang_hashCursor(CXCursor C) { unsigned Index = 0; if (clang_isExpression(C.kind) || clang_isStatement(C.kind)) Index = 1; return llvm::DenseMapInfo
>::getHashValue( std::make_pair(C.kind, C.data[Index])); } unsigned clang_isInvalid(enum CXCursorKind K) { return K >= CXCursor_FirstInvalid && K <= CXCursor_LastInvalid; } unsigned clang_isDeclaration(enum CXCursorKind K) { return (K >= CXCursor_FirstDecl && K <= CXCursor_LastDecl) || (K >= CXCursor_FirstExtraDecl && K <= CXCursor_LastExtraDecl); } unsigned clang_isReference(enum CXCursorKind K) { return K >= CXCursor_FirstRef && K <= CXCursor_LastRef; } unsigned clang_isExpression(enum CXCursorKind K) { return K >= CXCursor_FirstExpr && K <= CXCursor_LastExpr; } unsigned clang_isStatement(enum CXCursorKind K) { return K >= CXCursor_FirstStmt && K <= CXCursor_LastStmt; } unsigned clang_isAttribute(enum CXCursorKind K) { return K >= CXCursor_FirstAttr && K <= CXCursor_LastAttr; } unsigned clang_isTranslationUnit(enum CXCursorKind K) { return K == CXCursor_TranslationUnit; } unsigned clang_isPreprocessing(enum CXCursorKind K) { return K >= CXCursor_FirstPreprocessing && K <= CXCursor_LastPreprocessing; } unsigned clang_isUnexposed(enum CXCursorKind K) { switch (K) { case CXCursor_UnexposedDecl: case CXCursor_UnexposedExpr: case CXCursor_UnexposedStmt: case CXCursor_UnexposedAttr: return true; default: return false; } } CXCursorKind clang_getCursorKind(CXCursor C) { return C.kind; } CXSourceLocation clang_getCursorLocation(CXCursor C) { if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { std::pair
P = getCursorObjCSuperClassRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_ObjCProtocolRef: { std::pair
P = getCursorObjCProtocolRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_ObjCClassRef: { std::pair
P = getCursorObjCClassRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_TypeRef: { std::pair
P = getCursorTypeRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_TemplateRef: { std::pair
P = getCursorTemplateRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_NamespaceRef: { std::pair
P = getCursorNamespaceRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_MemberRef: { std::pair
P = getCursorMemberRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_VariableRef: { std::pair
P = getCursorVariableRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_CXXBaseSpecifier: { const CXXBaseSpecifier *BaseSpec = getCursorCXXBaseSpecifier(C); if (!BaseSpec) return clang_getNullLocation(); if (TypeSourceInfo *TSInfo = BaseSpec->getTypeSourceInfo()) return cxloc::translateSourceLocation(getCursorContext(C), TSInfo->getTypeLoc().getBeginLoc()); return cxloc::translateSourceLocation(getCursorContext(C), BaseSpec->getLocStart()); } case CXCursor_LabelRef: { std::pair
P = getCursorLabelRef(C); return cxloc::translateSourceLocation(getCursorContext(C), P.second); } case CXCursor_OverloadedDeclRef: return cxloc::translateSourceLocation(getCursorContext(C), getCursorOverloadedDeclRef(C).second); default: // FIXME: Need a way to enumerate all non-reference cases. llvm_unreachable("Missed a reference kind"); } } if (clang_isExpression(C.kind)) return cxloc::translateSourceLocation(getCursorContext(C), getLocationFromExpr(getCursorExpr(C))); if (clang_isStatement(C.kind)) return cxloc::translateSourceLocation(getCursorContext(C), getCursorStmt(C)->getLocStart()); if (C.kind == CXCursor_PreprocessingDirective) { SourceLocation L = cxcursor::getCursorPreprocessingDirective(C).getBegin(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind == CXCursor_MacroExpansion) { SourceLocation L = cxcursor::getCursorMacroExpansion(C).getSourceRange().getBegin(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind == CXCursor_MacroDefinition) { SourceLocation L = cxcursor::getCursorMacroDefinition(C)->getLocation(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind == CXCursor_InclusionDirective) { SourceLocation L = cxcursor::getCursorInclusionDirective(C)->getSourceRange().getBegin(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (!clang_isDeclaration(C.kind)) return clang_getNullLocation(); const Decl *D = getCursorDecl(C); if (!D) return clang_getNullLocation(); SourceLocation Loc = D->getLocation(); // FIXME: Multiple variables declared in a single declaration // currently lack the information needed to correctly determine their // ranges when accounting for the type-specifier. We use context // stored in the CXCursor to determine if the VarDecl is in a DeclGroup, // and if so, whether it is the first decl. if (const VarDecl *VD = dyn_cast
(D)) { if (!cxcursor::isFirstInDeclGroup(C)) Loc = VD->getLocation(); } // For ObjC methods, give the start location of the method name. if (const ObjCMethodDecl *MD = dyn_cast
(D)) Loc = MD->getSelectorStartLoc(); return cxloc::translateSourceLocation(getCursorContext(C), Loc); } } // end extern "C" CXCursor cxcursor::getCursor(CXTranslationUnit TU, SourceLocation SLoc) { assert(TU); // Guard against an invalid SourceLocation, or we may assert in one // of the following calls. if (SLoc.isInvalid()) return clang_getNullCursor(); ASTUnit *CXXUnit = cxtu::getASTUnit(TU); // Translate the given source location to make it point at the beginning of // the token under the cursor. SLoc = Lexer::GetBeginningOfToken(SLoc, CXXUnit->getSourceManager(), CXXUnit->getASTContext().getLangOpts()); CXCursor Result = MakeCXCursorInvalid(CXCursor_NoDeclFound); if (SLoc.isValid()) { GetCursorData ResultData(CXXUnit->getSourceManager(), SLoc, Result); CursorVisitor CursorVis(TU, GetCursorVisitor, &ResultData, /*VisitPreprocessorLast=*/true, /*VisitIncludedEntities=*/false, SourceLocation(SLoc)); CursorVis.visitFileRegion(); } return Result; } static SourceRange getRawCursorExtent(CXCursor C) { if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: return getCursorObjCSuperClassRef(C).second; case CXCursor_ObjCProtocolRef: return getCursorObjCProtocolRef(C).second; case CXCursor_ObjCClassRef: return getCursorObjCClassRef(C).second; case CXCursor_TypeRef: return getCursorTypeRef(C).second; case CXCursor_TemplateRef: return getCursorTemplateRef(C).second; case CXCursor_NamespaceRef: return getCursorNamespaceRef(C).second; case CXCursor_MemberRef: return getCursorMemberRef(C).second; case CXCursor_CXXBaseSpecifier: return getCursorCXXBaseSpecifier(C)->getSourceRange(); case CXCursor_LabelRef: return getCursorLabelRef(C).second; case CXCursor_OverloadedDeclRef: return getCursorOverloadedDeclRef(C).second; case CXCursor_VariableRef: return getCursorVariableRef(C).second; default: // FIXME: Need a way to enumerate all non-reference cases. llvm_unreachable("Missed a reference kind"); } } if (clang_isExpression(C.kind)) return getCursorExpr(C)->getSourceRange(); if (clang_isStatement(C.kind)) return getCursorStmt(C)->getSourceRange(); if (clang_isAttribute(C.kind)) return getCursorAttr(C)->getRange(); if (C.kind == CXCursor_PreprocessingDirective) return cxcursor::getCursorPreprocessingDirective(C); if (C.kind == CXCursor_MacroExpansion) { ASTUnit *TU = getCursorASTUnit(C); SourceRange Range = cxcursor::getCursorMacroExpansion(C).getSourceRange(); return TU->mapRangeFromPreamble(Range); } if (C.kind == CXCursor_MacroDefinition) { ASTUnit *TU = getCursorASTUnit(C); SourceRange Range = cxcursor::getCursorMacroDefinition(C)->getSourceRange(); return TU->mapRangeFromPreamble(Range); } if (C.kind == CXCursor_InclusionDirective) { ASTUnit *TU = getCursorASTUnit(C); SourceRange Range = cxcursor::getCursorInclusionDirective(C)->getSourceRange(); return TU->mapRangeFromPreamble(Range); } if (C.kind == CXCursor_TranslationUnit) { ASTUnit *TU = getCursorASTUnit(C); FileID MainID = TU->getSourceManager().getMainFileID(); SourceLocation Start = TU->getSourceManager().getLocForStartOfFile(MainID); SourceLocation End = TU->getSourceManager().getLocForEndOfFile(MainID); return SourceRange(Start, End); } if (clang_isDeclaration(C.kind)) { const Decl *D = cxcursor::getCursorDecl(C); if (!D) return SourceRange(); SourceRange R = D->getSourceRange(); // FIXME: Multiple variables declared in a single declaration // currently lack the information needed to correctly determine their // ranges when accounting for the type-specifier. We use context // stored in the CXCursor to determine if the VarDecl is in a DeclGroup, // and if so, whether it is the first decl. if (const VarDecl *VD = dyn_cast
(D)) { if (!cxcursor::isFirstInDeclGroup(C)) R.setBegin(VD->getLocation()); } return R; } return SourceRange(); } /// \brief Retrieves the "raw" cursor extent, which is then extended to include /// the decl-specifier-seq for declarations. static SourceRange getFullCursorExtent(CXCursor C, SourceManager &SrcMgr) { if (clang_isDeclaration(C.kind)) { const Decl *D = cxcursor::getCursorDecl(C); if (!D) return SourceRange(); SourceRange R = D->getSourceRange(); // Adjust the start of the location for declarations preceded by // declaration specifiers. SourceLocation StartLoc; if (const DeclaratorDecl *DD = dyn_cast
(D)) { if (TypeSourceInfo *TI = DD->getTypeSourceInfo()) StartLoc = TI->getTypeLoc().getLocStart(); } else if (const TypedefDecl *Typedef = dyn_cast
(D)) { if (TypeSourceInfo *TI = Typedef->getTypeSourceInfo()) StartLoc = TI->getTypeLoc().getLocStart(); } if (StartLoc.isValid() && R.getBegin().isValid() && SrcMgr.isBeforeInTranslationUnit(StartLoc, R.getBegin())) R.setBegin(StartLoc); // FIXME: Multiple variables declared in a single declaration // currently lack the information needed to correctly determine their // ranges when accounting for the type-specifier. We use context // stored in the CXCursor to determine if the VarDecl is in a DeclGroup, // and if so, whether it is the first decl. if (const VarDecl *VD = dyn_cast
(D)) { if (!cxcursor::isFirstInDeclGroup(C)) R.setBegin(VD->getLocation()); } return R; } return getRawCursorExtent(C); } extern "C" { CXSourceRange clang_getCursorExtent(CXCursor C) { SourceRange R = getRawCursorExtent(C); if (R.isInvalid()) return clang_getNullRange(); return cxloc::translateSourceRange(getCursorContext(C), R); } CXCursor clang_getCursorReferenced(CXCursor C) { if (clang_isInvalid(C.kind)) return clang_getNullCursor(); CXTranslationUnit tu = getCursorTU(C); if (clang_isDeclaration(C.kind)) { const Decl *D = getCursorDecl(C); if (!D) return clang_getNullCursor(); if (const UsingDecl *Using = dyn_cast
(D)) return MakeCursorOverloadedDeclRef(Using, D->getLocation(), tu); if (const ObjCPropertyImplDecl *PropImpl = dyn_cast
(D)) if (ObjCPropertyDecl *Property = PropImpl->getPropertyDecl()) return MakeCXCursor(Property, tu); return C; } if (clang_isExpression(C.kind)) { const Expr *E = getCursorExpr(C); const Decl *D = getDeclFromExpr(E); if (D) { CXCursor declCursor = MakeCXCursor(D, tu); declCursor = getSelectorIdentifierCursor(getSelectorIdentifierIndex(C), declCursor); return declCursor; } if (const OverloadExpr *Ovl = dyn_cast_or_null
(E)) return MakeCursorOverloadedDeclRef(Ovl, tu); return clang_getNullCursor(); } if (clang_isStatement(C.kind)) { const Stmt *S = getCursorStmt(C); if (const GotoStmt *Goto = dyn_cast_or_null
(S)) if (LabelDecl *label = Goto->getLabel()) if (LabelStmt *labelS = label->getStmt()) return MakeCXCursor(labelS, getCursorDecl(C), tu); return clang_getNullCursor(); } if (C.kind == CXCursor_MacroExpansion) { if (const MacroDefinition *Def = getCursorMacroExpansion(C).getDefinition()) return MakeMacroDefinitionCursor(Def, tu); } if (!clang_isReference(C.kind)) return clang_getNullCursor(); switch (C.kind) { case CXCursor_ObjCSuperClassRef: return MakeCXCursor(getCursorObjCSuperClassRef(C).first, tu); case CXCursor_ObjCProtocolRef: { const ObjCProtocolDecl *Prot = getCursorObjCProtocolRef(C).first; if (const ObjCProtocolDecl *Def = Prot->getDefinition()) return MakeCXCursor(Def, tu); return MakeCXCursor(Prot, tu); } case CXCursor_ObjCClassRef: { const ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first; if (const ObjCInterfaceDecl *Def = Class->getDefinition()) return MakeCXCursor(Def, tu); return MakeCXCursor(Class, tu); } case CXCursor_TypeRef: return MakeCXCursor(getCursorTypeRef(C).first, tu ); case CXCursor_TemplateRef: return MakeCXCursor(getCursorTemplateRef(C).first, tu ); case CXCursor_NamespaceRef: return MakeCXCursor(getCursorNamespaceRef(C).first, tu ); case CXCursor_MemberRef: return MakeCXCursor(getCursorMemberRef(C).first, tu ); case CXCursor_CXXBaseSpecifier: { const CXXBaseSpecifier *B = cxcursor::getCursorCXXBaseSpecifier(C); return clang_getTypeDeclaration(cxtype::MakeCXType(B->getType(), tu )); } case CXCursor_LabelRef: // FIXME: We end up faking the "parent" declaration here because we // don't want to make CXCursor larger. return MakeCXCursor(getCursorLabelRef(C).first, cxtu::getASTUnit(tu)->getASTContext() .getTranslationUnitDecl(), tu); case CXCursor_OverloadedDeclRef: return C; case CXCursor_VariableRef: return MakeCXCursor(getCursorVariableRef(C).first, tu); default: // We would prefer to enumerate all non-reference cursor kinds here. llvm_unreachable("Unhandled reference cursor kind"); } } CXCursor clang_getCursorDefinition(CXCursor C) { if (clang_isInvalid(C.kind)) return clang_getNullCursor(); CXTranslationUnit TU = getCursorTU(C); bool WasReference = false; if (clang_isReference(C.kind) || clang_isExpression(C.kind)) { C = clang_getCursorReferenced(C); WasReference = true; } if (C.kind == CXCursor_MacroExpansion) return clang_getCursorReferenced(C); if (!clang_isDeclaration(C.kind)) return clang_getNullCursor(); const Decl *D = getCursorDecl(C); if (!D) return clang_getNullCursor(); switch (D->getKind()) { // Declaration kinds that don't really separate the notions of // declaration and definition. case Decl::Namespace: case Decl::Typedef: case Decl::TypeAlias: case Decl::TypeAliasTemplate: case Decl::TemplateTypeParm: case Decl::EnumConstant: case Decl::Field: case Decl::IndirectField: case Decl::ObjCIvar: case Decl::ObjCAtDefsField: case Decl::ImplicitParam: case Decl::ParmVar: case Decl::NonTypeTemplateParm: case Decl::TemplateTemplateParm: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: case Decl::AccessSpec: case Decl::LinkageSpec: case Decl::ObjCPropertyImpl: case Decl::FileScopeAsm: case Decl::StaticAssert: case Decl::Block: case Decl::Label: // FIXME: Is this right?? case Decl::ClassScopeFunctionSpecialization: case Decl::Import: return C; // Declaration kinds that don't make any sense here, but are // nonetheless harmless. case Decl::Empty: case Decl::TranslationUnit: break; // Declaration kinds for which the definition is not resolvable. case Decl::UnresolvedUsingTypename: case Decl::UnresolvedUsingValue: break; case Decl::UsingDirective: return MakeCXCursor(cast
(D)->getNominatedNamespace(), TU); case Decl::NamespaceAlias: return MakeCXCursor(cast
(D)->getNamespace(), TU); case Decl::Enum: case Decl::Record: case Decl::CXXRecord: case Decl::ClassTemplateSpecialization: case Decl::ClassTemplatePartialSpecialization: if (TagDecl *Def = cast
(D)->getDefinition()) return MakeCXCursor(Def, TU); return clang_getNullCursor(); case Decl::Function: case Decl::CXXMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: case Decl::CXXConversion: { const FunctionDecl *Def = 0; if (cast
(D)->getBody(Def)) return MakeCXCursor(Def, TU); return clang_getNullCursor(); } case Decl::Var: { // Ask the variable if it has a definition. if (const VarDecl *Def = cast
(D)->getDefinition()) return MakeCXCursor(Def, TU); return clang_getNullCursor(); } case Decl::FunctionTemplate: { const FunctionDecl *Def = 0; if (cast
(D)->getTemplatedDecl()->getBody(Def)) return MakeCXCursor(Def->getDescribedFunctionTemplate(), TU); return clang_getNullCursor(); } case Decl::ClassTemplate: { if (RecordDecl *Def = cast
(D)->getTemplatedDecl() ->getDefinition()) return MakeCXCursor(cast
(Def)->getDescribedClassTemplate(), TU); return clang_getNullCursor(); } case Decl::Using: return MakeCursorOverloadedDeclRef(cast
(D), D->getLocation(), TU); case Decl::UsingShadow: return clang_getCursorDefinition( MakeCXCursor(cast
(D)->getTargetDecl(), TU)); case Decl::ObjCMethod: { const ObjCMethodDecl *Method = cast
(D); if (Method->isThisDeclarationADefinition()) return C; // Dig out the method definition in the associated // @implementation, if we have it. // FIXME: The ASTs should make finding the definition easier. if (const ObjCInterfaceDecl *Class = dyn_cast
(Method->getDeclContext())) if (ObjCImplementationDecl *ClassImpl = Class->getImplementation()) if (ObjCMethodDecl *Def = ClassImpl->getMethod(Method->getSelector(), Method->isInstanceMethod())) if (Def->isThisDeclarationADefinition()) return MakeCXCursor(Def, TU); return clang_getNullCursor(); } case Decl::ObjCCategory: if (ObjCCategoryImplDecl *Impl = cast
(D)->getImplementation()) return MakeCXCursor(Impl, TU); return clang_getNullCursor(); case Decl::ObjCProtocol: if (const ObjCProtocolDecl *Def = cast
(D)->getDefinition()) return MakeCXCursor(Def, TU); return clang_getNullCursor(); case Decl::ObjCInterface: { // There are two notions of a "definition" for an Objective-C // class: the interface and its implementation. When we resolved a // reference to an Objective-C class, produce the @interface as // the definition; when we were provided with the interface, // produce the @implementation as the definition. const ObjCInterfaceDecl *IFace = cast
(D); if (WasReference) { if (const ObjCInterfaceDecl *Def = IFace->getDefinition()) return MakeCXCursor(Def, TU); } else if (ObjCImplementationDecl *Impl = IFace->getImplementation()) return MakeCXCursor(Impl, TU); return clang_getNullCursor(); } case Decl::ObjCProperty: // FIXME: We don't really know where to find the // ObjCPropertyImplDecls that implement this property. return clang_getNullCursor(); case Decl::ObjCCompatibleAlias: if (const ObjCInterfaceDecl *Class = cast
(D)->getClassInterface()) if (const ObjCInterfaceDecl *Def = Class->getDefinition()) return MakeCXCursor(Def, TU); return clang_getNullCursor(); case Decl::Friend: if (NamedDecl *Friend = cast
(D)->getFriendDecl()) return clang_getCursorDefinition(MakeCXCursor(Friend, TU)); return clang_getNullCursor(); case Decl::FriendTemplate: if (NamedDecl *Friend = cast
(D)->getFriendDecl()) return clang_getCursorDefinition(MakeCXCursor(Friend, TU)); return clang_getNullCursor(); } return clang_getNullCursor(); } unsigned clang_isCursorDefinition(CXCursor C) { if (!clang_isDeclaration(C.kind)) return 0; return clang_getCursorDefinition(C) == C; } CXCursor clang_getCanonicalCursor(CXCursor C) { if (!clang_isDeclaration(C.kind)) return C; if (const Decl *D = getCursorDecl(C)) { if (const ObjCCategoryImplDecl *CatImplD = dyn_cast
(D)) if (ObjCCategoryDecl *CatD = CatImplD->getCategoryDecl()) return MakeCXCursor(CatD, getCursorTU(C)); if (const ObjCImplDecl *ImplD = dyn_cast
(D)) if (const ObjCInterfaceDecl *IFD = ImplD->getClassInterface()) return MakeCXCursor(IFD, getCursorTU(C)); return MakeCXCursor(D->getCanonicalDecl(), getCursorTU(C)); } return C; } int clang_Cursor_getObjCSelectorIndex(CXCursor cursor) { return cxcursor::getSelectorIdentifierIndexAndLoc(cursor).first; } unsigned clang_getNumOverloadedDecls(CXCursor C) { if (C.kind != CXCursor_OverloadedDeclRef) return 0; OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(C).first; if (const OverloadExpr *E = Storage.dyn_cast
()) return E->getNumDecls(); if (OverloadedTemplateStorage *S = Storage.dyn_cast
()) return S->size(); const Decl *D = Storage.get
(); if (const UsingDecl *Using = dyn_cast
(D)) return Using->shadow_size(); return 0; } CXCursor clang_getOverloadedDecl(CXCursor cursor, unsigned index) { if (cursor.kind != CXCursor_OverloadedDeclRef) return clang_getNullCursor(); if (index >= clang_getNumOverloadedDecls(cursor)) return clang_getNullCursor(); CXTranslationUnit TU = getCursorTU(cursor); OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(cursor).first; if (const OverloadExpr *E = Storage.dyn_cast
()) return MakeCXCursor(E->decls_begin()[index], TU); if (OverloadedTemplateStorage *S = Storage.dyn_cast
()) return MakeCXCursor(S->begin()[index], TU); const Decl *D = Storage.get
(); if (const UsingDecl *Using = dyn_cast
(D)) { // FIXME: This is, unfortunately, linear time. UsingDecl::shadow_iterator Pos = Using->shadow_begin(); std::advance(Pos, index); return MakeCXCursor(cast
(*Pos)->getTargetDecl(), TU); } return clang_getNullCursor(); } void clang_getDefinitionSpellingAndExtent(CXCursor C, const char **startBuf, const char **endBuf, unsigned *startLine, unsigned *startColumn, unsigned *endLine, unsigned *endColumn) { assert(getCursorDecl(C) && "CXCursor has null decl"); const FunctionDecl *FD = dyn_cast
(getCursorDecl(C)); CompoundStmt *Body = dyn_cast
(FD->getBody()); SourceManager &SM = FD->getASTContext().getSourceManager(); *startBuf = SM.getCharacterData(Body->getLBracLoc()); *endBuf = SM.getCharacterData(Body->getRBracLoc()); *startLine = SM.getSpellingLineNumber(Body->getLBracLoc()); *startColumn = SM.getSpellingColumnNumber(Body->getLBracLoc()); *endLine = SM.getSpellingLineNumber(Body->getRBracLoc()); *endColumn = SM.getSpellingColumnNumber(Body->getRBracLoc()); } CXSourceRange clang_getCursorReferenceNameRange(CXCursor C, unsigned NameFlags, unsigned PieceIndex) { RefNamePieces Pieces; switch (C.kind) { case CXCursor_MemberRefExpr: if (const MemberExpr *E = dyn_cast
(getCursorExpr(C))) Pieces = buildPieces(NameFlags, true, E->getMemberNameInfo(), E->getQualifierLoc().getSourceRange()); break; case CXCursor_DeclRefExpr: if (const DeclRefExpr *E = dyn_cast
(getCursorExpr(C))) Pieces = buildPieces(NameFlags, false, E->getNameInfo(), E->getQualifierLoc().getSourceRange(), E->getOptionalExplicitTemplateArgs()); break; case CXCursor_CallExpr: if (const CXXOperatorCallExpr *OCE = dyn_cast
(getCursorExpr(C))) { const Expr *Callee = OCE->getCallee(); if (const ImplicitCastExpr *ICE = dyn_cast
(Callee)) Callee = ICE->getSubExpr(); if (const DeclRefExpr *DRE = dyn_cast
(Callee)) Pieces = buildPieces(NameFlags, false, DRE->getNameInfo(), DRE->getQualifierLoc().getSourceRange()); } break; default: break; } if (Pieces.empty()) { if (PieceIndex == 0) return clang_getCursorExtent(C); } else if (PieceIndex < Pieces.size()) { SourceRange R = Pieces[PieceIndex]; if (R.isValid()) return cxloc::translateSourceRange(getCursorContext(C), R); } return clang_getNullRange(); } void clang_enableStackTraces(void) { llvm::sys::PrintStackTraceOnErrorSignal(); } void clang_executeOnThread(void (*fn)(void*), void *user_data, unsigned stack_size) { llvm::llvm_execute_on_thread(fn, user_data, stack_size); } } // end: extern "C" //===----------------------------------------------------------------------===// // Token-based Operations. //===----------------------------------------------------------------------===// /* CXToken layout: * int_data[0]: a CXTokenKind * int_data[1]: starting token location * int_data[2]: token length * int_data[3]: reserved * ptr_data: for identifiers and keywords, an IdentifierInfo*. * otherwise unused. */ extern "C" { CXTokenKind clang_getTokenKind(CXToken CXTok) { return static_cast
(CXTok.int_data[0]); } CXString clang_getTokenSpelling(CXTranslationUnit TU, CXToken CXTok) { switch (clang_getTokenKind(CXTok)) { case CXToken_Identifier: case CXToken_Keyword: // We know we have an IdentifierInfo*, so use that. return cxstring::createRef(static_cast
(CXTok.ptr_data) ->getNameStart()); case CXToken_Literal: { // We have stashed the starting pointer in the ptr_data field. Use it. const char *Text = static_cast
(CXTok.ptr_data); return cxstring::createDup(StringRef(Text, CXTok.int_data[2])); } case CXToken_Punctuation: case CXToken_Comment: break; } // We have to find the starting buffer pointer the hard way, by // deconstructing the source location. ASTUnit *CXXUnit = cxtu::getASTUnit(TU); if (!CXXUnit) return cxstring::createEmpty(); SourceLocation Loc = SourceLocation::getFromRawEncoding(CXTok.int_data[1]); std::pair
LocInfo = CXXUnit->getSourceManager().getDecomposedSpellingLoc(Loc); bool Invalid = false; StringRef Buffer = CXXUnit->getSourceManager().getBufferData(LocInfo.first, &Invalid); if (Invalid) return cxstring::createEmpty(); return cxstring::createDup(Buffer.substr(LocInfo.second, CXTok.int_data[2])); } CXSourceLocation clang_getTokenLocation(CXTranslationUnit TU, CXToken CXTok) { ASTUnit *CXXUnit = cxtu::getASTUnit(TU); if (!CXXUnit) return clang_getNullLocation(); return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SourceLocation::getFromRawEncoding(CXTok.int_data[1])); } CXSourceRange clang_getTokenExtent(CXTranslationUnit TU, CXToken CXTok) { ASTUnit *CXXUnit = cxtu::getASTUnit(TU); if (!CXXUnit) return clang_getNullRange(); return cxloc::translateSourceRange(CXXUnit->getASTContext(), SourceLocation::getFromRawEncoding(CXTok.int_data[1])); } static void getTokens(ASTUnit *CXXUnit, SourceRange Range, SmallVectorImpl
&CXTokens) { SourceManager &SourceMgr = CXXUnit->getSourceManager(); std::pair
BeginLocInfo = SourceMgr.getDecomposedSpellingLoc(Range.getBegin()); std::pair
EndLocInfo = SourceMgr.getDecomposedSpellingLoc(Range.getEnd()); // Cannot tokenize across files. if (BeginLocInfo.first != EndLocInfo.first) return; // Create a lexer bool Invalid = false; StringRef Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid); if (Invalid) return; Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first), CXXUnit->getASTContext().getLangOpts(), Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end()); Lex.SetCommentRetentionState(true); // Lex tokens until we hit the end of the range. const char *EffectiveBufferEnd = Buffer.data() + EndLocInfo.second; Token Tok; bool previousWasAt = false; do { // Lex the next token Lex.LexFromRawLexer(Tok); if (Tok.is(tok::eof)) break; // Initialize the CXToken. CXToken CXTok; // - Common fields CXTok.int_data[1] = Tok.getLocation().getRawEncoding(); CXTok.int_data[2] = Tok.getLength(); CXTok.int_data[3] = 0; // - Kind-specific fields if (Tok.isLiteral()) { CXTok.int_data[0] = CXToken_Literal; CXTok.ptr_data = const_cast
(Tok.getLiteralData()); } else if (Tok.is(tok::raw_identifier)) { // Lookup the identifier to determine whether we have a keyword. IdentifierInfo *II = CXXUnit->getPreprocessor().LookUpIdentifierInfo(Tok); if ((II->getObjCKeywordID() != tok::objc_not_keyword) && previousWasAt) { CXTok.int_data[0] = CXToken_Keyword; } else { CXTok.int_data[0] = Tok.is(tok::identifier) ? CXToken_Identifier : CXToken_Keyword; } CXTok.ptr_data = II; } else if (Tok.is(tok::comment)) { CXTok.int_data[0] = CXToken_Comment; CXTok.ptr_data = 0; } else { CXTok.int_data[0] = CXToken_Punctuation; CXTok.ptr_data = 0; } CXTokens.push_back(CXTok); previousWasAt = Tok.is(tok::at); } while (Lex.getBufferLocation() <= EffectiveBufferEnd); } void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range, CXToken **Tokens, unsigned *NumTokens) { LOG_FUNC_SECTION { *Log << TU << ' ' << Range; } if (Tokens) *Tokens = 0; if (NumTokens) *NumTokens = 0; ASTUnit *CXXUnit = cxtu::getASTUnit(TU); if (!CXXUnit || !Tokens || !NumTokens) return; ASTUnit::ConcurrencyCheck Check(*CXXUnit); SourceRange R = cxloc::translateCXSourceRange(Range); if (R.isInvalid()) return; SmallVector
CXTokens; getTokens(CXXUnit, R, CXTokens); if (CXTokens.empty()) return; *Tokens = (CXToken *)malloc(sizeof(CXToken) * CXTokens.size()); memmove(*Tokens, CXTokens.data(), sizeof(CXToken) * CXTokens.size()); *NumTokens = CXTokens.size(); } void clang_disposeTokens(CXTranslationUnit TU, CXToken *Tokens, unsigned NumTokens) { free(Tokens); } } // end: extern "C" //===----------------------------------------------------------------------===// // Token annotation APIs. //===----------------------------------------------------------------------===// static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data); static bool AnnotateTokensPostChildrenVisitor(CXCursor cursor, CXClientData client_data); namespace { class AnnotateTokensWorker { CXToken *Tokens; CXCursor *Cursors; unsigned NumTokens; unsigned TokIdx; unsigned PreprocessingTokIdx; CursorVisitor AnnotateVis; SourceManager &SrcMgr; bool HasContextSensitiveKeywords; struct PostChildrenInfo { CXCursor Cursor; SourceRange CursorRange; unsigned BeforeReachingCursorIdx; unsigned BeforeChildrenTokenIdx; }; SmallVector
PostChildrenInfos; bool MoreTokens() const { return TokIdx < NumTokens; } unsigned NextToken() const { return TokIdx; } void AdvanceToken() { ++TokIdx; } SourceLocation GetTokenLoc(unsigned tokI) { return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[1]); } bool isFunctionMacroToken(unsigned tokI) const { return Tokens[tokI].int_data[3] != 0; } SourceLocation getFunctionMacroTokenLoc(unsigned tokI) const { return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[3]); } void annotateAndAdvanceTokens(CXCursor, RangeComparisonResult, SourceRange); bool annotateAndAdvanceFunctionMacroTokens(CXCursor, RangeComparisonResult, SourceRange); public: AnnotateTokensWorker(CXToken *tokens, CXCursor *cursors, unsigned numTokens, CXTranslationUnit TU, SourceRange RegionOfInterest) : Tokens(tokens), Cursors(cursors), NumTokens(numTokens), TokIdx(0), PreprocessingTokIdx(0), AnnotateVis(TU, AnnotateTokensVisitor, this, /*VisitPreprocessorLast=*/true, /*VisitIncludedEntities=*/false, RegionOfInterest, /*VisitDeclsOnly=*/false, AnnotateTokensPostChildrenVisitor), SrcMgr(cxtu::getASTUnit(TU)->getSourceManager()), HasContextSensitiveKeywords(false) { } void VisitChildren(CXCursor C) { AnnotateVis.VisitChildren(C); } enum CXChildVisitResult Visit(CXCursor cursor, CXCursor parent); bool postVisitChildren(CXCursor cursor); void AnnotateTokens(); /// \brief Determine whether the annotator saw any cursors that have /// context-sensitive keywords. bool hasContextSensitiveKeywords() const { return HasContextSensitiveKeywords; } ~AnnotateTokensWorker() { assert(PostChildrenInfos.empty()); } }; } void AnnotateTokensWorker::AnnotateTokens() { // Walk the AST within the region of interest, annotating tokens // along the way. AnnotateVis.visitFileRegion(); } static inline void updateCursorAnnotation(CXCursor &Cursor, const CXCursor &updateC) { if (clang_isInvalid(updateC.kind) || !clang_isInvalid(Cursor.kind)) return; Cursor = updateC; } /// \brief It annotates and advances tokens with a cursor until the comparison //// between the cursor location and the source range is the same as /// \arg compResult. /// /// Pass RangeBefore to annotate tokens with a cursor until a range is reached. /// Pass RangeOverlap to annotate tokens inside a range. void AnnotateTokensWorker::annotateAndAdvanceTokens(CXCursor updateC, RangeComparisonResult compResult, SourceRange range) { while (MoreTokens()) { const unsigned I = NextToken(); if (isFunctionMacroToken(I)) if (!annotateAndAdvanceFunctionMacroTokens(updateC, compResult, range)) return; SourceLocation TokLoc = GetTokenLoc(I); if (LocationCompare(SrcMgr, TokLoc, range) == compResult) { updateCursorAnnotation(Cursors[I], updateC); AdvanceToken(); continue; } break; } } /// \brief Special annotation handling for macro argument tokens. /// \returns true if it advanced beyond all macro tokens, false otherwise. bool AnnotateTokensWorker::annotateAndAdvanceFunctionMacroTokens( CXCursor updateC, RangeComparisonResult compResult, SourceRange range) { assert(MoreTokens()); assert(isFunctionMacroToken(NextToken()) && "Should be called only for macro arg tokens"); // This works differently than annotateAndAdvanceTokens; because expanded // macro arguments can have arbitrary translation-unit source order, we do not // advance the token index one by one until a token fails the range test. // We only advance once past all of the macro arg tokens if all of them // pass the range test. If one of them fails we keep the token index pointing // at the start of the macro arg tokens so that the failing token will be // annotated by a subsequent annotation try. bool atLeastOneCompFail = false; unsigned I = NextToken(); for (; I < NumTokens && isFunctionMacroToken(I); ++I) { SourceLocation TokLoc = getFunctionMacroTokenLoc(I); if (TokLoc.isFileID()) continue; // not macro arg token, it's parens or comma. if (LocationCompare(SrcMgr, TokLoc, range) == compResult) { if (clang_isInvalid(clang_getCursorKind(Cursors[I]))) Cursors[I] = updateC; } else atLeastOneCompFail = true; } if (atLeastOneCompFail) return false; TokIdx = I; // All of the tokens were handled, advance beyond all of them. return true; } enum CXChildVisitResult AnnotateTokensWorker::Visit(CXCursor cursor, CXCursor parent) { SourceRange cursorRange = getRawCursorExtent(cursor); if (cursorRange.isInvalid()) return CXChildVisit_Recurse; if (!HasContextSensitiveKeywords) { // Objective-C properties can have context-sensitive keywords. if (cursor.kind == CXCursor_ObjCPropertyDecl) { if (const ObjCPropertyDecl *Property = dyn_cast_or_null
(getCursorDecl(cursor))) HasContextSensitiveKeywords = Property->getPropertyAttributesAsWritten() != 0; } // Objective-C methods can have context-sensitive keywords. else if (cursor.kind == CXCursor_ObjCInstanceMethodDecl || cursor.kind == CXCursor_ObjCClassMethodDecl) { if (const ObjCMethodDecl *Method = dyn_cast_or_null
(getCursorDecl(cursor))) { if (Method->getObjCDeclQualifier()) HasContextSensitiveKeywords = true; else { for (ObjCMethodDecl::param_const_iterator P = Method->param_begin(), PEnd = Method->param_end(); P != PEnd; ++P) { if ((*P)->getObjCDeclQualifier()) { HasContextSensitiveKeywords = true; break; } } } } } // C++ methods can have context-sensitive keywords. else if (cursor.kind == CXCursor_CXXMethod) { if (const CXXMethodDecl *Method = dyn_cast_or_null
(getCursorDecl(cursor))) { if (Method->hasAttr
() || Method->hasAttr
()) HasContextSensitiveKeywords = true; } } // C++ classes can have context-sensitive keywords. else if (cursor.kind == CXCursor_StructDecl || cursor.kind == CXCursor_ClassDecl || cursor.kind == CXCursor_ClassTemplate || cursor.kind == CXCursor_ClassTemplatePartialSpecialization) { if (const Decl *D = getCursorDecl(cursor)) if (D->hasAttr
()) HasContextSensitiveKeywords = true; } } if (clang_isPreprocessing(cursor.kind)) { // Items in the preprocessing record are kept separate from items in // declarations, so we keep a separate token index. unsigned SavedTokIdx = TokIdx; TokIdx = PreprocessingTokIdx; // Skip tokens up until we catch up to the beginning of the preprocessing // entry. while (MoreTokens()) { const unsigned I = NextToken(); SourceLocation TokLoc = GetTokenLoc(I); switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) { case RangeBefore: AdvanceToken(); continue; case RangeAfter: case RangeOverlap: break; } break; } // Look at all of the tokens within this range. while (MoreTokens()) { const unsigned I = NextToken(); SourceLocation TokLoc = GetTokenLoc(I); switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) { case RangeBefore: llvm_unreachable("Infeasible"); case RangeAfter: break; case RangeOverlap: // For macro expansions, just note where the beginning of the macro // expansion occurs. if (cursor.kind == CXCursor_MacroExpansion) { if (TokLoc == cursorRange.getBegin()) Cursors[I] = cursor; AdvanceToken(); break; } // We may have already annotated macro names inside macro definitions. if (Cursors[I].kind != CXCursor_MacroExpansion) Cursors[I] = cursor; AdvanceToken(); continue; } break; } // Save the preprocessing token index; restore the non-preprocessing // token index. PreprocessingTokIdx = TokIdx; TokIdx = SavedTokIdx; return CXChildVisit_Recurse; } if (cursorRange.isInvalid()) return CXChildVisit_Continue; unsigned BeforeReachingCursorIdx = NextToken(); const enum CXCursorKind cursorK = clang_getCursorKind(cursor); const enum CXCursorKind K = clang_getCursorKind(parent); const CXCursor updateC = (clang_isInvalid(K) || K == CXCursor_TranslationUnit || // Attributes are annotated out-of-order, skip tokens until we reach it. clang_isAttribute(cursor.kind)) ? clang_getNullCursor() : parent; annotateAndAdvanceTokens(updateC, RangeBefore, cursorRange); // Avoid having the cursor of an expression "overwrite" the annotation of the // variable declaration that it belongs to. // This can happen for C++ constructor expressions whose range generally // include the variable declaration, e.g.: // MyCXXClass foo; // Make sure we don't annotate 'foo' as a CallExpr cursor. if (clang_isExpression(cursorK)) { const Expr *E = getCursorExpr(cursor); if (const Decl *D = getCursorParentDecl(cursor)) { const unsigned I = NextToken(); if (E->getLocStart().isValid() && D->getLocation().isValid() && E->getLocStart() == D->getLocation() && E->getLocStart() == GetTokenLoc(I)) { updateCursorAnnotation(Cursors[I], updateC); AdvanceToken(); } } } // Before recursing into the children keep some state that we are going // to use in the AnnotateTokensWorker::postVisitChildren callback to do some // extra work after the child nodes are visited. // Note that we don't call VisitChildren here to avoid traversing statements // code-recursively which can blow the stack. PostChildrenInfo Info; Info.Cursor = cursor; Info.CursorRange = cursorRange; Info.BeforeReachingCursorIdx = BeforeReachingCursorIdx; Info.BeforeChildrenTokenIdx = NextToken(); PostChildrenInfos.push_back(Info); return CXChildVisit_Recurse; } bool AnnotateTokensWorker::postVisitChildren(CXCursor cursor) { if (PostChildrenInfos.empty()) return false; const PostChildrenInfo &Info = PostChildrenInfos.back(); if (!clang_equalCursors(Info.Cursor, cursor)) return false; const unsigned BeforeChildren = Info.BeforeChildrenTokenIdx; const unsigned AfterChildren = NextToken(); SourceRange cursorRange = Info.CursorRange; // Scan the tokens that are at the end of the cursor, but are not captured // but the child cursors. annotateAndAdvanceTokens(cursor, RangeOverlap, cursorRange); // Scan the tokens that are at the beginning of the cursor, but are not // capture by the child cursors. for (unsigned I = BeforeChildren; I != AfterChildren; ++I) { if (!clang_isInvalid(clang_getCursorKind(Cursors[I]))) break; Cursors[I] = cursor; } // Attributes are annotated out-of-order, rewind TokIdx to when we first // encountered the attribute cursor. if (clang_isAttribute(cursor.kind)) TokIdx = Info.BeforeReachingCursorIdx; PostChildrenInfos.pop_back(); return false; } static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data) { return static_cast
(client_data)->Visit(cursor, parent); } static bool AnnotateTokensPostChildrenVisitor(CXCursor cursor, CXClientData client_data) { return static_cast
(client_data)-> postVisitChildren(cursor); } namespace { /// \brief Uses the macro expansions in the preprocessing record to find /// and mark tokens that are macro arguments. This info is used by the /// AnnotateTokensWorker. class MarkMacroArgTokensVisitor { SourceManager &SM; CXToken *Tokens; unsigned NumTokens; unsigned CurIdx; public: MarkMacroArgTokensVisitor(SourceManager &SM, CXToken *tokens, unsigned numTokens) : SM(SM), Tokens(tokens), NumTokens(numTokens), CurIdx(0) { } CXChildVisitResult visit(CXCursor cursor, CXCursor parent) { if (cursor.kind != CXCursor_MacroExpansion) return CXChildVisit_Continue; SourceRange macroRange = getCursorMacroExpansion(cursor).getSourceRange(); if (macroRange.getBegin() == macroRange.getEnd()) return CXChildVisit_Continue; // it's not a function macro. for (; CurIdx < NumTokens; ++CurIdx) { if (!SM.isBeforeInTranslationUnit(getTokenLoc(CurIdx), macroRange.getBegin())) break; } if (CurIdx == NumTokens) return CXChildVisit_Break; for (; CurIdx < NumTokens; ++CurIdx) { SourceLocation tokLoc = getTokenLoc(CurIdx); if (!SM.isBeforeInTranslationUnit(tokLoc, macroRange.getEnd())) break; setFunctionMacroTokenLoc(CurIdx, SM.getMacroArgExpandedLocation(tokLoc)); } if (CurIdx == NumTokens) return CXChildVisit_Break; return CXChildVisit_Continue; } private: SourceLocation getTokenLoc(unsigned tokI) { return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[1]); } void setFunctionMacroTokenLoc(unsigned tokI, SourceLocation loc) { // The third field is reserved and currently not used. Use it here // to mark macro arg expanded tokens with their expanded locations. Tokens[tokI].int_data[3] = loc.getRawEncoding(); } }; } // end anonymous namespace static CXChildVisitResult MarkMacroArgTokensVisitorDelegate(CXCursor cursor, CXCursor parent, CXClientData client_data) { return static_cast
(client_data)->visit(cursor, parent); } namespace { struct clang_annotateTokens_Data { CXTranslationUnit TU; ASTUnit *CXXUnit; CXToken *Tokens; unsigned NumTokens; CXCursor *Cursors; }; } /// \brief Used by \c annotatePreprocessorTokens. /// \returns true if lexing was finished, false otherwise. static bool lexNext(Lexer &Lex, Token &Tok, unsigned &NextIdx, unsigned NumTokens) { if (NextIdx >= NumTokens) return true; ++NextIdx; Lex.LexFromRawLexer(Tok); if (Tok.is(tok::eof)) return true; return false; } static void annotatePreprocessorTokens(CXTranslationUnit TU, SourceRange RegionOfInterest, CXCursor *Cursors, CXToken *Tokens, unsigned NumTokens) { ASTUnit *CXXUnit = cxtu::getASTUnit(TU); Preprocessor &PP = CXXUnit->getPreprocessor(); SourceManager &SourceMgr = CXXUnit->getSourceManager(); std::pair
BeginLocInfo = SourceMgr.getDecomposedSpellingLoc(RegionOfInterest.getBegin()); std::pair
EndLocInfo = SourceMgr.getDecomposedSpellingLoc(RegionOfInterest.getEnd()); if (BeginLocInfo.first != EndLocInfo.first) return; StringRef Buffer; bool Invalid = false; Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid); if (Buffer.empty() || Invalid) return; Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first), CXXUnit->getASTContext().getLangOpts(), Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end()); Lex.SetCommentRetentionState(true); unsigned NextIdx = 0; // Lex tokens in raw mode until we hit the end of the range, to avoid // entering #includes or expanding macros. while (true) { Token Tok; if (lexNext(Lex, Tok, NextIdx, NumTokens)) break; unsigned TokIdx = NextIdx-1; assert(Tok.getLocation() == SourceLocation::getFromRawEncoding(Tokens[TokIdx].int_data[1])); reprocess: if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) { // We have found a preprocessing directive. Annotate the tokens // appropriately. // // FIXME: Some simple tests here could identify macro definitions and // #undefs, to provide specific cursor kinds for those. SourceLocation BeginLoc = Tok.getLocation(); if (lexNext(Lex, Tok, NextIdx, NumTokens)) break; MacroInfo *MI = 0; if (Tok.is(tok::raw_identifier) && StringRef(Tok.getRawIdentifierData(), Tok.getLength()) == "define") { if (lexNext(Lex, Tok, NextIdx, NumTokens)) break; if (Tok.is(tok::raw_identifier)) { StringRef Name(Tok.getRawIdentifierData(), Tok.getLength()); IdentifierInfo &II = PP.getIdentifierTable().get(Name); SourceLocation MappedTokLoc = CXXUnit->mapLocationToPreamble(Tok.getLocation()); MI = getMacroInfo(II, MappedTokLoc, TU); } } bool finished = false; do { if (lexNext(Lex, Tok, NextIdx, NumTokens)) { finished = true; break; } // If we are in a macro definition, check if the token was ever a // macro name and annotate it if that's the case. if (MI) { SourceLocation SaveLoc = Tok.getLocation(); Tok.setLocation(CXXUnit->mapLocationToPreamble(SaveLoc)); MacroDefinition *MacroDef = checkForMacroInMacroDefinition(MI,Tok,TU); Tok.setLocation(SaveLoc); if (MacroDef) Cursors[NextIdx-1] = MakeMacroExpansionCursor(MacroDef, Tok.getLocation(), TU); } } while (!Tok.isAtStartOfLine()); unsigned LastIdx = finished ? NextIdx-1 : NextIdx-2; assert(TokIdx <= LastIdx); SourceLocation EndLoc = SourceLocation::getFromRawEncoding(Tokens[LastIdx].int_data[1]); CXCursor Cursor = MakePreprocessingDirectiveCursor(SourceRange(BeginLoc, EndLoc), TU); for (; TokIdx <= LastIdx; ++TokIdx) updateCursorAnnotation(Cursors[TokIdx], Cursor); if (finished) break; goto reprocess; } } } // This gets run a separate thread to avoid stack blowout. static void clang_annotateTokensImpl(void *UserData) { CXTranslationUnit TU = ((clang_annotateTokens_Data*)UserData)->TU; ASTUnit *CXXUnit = ((clang_annotateTokens_Data*)UserData)->CXXUnit; CXToken *Tokens = ((clang_annotateTokens_Data*)UserData)->Tokens; const unsigned NumTokens = ((clang_annotateTokens_Data*)UserData)->NumTokens; CXCursor *Cursors = ((clang_annotateTokens_Data*)UserData)->Cursors; CIndexer *CXXIdx = TU->CIdx; if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForEditing)) setThreadBackgroundPriority(); // Determine the region of interest, which contains all of the tokens. SourceRange RegionOfInterest; RegionOfInterest.setBegin( cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[0]))); RegionOfInterest.setEnd( cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[NumTokens-1]))); // Relex the tokens within the source range to look for preprocessing // directives. annotatePreprocessorTokens(TU, RegionOfInterest, Cursors, Tokens, NumTokens); // If begin location points inside a macro argument, set it to the expansion // location so we can have the full context when annotating semantically. { SourceManager &SM = CXXUnit->getSourceManager(); SourceLocation Loc = SM.getMacroArgExpandedLocation(RegionOfInterest.getBegin()); if (Loc.isMacroID()) RegionOfInterest.setBegin(SM.getExpansionLoc(Loc)); } if (CXXUnit->getPreprocessor().getPreprocessingRecord()) { // Search and mark tokens that are macro argument expansions. MarkMacroArgTokensVisitor Visitor(CXXUnit->getSourceManager(), Tokens, NumTokens); CursorVisitor MacroArgMarker(TU, MarkMacroArgTokensVisitorDelegate, &Visitor, /*VisitPreprocessorLast=*/true, /*VisitIncludedEntities=*/false, RegionOfInterest); MacroArgMarker.visitPreprocessedEntitiesInRegion(); } // Annotate all of the source locations in the region of interest that map to // a specific cursor. AnnotateTokensWorker W(Tokens, Cursors, NumTokens, TU, RegionOfInterest); // FIXME: We use a ridiculous stack size here because the data-recursion // algorithm uses a large stack frame than the non-data recursive version, // and AnnotationTokensWorker currently transforms the data-recursion // algorithm back into a traditional recursion by explicitly calling // VisitChildren(). We will need to remove this explicit recursive call. W.AnnotateTokens(); // If we ran into any entities that involve context-sensitive keywords, // take another pass through the tokens to mark them as such. if (W.hasContextSensitiveKeywords()) { for (unsigned I = 0; I != NumTokens; ++I) { if (clang_getTokenKind(Tokens[I]) != CXToken_Identifier) continue; if (Cursors[I].kind == CXCursor_ObjCPropertyDecl) { IdentifierInfo *II = static_cast
(Tokens[I].ptr_data); if (const ObjCPropertyDecl *Property = dyn_cast_or_null
(getCursorDecl(Cursors[I]))) { if (Property->getPropertyAttributesAsWritten() != 0 && llvm::StringSwitch
(II->getName()) .Case("readonly", true) .Case("assign", true) .Case("unsafe_unretained", true) .Case("readwrite", true) .Case("retain", true) .Case("copy", true) .Case("nonatomic", true) .Case("atomic", true) .Case("getter", true) .Case("setter", true) .Case("strong", true) .Case("weak", true) .Default(false)) Tokens[I].int_data[0] = CXToken_Keyword; } continue; } if (Cursors[I].kind == CXCursor_ObjCInstanceMethodDecl || Cursors[I].kind == CXCursor_ObjCClassMethodDecl) { IdentifierInfo *II = static_cast
(Tokens[I].ptr_data); if (llvm::StringSwitch
(II->getName()) .Case("in", true) .Case("out", true) .Case("inout", true) .Case("oneway", true) .Case("bycopy", true) .Case("byref", true) .Default(false)) Tokens[I].int_data[0] = CXToken_Keyword; continue; } if (Cursors[I].kind == CXCursor_CXXFinalAttr || Cursors[I].kind == CXCursor_CXXOverrideAttr) { Tokens[I].int_data[0] = CXToken_Keyword; continue; } } } } extern "C" { void clang_annotateTokens(CXTranslationUnit TU, CXToken *Tokens, unsigned NumTokens, CXCursor *Cursors) { if (NumTokens == 0 || !Tokens || !Cursors) { LOG_FUNC_SECTION { *Log << "
"; } return; } LOG_FUNC_SECTION { *Log << TU << ' '; CXSourceLocation bloc = clang_getTokenLocation(TU, Tokens[0]); CXSourceLocation eloc = clang_getTokenLocation(TU, Tokens[NumTokens-1]); *Log << clang_getRange(bloc, eloc); } // Any token we don't specifically annotate will have a NULL cursor. CXCursor C = clang_getNullCursor(); for (unsigned I = 0; I != NumTokens; ++I) Cursors[I] = C; ASTUnit *CXXUnit = cxtu::getASTUnit(TU); if (!CXXUnit) return; ASTUnit::ConcurrencyCheck Check(*CXXUnit); clang_annotateTokens_Data data = { TU, CXXUnit, Tokens, NumTokens, Cursors }; llvm::CrashRecoveryContext CRC; if (!RunSafely(CRC, clang_annotateTokensImpl, &data, GetSafetyThreadStackSize() * 2)) { fprintf(stderr, "libclang: crash detected while annotating tokens\n"); } } } // end: extern "C" //===----------------------------------------------------------------------===// // Operations for querying linkage of a cursor. //===----------------------------------------------------------------------===// extern "C" { CXLinkageKind clang_getCursorLinkage(CXCursor cursor) { if (!clang_isDeclaration(cursor.kind)) return CXLinkage_Invalid; const Decl *D = cxcursor::getCursorDecl(cursor); if (const NamedDecl *ND = dyn_cast_or_null
(D)) switch (ND->getLinkage()) { case NoLinkage: return CXLinkage_NoLinkage; case InternalLinkage: return CXLinkage_Internal; case UniqueExternalLinkage: return CXLinkage_UniqueExternal; case ExternalLinkage: return CXLinkage_External; }; return CXLinkage_Invalid; } } // end: extern "C" //===----------------------------------------------------------------------===// // Operations for querying language of a cursor. //===----------------------------------------------------------------------===// static CXLanguageKind getDeclLanguage(const Decl *D) { if (!D) return CXLanguage_C; switch (D->getKind()) { default: break; case Decl::ImplicitParam: case Decl::ObjCAtDefsField: case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCCompatibleAlias: case Decl::ObjCImplementation: case Decl::ObjCInterface: case Decl::ObjCIvar: case Decl::ObjCMethod: case Decl::ObjCProperty: case Decl::ObjCPropertyImpl: case Decl::ObjCProtocol: return CXLanguage_ObjC; case Decl::CXXConstructor: case Decl::CXXConversion: case Decl::CXXDestructor: case Decl::CXXMethod: case Decl::CXXRecord: case Decl::ClassTemplate: case Decl::ClassTemplatePartialSpecialization: case Decl::ClassTemplateSpecialization: case Decl::Friend: case Decl::FriendTemplate: case Decl::FunctionTemplate: case Decl::LinkageSpec: case Decl::Namespace: case Decl::NamespaceAlias: case Decl::NonTypeTemplateParm: case Decl::StaticAssert: case Decl::TemplateTemplateParm: case Decl::TemplateTypeParm: case Decl::UnresolvedUsingTypename: case Decl::UnresolvedUsingValue: case Decl::Using: case Decl::UsingDirective: case Decl::UsingShadow: return CXLanguage_CPlusPlus; } return CXLanguage_C; } extern "C" { enum CXAvailabilityKind clang_getCursorAvailability(CXCursor cursor) { if (clang_isDeclaration(cursor.kind)) if (const Decl *D = cxcursor::getCursorDecl(cursor)) { if (isa
(D) && cast
(D)->isDeleted()) return CXAvailability_Available; switch (D->getAvailability()) { case AR_Available: case AR_NotYetIntroduced: return CXAvailability_Available; case AR_Deprecated: return CXAvailability_Deprecated; case AR_Unavailable: return CXAvailability_NotAvailable; } } return CXAvailability_Available; } static CXVersion convertVersion(VersionTuple In) { CXVersion Out = { -1, -1, -1 }; if (In.empty()) return Out; Out.Major = In.getMajor(); Optional
Minor = In.getMinor(); if (Minor.hasValue()) Out.Minor = *Minor; else return Out; Optional
Subminor = In.getSubminor(); if (Subminor.hasValue()) Out.Subminor = *Subminor; return Out; } int clang_getCursorPlatformAvailability(CXCursor cursor, int *always_deprecated, CXString *deprecated_message, int *always_unavailable, CXString *unavailable_message, CXPlatformAvailability *availability, int availability_size) { if (always_deprecated) *always_deprecated = 0; if (deprecated_message) *deprecated_message = cxstring::createEmpty(); if (always_unavailable) *always_unavailable = 0; if (unavailable_message) *unavailable_message = cxstring::createEmpty(); if (!clang_isDeclaration(cursor.kind)) return 0; const Decl *D = cxcursor::getCursorDecl(cursor); if (!D) return 0; int N = 0; for (Decl::attr_iterator A = D->attr_begin(), AEnd = D->attr_end(); A != AEnd; ++A) { if (DeprecatedAttr *Deprecated = dyn_cast
(*A)) { if (always_deprecated) *always_deprecated = 1; if (deprecated_message) *deprecated_message = cxstring::createDup(Deprecated->getMessage()); continue; } if (UnavailableAttr *Unavailable = dyn_cast
(*A)) { if (always_unavailable) *always_unavailable = 1; if (unavailable_message) { *unavailable_message = cxstring::createDup(Unavailable->getMessage()); } continue; } if (AvailabilityAttr *Avail = dyn_cast