// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BLASUTIL_H
#define EIGEN_BLASUTIL_H
// This file contains many lightweight helper classes used to
// implement and control fast level 2 and level 3 BLAS-like routines.
namespace Eigen {
namespace internal {
// forward declarations
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false>
struct gebp_kernel;
template<typename Scalar, typename Index, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false>
struct gemm_pack_rhs;
template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
struct gemm_pack_lhs;
template<
typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
int ResStorageOrder>
struct general_matrix_matrix_product;
template<typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version=Specialized>
struct general_matrix_vector_product;
template<bool Conjugate> struct conj_if;
template<> struct conj_if<true> {
template<typename T>
inline T operator()(const T& x) { return conj(x); }
template<typename T>
inline T pconj(const T& x) { return internal::pconj(x); }
};
template<> struct conj_if<false> {
template<typename T>
inline const T& operator()(const T& x) { return x; }
template<typename T>
inline const T& pconj(const T& x) { return x; }
};
template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false>
{
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); }
};
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
{ return c + pmul(x,y); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
{ return Scalar(real(x)*real(y) + imag(x)*imag(y), imag(x)*real(y) - real(x)*imag(y)); }
};
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
{ return c + pmul(x,y); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
{ return Scalar(real(x)*real(y) + imag(x)*imag(y), real(x)*imag(y) - imag(x)*real(y)); }
};
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
{ return c + pmul(x,y); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
{ return Scalar(real(x)*real(y) - imag(x)*imag(y), - real(x)*imag(y) - imag(x)*real(y)); }
};
template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const
{ return conj_if<Conj>()(x)*y; }
};
template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const
{ return x*conj_if<Conj>()(y); }
};
template<typename From,typename To> struct get_factor {
static EIGEN_STRONG_INLINE To run(const From& x) { return x; }
};
template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> {
static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { return real(x); }
};
// Lightweight helper class to access matrix coefficients.
// Yes, this is somehow redundant with Map<>, but this version is much much lighter,
// and so I hope better compilation performance (time and code quality).
template<typename Scalar, typename Index, int StorageOrder>
class blas_data_mapper
{
public:
blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j)
{ return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
protected:
Scalar* EIGEN_RESTRICT m_data;
Index m_stride;
};
// lightweight helper class to access matrix coefficients (const version)
template<typename Scalar, typename Index, int StorageOrder>
class const_blas_data_mapper
{
public:
const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const
{ return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
protected:
const Scalar* EIGEN_RESTRICT m_data;
Index m_stride;
};
/* Helper class to analyze the factors of a Product expression.
* In particular it allows to pop out operator-, scalar multiples,
* and conjugate */
template<typename XprType> struct blas_traits
{
typedef typename traits<XprType>::Scalar Scalar;
typedef const XprType& ExtractType;
typedef XprType _ExtractType;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
IsTransposed = false,
NeedToConjugate = false,
HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit)
&& ( bool(XprType::IsVectorAtCompileTime)
|| int(inner_stride_at_compile_time<XprType>::ret) == 1)
) ? 1 : 0
};
typedef typename conditional<bool(HasUsableDirectAccess),
ExtractType,
typename _ExtractType::PlainObject
>::type DirectLinearAccessType;
static inline ExtractType extract(const XprType& x) { return x; }
static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
};
// pop conjugate
template<typename Scalar, typename NestedXpr>
struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> >
: blas_traits<NestedXpr>
{
typedef blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
};
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); }
};
// pop scalar multiple
template<typename Scalar, typename NestedXpr>
struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> >
: blas_traits<NestedXpr>
{
typedef blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x)
{ return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); }
};
// pop opposite
template<typename Scalar, typename NestedXpr>
struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
: blas_traits<NestedXpr>
{
typedef blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x)
{ return - Base::extractScalarFactor(x.nestedExpression()); }
};
// pop/push transpose
template<typename NestedXpr>
struct blas_traits<Transpose<NestedXpr> >
: blas_traits<NestedXpr>
{
typedef typename NestedXpr::Scalar Scalar;
typedef blas_traits<NestedXpr> Base;
typedef Transpose<NestedXpr> XprType;
typedef Transpose<const typename Base::_ExtractType> ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS
typedef Transpose<const typename Base::_ExtractType> _ExtractType;
typedef typename conditional<bool(Base::HasUsableDirectAccess),
ExtractType,
typename ExtractType::PlainObject
>::type DirectLinearAccessType;
enum {
IsTransposed = Base::IsTransposed ? 0 : 1
};
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
};
template<typename T>
struct blas_traits<const T>
: blas_traits<T>
{};
template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess>
struct extract_data_selector {
static const typename T::Scalar* run(const T& m)
{
return blas_traits<T>::extract(m).data();
}
};
template<typename T>
struct extract_data_selector<T,false> {
static typename T::Scalar* run(const T&) { return 0; }
};
template<typename T> const typename T::Scalar* extract_data(const T& m)
{
return extract_data_selector<T>::run(m);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BLASUTIL_H