HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Jelly Bean MR2
|
4.3_r1
下载
查看原文件
收藏
根目录
external
eigen
Eigen
src
Core
Functors.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud
// // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_FUNCTORS_H #define EIGEN_FUNCTORS_H namespace Eigen { namespace internal { // associative functors: /** \internal * \brief Template functor to compute the sum of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum() */ template
struct scalar_sum_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::padd(a,b); } template
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return internal::predux(a); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::AddCost, PacketAccess = packet_traits
::HasAdd }; }; /** \internal * \brief Template functor to compute the product of two scalars * * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() */ template
struct scalar_product_op { enum { // TODO vectorize mixed product Vectorizable = is_same
::value && packet_traits
::HasMul && packet_traits
::HasMul }; typedef typename scalar_product_traits
::ReturnType result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmul(a,b); } template
EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const { return internal::predux_mul(a); } }; template
struct functor_traits
> { enum { Cost = (NumTraits
::MulCost + NumTraits
::MulCost)/2, // rough estimate! PacketAccess = scalar_product_op
::Vectorizable }; }; /** \internal * \brief Template functor to compute the conjugate product of two scalars * * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y) */ template
struct scalar_conj_product_op { enum { Conj = NumTraits
::IsComplex }; typedef typename scalar_product_traits
::ReturnType result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op) EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return conj_helper
().pmul(a,b); } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return conj_helper
().pmul(a,b); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::MulCost, PacketAccess = internal::is_same
::value && packet_traits
::HasMul }; }; /** \internal * \brief Template functor to compute the min of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() */ template
struct scalar_min_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmin(a,b); } template
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return internal::predux_min(a); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::AddCost, PacketAccess = packet_traits
::HasMin }; }; /** \internal * \brief Template functor to compute the max of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() */ template
struct scalar_max_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmax(a,b); } template
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return internal::predux_max(a); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::AddCost, PacketAccess = packet_traits
::HasMax }; }; /** \internal * \brief Template functor to compute the hypot of two scalars * * \sa MatrixBase::stableNorm(), class Redux */ template
struct scalar_hypot_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op) // typedef typename NumTraits
::Real result_type; EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const { using std::max; using std::min; Scalar p = (max)(_x, _y); Scalar q = (min)(_x, _y); Scalar qp = q/p; return p * sqrt(Scalar(1) + qp*qp); } }; template
struct functor_traits
> { enum { Cost = 5 * NumTraits
::MulCost, PacketAccess=0 }; }; /** \internal * \brief Template functor to compute the pow of two scalars */ template
struct scalar_binary_pow_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op) inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return internal::pow(a, b); } }; template
struct functor_traits
> { enum { Cost = 5 * NumTraits
::MulCost, PacketAccess = false }; }; // other binary functors: /** \internal * \brief Template functor to compute the difference of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator- */ template
struct scalar_difference_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::psub(a,b); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::AddCost, PacketAccess = packet_traits
::HasSub }; }; /** \internal * \brief Template functor to compute the quotient of two scalars * * \sa class CwiseBinaryOp, Cwise::operator/() */ template
struct scalar_quotient_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pdiv(a,b); } }; template
struct functor_traits
> { enum { Cost = 2 * NumTraits
::MulCost, PacketAccess = packet_traits
::HasDiv }; }; /** \internal * \brief Template functor to compute the and of two booleans * * \sa class CwiseBinaryOp, ArrayBase::operator&& */ struct scalar_boolean_and_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op) EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; } }; template<> struct functor_traits
{ enum { Cost = NumTraits
::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the or of two booleans * * \sa class CwiseBinaryOp, ArrayBase::operator|| */ struct scalar_boolean_or_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op) EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; } }; template<> struct functor_traits
{ enum { Cost = NumTraits
::AddCost, PacketAccess = false }; }; // unary functors: /** \internal * \brief Template functor to compute the opposite of a scalar * * \sa class CwiseUnaryOp, MatrixBase::operator- */ template
struct scalar_opposite_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pnegate(a); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::AddCost, PacketAccess = packet_traits
::HasNegate }; }; /** \internal * \brief Template functor to compute the absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs */ template
struct scalar_abs_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op) typedef typename NumTraits
::Real result_type; EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs(a); } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pabs(a); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::AddCost, PacketAccess = packet_traits
::HasAbs }; }; /** \internal * \brief Template functor to compute the squared absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs2 */ template
struct scalar_abs2_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op) typedef typename NumTraits
::Real result_type; EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs2(a); } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pmul(a,a); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::MulCost, PacketAccess = packet_traits
::HasAbs2 }; }; /** \internal * \brief Template functor to compute the conjugate of a complex value * * \sa class CwiseUnaryOp, MatrixBase::conjugate() */ template
struct scalar_conjugate_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return internal::conj(a); } template
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::IsComplex ? NumTraits
::AddCost : 0, PacketAccess = packet_traits
::HasConj }; }; /** \internal * \brief Template functor to cast a scalar to another type * * \sa class CwiseUnaryOp, MatrixBase::cast() */ template
struct scalar_cast_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) typedef NewType result_type; EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast
(a); } }; template
struct functor_traits
> { enum { Cost = is_same
::value ? 0 : NumTraits
::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex * * \sa class CwiseUnaryOp, MatrixBase::real() */ template
struct scalar_real_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op) typedef typename NumTraits
::Real result_type; EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::real(a); } }; template
struct functor_traits
> { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template
struct scalar_imag_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op) typedef typename NumTraits
::Real result_type; EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::imag(a); } }; template
struct functor_traits
> { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex as a reference * * \sa class CwiseUnaryOp, MatrixBase::real() */ template
struct scalar_real_ref_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op) typedef typename NumTraits
::Real result_type; EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::real_ref(*const_cast
(&a)); } }; template
struct functor_traits
> { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex as a reference * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template
struct scalar_imag_ref_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op) typedef typename NumTraits
::Real result_type; EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::imag_ref(*const_cast
(&a)); } }; template
struct functor_traits
> { enum { Cost = 0, PacketAccess = false }; }; /** \internal * * \brief Template functor to compute the exponential of a scalar * * \sa class CwiseUnaryOp, Cwise::exp() */ template
struct scalar_exp_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op) inline const Scalar operator() (const Scalar& a) const { return internal::exp(a); } typedef typename packet_traits
::type Packet; inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } }; template
struct functor_traits
> { enum { Cost = 5 * NumTraits
::MulCost, PacketAccess = packet_traits
::HasExp }; }; /** \internal * * \brief Template functor to compute the logarithm of a scalar * * \sa class CwiseUnaryOp, Cwise::log() */ template
struct scalar_log_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op) inline const Scalar operator() (const Scalar& a) const { return internal::log(a); } typedef typename packet_traits
::type Packet; inline Packet packetOp(const Packet& a) const { return internal::plog(a); } }; template
struct functor_traits
> { enum { Cost = 5 * NumTraits
::MulCost, PacketAccess = packet_traits
::HasLog }; }; /** \internal * \brief Template functor to multiply a scalar by a fixed other one * * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ */ /* NOTE why doing the pset1() in packetOp *is* an optimization ? * indeed it seems better to declare m_other as a Packet and do the pset1() once * in the constructor. However, in practice: * - GCC does not like m_other as a Packet and generate a load every time it needs it * - on the other hand GCC is able to moves the pset1() away the loop :) * - simpler code ;) * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) */ template
struct scalar_multiple_op { typedef typename packet_traits
::type Packet; // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { } EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pmul(a, pset1
(m_other)); } typename add_const_on_value_type
::Nested>::type m_other; }; template
struct functor_traits
> { enum { Cost = NumTraits
::MulCost, PacketAccess = packet_traits
::HasMul }; }; template
struct scalar_multiple2_op { typedef typename scalar_product_traits
::ReturnType result_type; EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { } EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } typename add_const_on_value_type
::Nested>::type m_other; }; template
struct functor_traits
> { enum { Cost = NumTraits
::MulCost, PacketAccess = false }; }; template
struct scalar_quotient1_impl { typedef typename packet_traits
::type Packet; // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(static_cast
(1) / other) {} EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pmul(a, pset1
(m_other)); } const Scalar m_other; }; template
struct functor_traits
> { enum { Cost = NumTraits
::MulCost, PacketAccess = packet_traits
::HasMul }; }; template
struct scalar_quotient1_impl
{ // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(other) {} EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } typename add_const_on_value_type
::Nested>::type m_other; }; template
struct functor_traits
> { enum { Cost = 2 * NumTraits
::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to divide a scalar by a fixed other one * * This functor is used to implement the quotient of a matrix by * a scalar where the scalar type is not necessarily a floating point type. * * \sa class CwiseUnaryOp, MatrixBase::operator/ */ template
struct scalar_quotient1_op : scalar_quotient1_impl
::IsInteger > { EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : scalar_quotient1_impl
::IsInteger >(other) {} }; template
struct functor_traits
> : functor_traits
::IsInteger> > {}; // nullary functors template
struct scalar_constant_op { typedef typename packet_traits
::type Packet; EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } template
EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; } template
EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1
(m_other); } const Scalar m_other; }; template
struct functor_traits
> // FIXME replace this packet test by a safe one { enum { Cost = 1, PacketAccess = packet_traits
::Vectorizable, IsRepeatable = true }; }; template
struct scalar_identity_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op) template
EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); } }; template
struct functor_traits
> { enum { Cost = NumTraits
::AddCost, PacketAccess = false, IsRepeatable = true }; }; template
struct linspaced_op_impl; // linear access for packet ops: // 1) initialization // base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0]) // 2) each step // base += [size*step, ..., size*step] template
struct linspaced_op_impl
{ typedef typename packet_traits
::type Packet; linspaced_op_impl(Scalar low, Scalar step) : m_low(low), m_step(step), m_packetStep(pset1
(packet_traits
::size*step)), m_base(padd(pset1
(low),pmul(pset1
(step),plset
(-packet_traits
::size)))) {} template
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } template
EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); } const Scalar m_low; const Scalar m_step; const Packet m_packetStep; mutable Packet m_base; }; // random access for packet ops: // 1) each step // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) template
struct linspaced_op_impl
{ typedef typename packet_traits
::type Packet; linspaced_op_impl(Scalar low, Scalar step) : m_low(low), m_step(step), m_lowPacket(pset1
(m_low)), m_stepPacket(pset1
(m_step)), m_interPacket(plset
(0)) {} template
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } template
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1
(i),m_interPacket))); } const Scalar m_low; const Scalar m_step; const Packet m_lowPacket; const Packet m_stepPacket; const Packet m_interPacket; }; // ----- Linspace functor ---------------------------------------------------------------- // Forward declaration (we default to random access which does not really give // us a speed gain when using packet access but it allows to use the functor in // nested expressions). template
struct linspaced_op; template
struct functor_traits< linspaced_op
> { enum { Cost = 1, PacketAccess = packet_traits
::HasSetLinear, IsRepeatable = true }; }; template
struct linspaced_op { typedef typename packet_traits
::type Packet; linspaced_op(Scalar low, Scalar high, int num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {} template
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); } // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since // there row==0 and col is used for the actual iteration. template
EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { eigen_assert(col==0 || row==0); return impl(col + row); } template
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); } // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since // there row==0 and col is used for the actual iteration. template
EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const { eigen_assert(col==0 || row==0); return impl.packetOp(col + row); } // This proxy object handles the actual required temporaries, the different // implementations (random vs. sequential access) as well as the // correct piping to size 2/4 packet operations. const linspaced_op_impl
impl; }; // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta // to indicate whether a functor allows linear access, just always answering 'yes' except for // scalar_identity_op. // FIXME move this to functor_traits adding a functor_default template
struct functor_has_linear_access { enum { ret = 1 }; }; template
struct functor_has_linear_access
> { enum { ret = 0 }; }; // in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication // where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex
. // FIXME move this to functor_traits adding a functor_default template
struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; }; template
struct functor_allows_mixing_real_and_complex
> { enum { ret = 1 }; }; template
struct functor_allows_mixing_real_and_complex
> { enum { ret = 1 }; }; /** \internal * \brief Template functor to add a scalar to a fixed other one * \sa class CwiseUnaryOp, Array::operator+ */ /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */ template
struct scalar_add_op { typedef typename packet_traits
::type Packet; // FIXME default copy constructors seems bugged with std::complex<> inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { } inline scalar_add_op(const Scalar& other) : m_other(other) { } inline Scalar operator() (const Scalar& a) const { return a + m_other; } inline const Packet packetOp(const Packet& a) const { return internal::padd(a, pset1
(m_other)); } const Scalar m_other; }; template
struct functor_traits
> { enum { Cost = NumTraits
::AddCost, PacketAccess = packet_traits
::HasAdd }; }; /** \internal * \brief Template functor to compute the square root of a scalar * \sa class CwiseUnaryOp, Cwise::sqrt() */ template
struct scalar_sqrt_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op) inline const Scalar operator() (const Scalar& a) const { return internal::sqrt(a); } typedef typename packet_traits
::type Packet; inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } }; template
struct functor_traits
> { enum { Cost = 5 * NumTraits
::MulCost, PacketAccess = packet_traits
::HasSqrt }; }; /** \internal * \brief Template functor to compute the cosine of a scalar * \sa class CwiseUnaryOp, ArrayBase::cos() */ template
struct scalar_cos_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op) inline Scalar operator() (const Scalar& a) const { return internal::cos(a); } typedef typename packet_traits
::type Packet; inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } }; template
struct functor_traits
> { enum { Cost = 5 * NumTraits
::MulCost, PacketAccess = packet_traits
::HasCos }; }; /** \internal * \brief Template functor to compute the sine of a scalar * \sa class CwiseUnaryOp, ArrayBase::sin() */ template
struct scalar_sin_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op) inline const Scalar operator() (const Scalar& a) const { return internal::sin(a); } typedef typename packet_traits
::type Packet; inline Packet packetOp(const Packet& a) const { return internal::psin(a); } }; template
struct functor_traits
> { enum { Cost = 5 * NumTraits
::MulCost, PacketAccess = packet_traits
::HasSin }; }; /** \internal * \brief Template functor to compute the tan of a scalar * \sa class CwiseUnaryOp, ArrayBase::tan() */ template
struct scalar_tan_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op) inline const Scalar operator() (const Scalar& a) const { return internal::tan(a); } typedef typename packet_traits
::type Packet; inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } }; template
struct functor_traits
> { enum { Cost = 5 * NumTraits
::MulCost, PacketAccess = packet_traits
::HasTan }; }; /** \internal * \brief Template functor to compute the arc cosine of a scalar * \sa class CwiseUnaryOp, ArrayBase::acos() */ template
struct scalar_acos_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op) inline const Scalar operator() (const Scalar& a) const { return internal::acos(a); } typedef typename packet_traits