// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEVECTOR_H
#define EIGEN_SPARSEVECTOR_H
namespace Eigen {
/** \ingroup SparseCore_Module
* \class SparseVector
*
* \brief a sparse vector class
*
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN.
*/
namespace internal {
template<typename _Scalar, int _Options, typename _Index>
struct traits<SparseVector<_Scalar, _Options, _Index> >
{
typedef _Scalar Scalar;
typedef _Index Index;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
IsColVector = (_Options & RowMajorBit) ? 0 : 1,
RowsAtCompileTime = IsColVector ? Dynamic : 1,
ColsAtCompileTime = IsColVector ? 1 : Dynamic,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit),
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
}
template<typename _Scalar, int _Options, typename _Index>
class SparseVector
: public SparseMatrixBase<SparseVector<_Scalar, _Options, _Index> >
{
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
protected:
public:
typedef SparseMatrixBase<SparseVector> SparseBase;
enum { IsColVector = internal::traits<SparseVector>::IsColVector };
enum {
Options = _Options
};
internal::CompressedStorage<Scalar,Index> m_data;
Index m_size;
internal::CompressedStorage<Scalar,Index>& _data() { return m_data; }
internal::CompressedStorage<Scalar,Index>& _data() const { return m_data; }
public:
EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; }
EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return &m_data.value(0); }
EIGEN_STRONG_INLINE Scalar* valuePtr() { return &m_data.value(0); }
EIGEN_STRONG_INLINE const Index* innerIndexPtr() const { return &m_data.index(0); }
EIGEN_STRONG_INLINE Index* innerIndexPtr() { return &m_data.index(0); }
inline Scalar coeff(Index row, Index col) const
{
eigen_assert((IsColVector ? col : row)==0);
return coeff(IsColVector ? row : col);
}
inline Scalar coeff(Index i) const { return m_data.at(i); }
inline Scalar& coeffRef(Index row, Index col)
{
eigen_assert((IsColVector ? col : row)==0);
return coeff(IsColVector ? row : col);
}
/** \returns a reference to the coefficient value at given index \a i
* This operation involes a log(rho*size) binary search. If the coefficient does not
* exist yet, then a sorted insertion into a sequential buffer is performed.
*
* This insertion might be very costly if the number of nonzeros above \a i is large.
*/
inline Scalar& coeffRef(Index i)
{
return m_data.atWithInsertion(i);
}
public:
class InnerIterator;
class ReverseInnerIterator;
inline void setZero() { m_data.clear(); }
/** \returns the number of non zero coefficients */
inline Index nonZeros() const { return static_cast<Index>(m_data.size()); }
inline void startVec(Index outer)
{
EIGEN_UNUSED_VARIABLE(outer);
eigen_assert(outer==0);
}
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
{
EIGEN_UNUSED_VARIABLE(outer);
eigen_assert(outer==0);
return insertBack(inner);
}
inline Scalar& insertBack(Index i)
{
m_data.append(0, i);
return m_data.value(m_data.size()-1);
}
inline Scalar& insert(Index row, Index col)
{
Index inner = IsColVector ? row : col;
Index outer = IsColVector ? col : row;
eigen_assert(outer==0);
return insert(inner);
}
Scalar& insert(Index i)
{
Index startId = 0;
Index p = Index(m_data.size()) - 1;
// TODO smart realloc
m_data.resize(p+2,1);
while ( (p >= startId) && (m_data.index(p) > i) )
{
m_data.index(p+1) = m_data.index(p);
m_data.value(p+1) = m_data.value(p);
--p;
}
m_data.index(p+1) = i;
m_data.value(p+1) = 0;
return m_data.value(p+1);
}
/**
*/
inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); }
inline void finalize() {}
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
{
m_data.prune(reference,epsilon);
}
void resize(Index rows, Index cols)
{
eigen_assert(rows==1 || cols==1);
resize(IsColVector ? rows : cols);
}
void resize(Index newSize)
{
m_size = newSize;
m_data.clear();
}
void resizeNonZeros(Index size) { m_data.resize(size); }
inline SparseVector() : m_size(0) { resize(0); }
inline SparseVector(Index size) : m_size(0) { resize(size); }
inline SparseVector(Index rows, Index cols) : m_size(0) { resize(rows,cols); }
template<typename OtherDerived>
inline SparseVector(const SparseMatrixBase<OtherDerived>& other)
: m_size(0)
{
*this = other.derived();
}
inline SparseVector(const SparseVector& other)
: m_size(0)
{
*this = other.derived();
}
inline void swap(SparseVector& other)
{
std::swap(m_size, other.m_size);
m_data.swap(other.m_data);
}
inline SparseVector& operator=(const SparseVector& other)
{
if (other.isRValue())
{
swap(other.const_cast_derived());
}
else
{
resize(other.size());
m_data = other.m_data;
}
return *this;
}
template<typename OtherDerived>
inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other)
{
if (int(RowsAtCompileTime)!=int(OtherDerived::RowsAtCompileTime))
return assign(other.transpose());
else
return assign(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Lhs, typename Rhs>
inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
{
return Base::operator=(product);
}
#endif
friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
{
for (Index i=0; i<m.nonZeros(); ++i)
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
s << std::endl;
return s;
}
/** Destructor */
inline ~SparseVector() {}
/** Overloaded for performance */
Scalar sum() const;
public:
/** \deprecated use setZero() and reserve() */
EIGEN_DEPRECATED void startFill(Index reserve)
{
setZero();
m_data.reserve(reserve);
}
/** \deprecated use insertBack(Index,Index) */
EIGEN_DEPRECATED Scalar& fill(Index r, Index c)
{
eigen_assert(r==0 || c==0);
return fill(IsColVector ? r : c);
}
/** \deprecated use insertBack(Index) */
EIGEN_DEPRECATED Scalar& fill(Index i)
{
m_data.append(0, i);
return m_data.value(m_data.size()-1);
}
/** \deprecated use insert(Index,Index) */
EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c)
{
eigen_assert(r==0 || c==0);
return fillrand(IsColVector ? r : c);
}
/** \deprecated use insert(Index) */
EIGEN_DEPRECATED Scalar& fillrand(Index i)
{
return insert(i);
}
/** \deprecated use finalize() */
EIGEN_DEPRECATED void endFill() {}
# ifdef EIGEN_SPARSEVECTOR_PLUGIN
# include EIGEN_SPARSEVECTOR_PLUGIN
# endif
protected:
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseVector& assign(const SparseMatrixBase<OtherDerived>& _other)
{
const OtherDerived& other(_other.derived());
const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
if(needToTranspose)
{
Index size = other.size();
Index nnz = other.nonZeros();
resize(size);
reserve(nnz);
for(Index i=0; i<size; ++i)
{
typename OtherDerived::InnerIterator it(other, i);
if(it)
insert(i) = it.value();
}
return *this;
}
else
{
// there is no special optimization
return Base::operator=(other);
}
}
};
template<typename Scalar, int _Options, typename _Index>
class SparseVector<Scalar,_Options,_Index>::InnerIterator
{
public:
InnerIterator(const SparseVector& vec, Index outer=0)
: m_data(vec.m_data), m_id(0), m_end(static_cast<Index>(m_data.size()))
{
EIGEN_UNUSED_VARIABLE(outer);
eigen_assert(outer==0);
}
InnerIterator(const internal::CompressedStorage<Scalar,Index>& data)
: m_data(data), m_id(0), m_end(static_cast<Index>(m_data.size()))
{}
inline InnerIterator& operator++() { m_id++; return *this; }
inline Scalar value() const { return m_data.value(m_id); }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_data.value(m_id)); }
inline Index index() const { return m_data.index(m_id); }
inline Index row() const { return IsColVector ? index() : 0; }
inline Index col() const { return IsColVector ? 0 : index(); }
inline operator bool() const { return (m_id < m_end); }
protected:
const internal::CompressedStorage<Scalar,Index>& m_data;
Index m_id;
const Index m_end;
};
template<typename Scalar, int _Options, typename _Index>
class SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator
{
public:
ReverseInnerIterator(const SparseVector& vec, Index outer=0)
: m_data(vec.m_data), m_id(static_cast<Index>(m_data.size())), m_start(0)
{
EIGEN_UNUSED_VARIABLE(outer);
eigen_assert(outer==0);
}
ReverseInnerIterator(const internal::CompressedStorage<Scalar,Index>& data)
: m_data(data), m_id(static_cast<Index>(m_data.size())), m_start(0)
{}
inline ReverseInnerIterator& operator--() { m_id--; return *this; }
inline Scalar value() const { return m_data.value(m_id-1); }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_data.value(m_id-1)); }
inline Index index() const { return m_data.index(m_id-1); }
inline Index row() const { return IsColVector ? index() : 0; }
inline Index col() const { return IsColVector ? 0 : index(); }
inline operator bool() const { return (m_id > m_start); }
protected:
const internal::CompressedStorage<Scalar,Index>& m_data;
Index m_id;
const Index m_start;
};
} // end namespace Eigen
#endif // EIGEN_SPARSEVECTOR_H