/* Authors: Karl MacMillan <kmacmillan@mentalrootkit.com>
* Jason Tang <jtang@tresys.com>
* Joshua Brindle <jbrindle@tresys.com>
*
* Copyright (C) 2004-2005 Tresys Technology, LLC
* Copyright (C) 2007 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "context.h"
#include <sepol/policydb/policydb.h>
#include <sepol/policydb/conditional.h>
#include <sepol/policydb/hashtab.h>
#include <sepol/policydb/expand.h>
#include <sepol/policydb/hierarchy.h>
#include <sepol/policydb/avrule_block.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "debug.h"
#include "private.h"
typedef struct expand_state {
int verbose;
uint32_t *typemap;
uint32_t *boolmap;
uint32_t *rolemap;
uint32_t *usermap;
policydb_t *base;
policydb_t *out;
sepol_handle_t *handle;
int expand_neverallow;
} expand_state_t;
static void expand_state_init(expand_state_t * state)
{
memset(state, 0, sizeof(expand_state_t));
}
static int map_ebitmap(ebitmap_t * src, ebitmap_t * dst, uint32_t * map)
{
unsigned int i;
ebitmap_node_t *tnode;
ebitmap_init(dst);
ebitmap_for_each_bit(src, tnode, i) {
if (!ebitmap_node_get_bit(tnode, i))
continue;
if (!map[i])
continue;
if (ebitmap_set_bit(dst, map[i] - 1, 1))
return -1;
}
return 0;
}
static int type_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
int ret;
char *id, *new_id;
type_datum_t *type, *new_type;
expand_state_t *state;
id = (char *)key;
type = (type_datum_t *) datum;
state = (expand_state_t *) data;
if ((type->flavor == TYPE_TYPE && !type->primary)
|| type->flavor == TYPE_ALIAS) {
/* aliases are handled later */
return 0;
}
if (!is_id_enabled(id, state->base, SYM_TYPES)) {
/* identifier's scope is not enabled */
return 0;
}
if (state->verbose)
INFO(state->handle, "copying type or attribute %s", id);
new_id = strdup(id);
if (new_id == NULL) {
ERR(state->handle, "Out of memory!");
return -1;
}
new_type = (type_datum_t *) malloc(sizeof(type_datum_t));
if (!new_type) {
ERR(state->handle, "Out of memory!");
free(new_id);
return SEPOL_ENOMEM;
}
memset(new_type, 0, sizeof(type_datum_t));
new_type->flavor = type->flavor;
new_type->flags = type->flags;
new_type->s.value = ++state->out->p_types.nprim;
if (new_type->s.value > UINT16_MAX) {
free(new_id);
free(new_type);
ERR(state->handle, "type space overflow");
return -1;
}
new_type->primary = 1;
state->typemap[type->s.value - 1] = new_type->s.value;
ret = hashtab_insert(state->out->p_types.table,
(hashtab_key_t) new_id,
(hashtab_datum_t) new_type);
if (ret) {
free(new_id);
free(new_type);
ERR(state->handle, "hashtab overflow");
return -1;
}
if (new_type->flags & TYPE_FLAGS_PERMISSIVE)
if (ebitmap_set_bit(&state->out->permissive_map, new_type->s.value, 1)) {
ERR(state->handle, "Out of memory!\n");
return -1;
}
return 0;
}
static int attr_convert_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
char *id;
type_datum_t *type, *new_type;
expand_state_t *state;
ebitmap_t tmp_union;
id = (char *)key;
type = (type_datum_t *) datum;
state = (expand_state_t *) data;
if (type->flavor != TYPE_ATTRIB)
return 0;
if (!is_id_enabled(id, state->base, SYM_TYPES)) {
/* identifier's scope is not enabled */
return 0;
}
if (state->verbose)
INFO(state->handle, "converting attribute %s", id);
new_type = hashtab_search(state->out->p_types.table, id);
if (!new_type) {
ERR(state->handle, "attribute %s vanished!", id);
return -1;
}
if (map_ebitmap(&type->types, &tmp_union, state->typemap)) {
ERR(state->handle, "out of memory");
return -1;
}
/* then union tmp_union onto &new_type->types */
if (ebitmap_union(&new_type->types, &tmp_union)) {
ERR(state->handle, "Out of memory!");
return -1;
}
ebitmap_destroy(&tmp_union);
return 0;
}
static int perm_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
int ret;
char *id, *new_id;
symtab_t *s;
perm_datum_t *perm, *new_perm;
id = key;
perm = (perm_datum_t *) datum;
s = (symtab_t *) data;
new_perm = (perm_datum_t *) malloc(sizeof(perm_datum_t));
if (!new_perm) {
return -1;
}
memset(new_perm, 0, sizeof(perm_datum_t));
new_id = strdup(id);
if (!new_id) {
free(new_perm);
return -1;
}
new_perm->s.value = perm->s.value;
s->nprim++;
ret = hashtab_insert(s->table, new_id, (hashtab_datum_t *) new_perm);
if (ret) {
free(new_id);
free(new_perm);
return -1;
}
return 0;
}
static int common_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
int ret;
char *id, *new_id;
common_datum_t *common, *new_common;
expand_state_t *state;
id = (char *)key;
common = (common_datum_t *) datum;
state = (expand_state_t *) data;
if (state->verbose)
INFO(state->handle, "copying common %s", id);
new_common = (common_datum_t *) malloc(sizeof(common_datum_t));
if (!new_common) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(new_common, 0, sizeof(common_datum_t));
if (symtab_init(&new_common->permissions, PERM_SYMTAB_SIZE)) {
ERR(state->handle, "Out of memory!");
free(new_common);
return -1;
}
new_id = strdup(id);
if (!new_id) {
ERR(state->handle, "Out of memory!");
symtab_destroy(&new_common->permissions);
free(new_common);
return -1;
}
new_common->s.value = common->s.value;
state->out->p_commons.nprim++;
ret =
hashtab_insert(state->out->p_commons.table, new_id,
(hashtab_datum_t *) new_common);
if (ret) {
ERR(state->handle, "hashtab overflow");
symtab_destroy(&new_common->permissions);
free(new_common);
free(new_id);
return -1;
}
if (hashtab_map
(common->permissions.table, perm_copy_callback,
&new_common->permissions)) {
ERR(state->handle, "Out of memory!");
return -1;
}
return 0;
}
static int constraint_node_clone(constraint_node_t ** dst,
constraint_node_t * src,
expand_state_t * state)
{
constraint_node_t *new_con = NULL, *last_new_con = NULL;
constraint_expr_t *new_expr = NULL;
*dst = NULL;
while (src != NULL) {
constraint_expr_t *expr, *expr_l = NULL;
new_con =
(constraint_node_t *) malloc(sizeof(constraint_node_t));
if (!new_con) {
goto out_of_mem;
}
memset(new_con, 0, sizeof(constraint_node_t));
new_con->permissions = src->permissions;
for (expr = src->expr; expr; expr = expr->next) {
if ((new_expr = calloc(1, sizeof(*new_expr))) == NULL) {
goto out_of_mem;
}
if (constraint_expr_init(new_expr) == -1) {
goto out_of_mem;
}
new_expr->expr_type = expr->expr_type;
new_expr->attr = expr->attr;
new_expr->op = expr->op;
if (new_expr->expr_type == CEXPR_NAMES) {
if (new_expr->attr & CEXPR_TYPE) {
/* Type sets require expansion and conversion. */
if (expand_convert_type_set(state->out,
state->
typemap,
expr->
type_names,
&new_expr->
names, 1)) {
goto out_of_mem;
}
} else if (new_expr->attr & CEXPR_ROLE) {
if (map_ebitmap(&expr->names, &new_expr->names, state->rolemap)) {
goto out_of_mem;
}
} else if (new_expr->attr & CEXPR_USER) {
if (map_ebitmap(&expr->names, &new_expr->names, state->usermap)) {
goto out_of_mem;
}
} else {
/* Other kinds of sets do not. */
if (ebitmap_cpy(&new_expr->names,
&expr->names)) {
goto out_of_mem;
}
}
}
if (expr_l) {
expr_l->next = new_expr;
} else {
new_con->expr = new_expr;
}
expr_l = new_expr;
new_expr = NULL;
}
if (last_new_con == NULL) {
*dst = new_con;
} else {
last_new_con->next = new_con;
}
last_new_con = new_con;
src = src->next;
}
return 0;
out_of_mem:
ERR(state->handle, "Out of memory!");
if (new_con)
free(new_con);
constraint_expr_destroy(new_expr);
return -1;
}
static int class_copy_default_new_object(expand_state_t *state,
class_datum_t *olddatum,
class_datum_t *newdatum)
{
if (olddatum->default_user) {
if (newdatum->default_user && olddatum->default_user != newdatum->default_user) {
ERR(state->handle, "Found conflicting default user definitions");
return SEPOL_ENOTSUP;
}
newdatum->default_user = olddatum->default_user;
}
if (olddatum->default_role) {
if (newdatum->default_role && olddatum->default_role != newdatum->default_role) {
ERR(state->handle, "Found conflicting default role definitions");
return SEPOL_ENOTSUP;
}
newdatum->default_role = olddatum->default_role;
}
if (olddatum->default_range) {
if (newdatum->default_range && olddatum->default_range != newdatum->default_range) {
ERR(state->handle, "Found conflicting default range definitions");
return SEPOL_ENOTSUP;
}
newdatum->default_range = olddatum->default_range;
}
return 0;
}
static int class_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
int ret;
char *id, *new_id;
class_datum_t *class, *new_class;
expand_state_t *state;
id = (char *)key;
class = (class_datum_t *) datum;
state = (expand_state_t *) data;
if (!is_id_enabled(id, state->base, SYM_CLASSES)) {
/* identifier's scope is not enabled */
return 0;
}
if (state->verbose)
INFO(state->handle, "copying class %s", id);
new_class = (class_datum_t *) malloc(sizeof(class_datum_t));
if (!new_class) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(new_class, 0, sizeof(class_datum_t));
if (symtab_init(&new_class->permissions, PERM_SYMTAB_SIZE)) {
ERR(state->handle, "Out of memory!");
free(new_class);
return -1;
}
new_class->s.value = class->s.value;
state->out->p_classes.nprim++;
ret = class_copy_default_new_object(state, class, new_class);
if (ret) {
free(new_class);
return ret;
}
new_id = strdup(id);
if (!new_id) {
ERR(state->handle, "Out of memory!");
free(new_class);
return -1;
}
ret =
hashtab_insert(state->out->p_classes.table, new_id,
(hashtab_datum_t *) new_class);
if (ret) {
ERR(state->handle, "hashtab overflow");
free(new_class);
free(new_id);
return -1;
}
if (hashtab_map
(class->permissions.table, perm_copy_callback,
&new_class->permissions)) {
ERR(state->handle, "hashtab overflow");
return -1;
}
if (class->comkey) {
new_class->comkey = strdup(class->comkey);
if (!new_class->comkey) {
ERR(state->handle, "Out of memory!");
return -1;
}
new_class->comdatum =
hashtab_search(state->out->p_commons.table,
new_class->comkey);
if (!new_class->comdatum) {
ERR(state->handle, "could not find common datum %s",
new_class->comkey);
return -1;
}
new_class->permissions.nprim +=
new_class->comdatum->permissions.nprim;
}
return 0;
}
static int constraint_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
char *id;
class_datum_t *class, *new_class;
expand_state_t *state;
id = (char *)key;
class = (class_datum_t *) datum;
state = (expand_state_t *) data;
new_class = hashtab_search(state->out->p_classes.table, id);
if (!new_class) {
ERR(state->handle, "class %s vanished", id);
return -1;
}
/* constraints */
if (constraint_node_clone
(&new_class->constraints, class->constraints, state) == -1
|| constraint_node_clone(&new_class->validatetrans,
class->validatetrans, state) == -1) {
return -1;
}
return 0;
}
/*
* The boundaries have to be copied after the types/roles/users are copied,
* because it refers hashtab to lookup destinated objects.
*/
static int type_bounds_copy_callback(hashtab_key_t key,
hashtab_datum_t datum, void *data)
{
expand_state_t *state = (expand_state_t *) data;
type_datum_t *type = (type_datum_t *) datum;
type_datum_t *dest;
uint32_t bounds_val;
if (!type->bounds)
return 0;
if (!is_id_enabled((char *)key, state->base, SYM_TYPES))
return 0;
bounds_val = state->typemap[type->bounds - 1];
dest = hashtab_search(state->out->p_types.table, (char *)key);
if (!dest) {
ERR(state->handle, "Type lookup failed for %s", (char *)key);
return -1;
}
if (dest->bounds != 0 && dest->bounds != bounds_val) {
ERR(state->handle, "Inconsistent boundary for %s", (char *)key);
return -1;
}
dest->bounds = bounds_val;
return 0;
}
static int role_bounds_copy_callback(hashtab_key_t key,
hashtab_datum_t datum, void *data)
{
expand_state_t *state = (expand_state_t *) data;
role_datum_t *role = (role_datum_t *) datum;
role_datum_t *dest;
uint32_t bounds_val;
if (!role->bounds)
return 0;
if (!is_id_enabled((char *)key, state->base, SYM_ROLES))
return 0;
bounds_val = state->rolemap[role->bounds - 1];
dest = hashtab_search(state->out->p_roles.table, (char *)key);
if (!dest) {
ERR(state->handle, "Role lookup failed for %s", (char *)key);
return -1;
}
if (dest->bounds != 0 && dest->bounds != bounds_val) {
ERR(state->handle, "Inconsistent boundary for %s", (char *)key);
return -1;
}
dest->bounds = bounds_val;
return 0;
}
static int user_bounds_copy_callback(hashtab_key_t key,
hashtab_datum_t datum, void *data)
{
expand_state_t *state = (expand_state_t *) data;
user_datum_t *user = (user_datum_t *) datum;
user_datum_t *dest;
uint32_t bounds_val;
if (!user->bounds)
return 0;
if (!is_id_enabled((char *)key, state->base, SYM_USERS))
return 0;
bounds_val = state->usermap[user->bounds - 1];
dest = hashtab_search(state->out->p_users.table, (char *)key);
if (!dest) {
ERR(state->handle, "User lookup failed for %s", (char *)key);
return -1;
}
if (dest->bounds != 0 && dest->bounds != bounds_val) {
ERR(state->handle, "Inconsistent boundary for %s", (char *)key);
return -1;
}
dest->bounds = bounds_val;
return 0;
}
/* The aliases have to be copied after the types and attributes to be certain that
* the out symbol table will have the type that the alias refers. Otherwise, we
* won't be able to find the type value for the alias. We can't depend on the
* declaration ordering because of the hash table.
*/
static int alias_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
int ret;
char *id, *new_id;
type_datum_t *alias, *new_alias;
expand_state_t *state;
uint32_t prival;
id = (char *)key;
alias = (type_datum_t *) datum;
state = (expand_state_t *) data;
/* ignore regular types */
if (alias->flavor == TYPE_TYPE && alias->primary)
return 0;
/* ignore attributes */
if (alias->flavor == TYPE_ATTRIB)
return 0;
if (alias->flavor == TYPE_ALIAS)
prival = alias->primary;
else
prival = alias->s.value;
if (!is_id_enabled(state->base->p_type_val_to_name[prival - 1],
state->base, SYM_TYPES)) {
/* The primary type for this alias is not enabled, the alias
* shouldn't be either */
return 0;
}
if (state->verbose)
INFO(state->handle, "copying alias %s", id);
new_id = strdup(id);
if (!new_id) {
ERR(state->handle, "Out of memory!");
return -1;
}
new_alias = (type_datum_t *) malloc(sizeof(type_datum_t));
if (!new_alias) {
ERR(state->handle, "Out of memory!");
free(new_id);
return SEPOL_ENOMEM;
}
memset(new_alias, 0, sizeof(type_datum_t));
if (alias->flavor == TYPE_TYPE)
new_alias->s.value = state->typemap[alias->s.value - 1];
else if (alias->flavor == TYPE_ALIAS)
new_alias->s.value = state->typemap[alias->primary - 1];
else
assert(0); /* unreachable */
new_alias->flags = alias->flags;
ret = hashtab_insert(state->out->p_types.table,
(hashtab_key_t) new_id,
(hashtab_datum_t) new_alias);
if (ret) {
ERR(state->handle, "hashtab overflow");
free(new_alias);
free(new_id);
return -1;
}
state->typemap[alias->s.value - 1] = new_alias->s.value;
if (new_alias->flags & TYPE_FLAGS_PERMISSIVE)
if (ebitmap_set_bit(&state->out->permissive_map, new_alias->s.value, 1)) {
ERR(state->handle, "Out of memory!");
return -1;
}
return 0;
}
static int role_remap_dominates(hashtab_key_t key __attribute__ ((unused)), hashtab_datum_t datum, void *data)
{
ebitmap_t mapped_roles;
role_datum_t *role = (role_datum_t *) datum;
expand_state_t *state = (expand_state_t *) data;
if (map_ebitmap(&role->dominates, &mapped_roles, state->rolemap))
return -1;
ebitmap_destroy(&role->dominates);
if (ebitmap_cpy(&role->dominates, &mapped_roles))
return -1;
ebitmap_destroy(&mapped_roles);
return 0;
}
/* For the role attribute in the base module, escalate its counterpart's
* types.types ebitmap in the out module to the counterparts of all the
* regular role that belongs to the current role attribute. Note, must be
* invoked after role_copy_callback so that state->rolemap is available.
*/
static int role_fix_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
char *id, *base_reg_role_id;
role_datum_t *role, *new_role, *regular_role;
expand_state_t *state;
ebitmap_node_t *rnode;
unsigned int i;
ebitmap_t mapped_roles;
id = key;
role = (role_datum_t *)datum;
state = (expand_state_t *)data;
if (strcmp(id, OBJECT_R) == 0) {
/* object_r is never a role attribute by far */
return 0;
}
if (!is_id_enabled(id, state->base, SYM_ROLES)) {
/* identifier's scope is not enabled */
return 0;
}
if (role->flavor != ROLE_ATTRIB)
return 0;
if (state->verbose)
INFO(state->handle, "fixing role attribute %s", id);
new_role =
(role_datum_t *)hashtab_search(state->out->p_roles.table, id);
assert(new_role != NULL && new_role->flavor == ROLE_ATTRIB);
ebitmap_init(&mapped_roles);
if (map_ebitmap(&role->roles, &mapped_roles, state->rolemap))
return -1;
if (ebitmap_union(&new_role->roles, &mapped_roles)) {
ERR(state->handle, "Out of memory!");
ebitmap_destroy(&mapped_roles);
return -1;
}
ebitmap_destroy(&mapped_roles);
ebitmap_for_each_bit(&role->roles, rnode, i) {
if (ebitmap_node_get_bit(rnode, i)) {
/* take advantage of sym_val_to_name[]
* of the base module */
base_reg_role_id = state->base->p_role_val_to_name[i];
regular_role = (role_datum_t *)hashtab_search(
state->out->p_roles.table,
base_reg_role_id);
assert(regular_role != NULL &&
regular_role->flavor == ROLE_ROLE);
if (ebitmap_union(®ular_role->types.types,
&new_role->types.types)) {
ERR(state->handle, "Out of memory!");
return -1;
}
}
}
return 0;
}
static int role_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
int ret;
char *id, *new_id;
role_datum_t *role;
role_datum_t *new_role;
expand_state_t *state;
ebitmap_t tmp_union_types;
id = key;
role = (role_datum_t *) datum;
state = (expand_state_t *) data;
if (strcmp(id, OBJECT_R) == 0) {
/* object_r is always value 1 */
state->rolemap[role->s.value - 1] = 1;
return 0;
}
if (!is_id_enabled(id, state->base, SYM_ROLES)) {
/* identifier's scope is not enabled */
return 0;
}
if (state->verbose)
INFO(state->handle, "copying role %s", id);
new_role =
(role_datum_t *) hashtab_search(state->out->p_roles.table, id);
if (!new_role) {
new_role = (role_datum_t *) malloc(sizeof(role_datum_t));
if (!new_role) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(new_role, 0, sizeof(role_datum_t));
new_id = strdup(id);
if (!new_id) {
ERR(state->handle, "Out of memory!");
free(new_role);
return -1;
}
state->out->p_roles.nprim++;
new_role->flavor = role->flavor;
new_role->s.value = state->out->p_roles.nprim;
state->rolemap[role->s.value - 1] = new_role->s.value;
ret = hashtab_insert(state->out->p_roles.table,
(hashtab_key_t) new_id,
(hashtab_datum_t) new_role);
if (ret) {
ERR(state->handle, "hashtab overflow");
free(new_role);
free(new_id);
return -1;
}
}
/* The dominates bitmap is going to be wrong for the moment,
* we'll come back later and remap them, after we are sure all
* the roles have been added */
if (ebitmap_union(&new_role->dominates, &role->dominates)) {
ERR(state->handle, "Out of memory!");
return -1;
}
ebitmap_init(&tmp_union_types);
/* convert types in the role datum in the global symtab */
if (expand_convert_type_set
(state->out, state->typemap, &role->types, &tmp_union_types, 1)) {
ebitmap_destroy(&tmp_union_types);
ERR(state->handle, "Out of memory!");
return -1;
}
if (ebitmap_union(&new_role->types.types, &tmp_union_types)) {
ERR(state->handle, "Out of memory!");
ebitmap_destroy(&tmp_union_types);
return -1;
}
ebitmap_destroy(&tmp_union_types);
return 0;
}
int mls_semantic_level_expand(mls_semantic_level_t * sl, mls_level_t * l,
policydb_t * p, sepol_handle_t * h)
{
mls_semantic_cat_t *cat;
level_datum_t *levdatum;
unsigned int i;
mls_level_init(l);
if (!p->mls)
return 0;
/* Required not declared. */
if (!sl->sens)
return 0;
l->sens = sl->sens;
levdatum = (level_datum_t *) hashtab_search(p->p_levels.table,
p->p_sens_val_to_name[l->
sens -
1]);
for (cat = sl->cat; cat; cat = cat->next) {
if (cat->low > cat->high) {
ERR(h, "Category range is not valid %s.%s",
p->p_cat_val_to_name[cat->low - 1],
p->p_cat_val_to_name[cat->high - 1]);
return -1;
}
for (i = cat->low - 1; i < cat->high; i++) {
if (!ebitmap_get_bit(&levdatum->level->cat, i)) {
ERR(h, "Category %s can not be associate with "
"level %s",
p->p_cat_val_to_name[i],
p->p_sens_val_to_name[l->sens - 1]);
}
if (ebitmap_set_bit(&l->cat, i, 1)) {
ERR(h, "Out of memory!");
return -1;
}
}
}
return 0;
}
int mls_semantic_range_expand(mls_semantic_range_t * sr, mls_range_t * r,
policydb_t * p, sepol_handle_t * h)
{
if (mls_semantic_level_expand(&sr->level[0], &r->level[0], p, h) < 0)
return -1;
if (mls_semantic_level_expand(&sr->level[1], &r->level[1], p, h) < 0) {
mls_semantic_level_destroy(&sr->level[0]);
return -1;
}
if (!mls_level_dom(&r->level[1], &r->level[0])) {
mls_range_destroy(r);
ERR(h, "MLS range high level does not dominate low level");
return -1;
}
return 0;
}
static int user_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
int ret;
expand_state_t *state;
user_datum_t *user;
user_datum_t *new_user;
char *id, *new_id;
ebitmap_t tmp_union;
id = key;
user = (user_datum_t *) datum;
state = (expand_state_t *) data;
if (!is_id_enabled(id, state->base, SYM_USERS)) {
/* identifier's scope is not enabled */
return 0;
}
if (state->verbose)
INFO(state->handle, "copying user %s", id);
new_user =
(user_datum_t *) hashtab_search(state->out->p_users.table, id);
if (!new_user) {
new_user = (user_datum_t *) malloc(sizeof(user_datum_t));
if (!new_user) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(new_user, 0, sizeof(user_datum_t));
state->out->p_users.nprim++;
new_user->s.value = state->out->p_users.nprim;
state->usermap[user->s.value - 1] = new_user->s.value;
new_id = strdup(id);
if (!new_id) {
ERR(state->handle, "Out of memory!");
free(new_user);
return -1;
}
ret = hashtab_insert(state->out->p_users.table,
(hashtab_key_t) new_id,
(hashtab_datum_t) new_user);
if (ret) {
ERR(state->handle, "hashtab overflow");
user_datum_destroy(new_user);
free(new_user);
free(new_id);
return -1;
}
/* expand the semantic MLS info */
if (mls_semantic_range_expand(&user->range,
&new_user->exp_range,
state->out, state->handle)) {
return -1;
}
if (mls_semantic_level_expand(&user->dfltlevel,
&new_user->exp_dfltlevel,
state->out, state->handle)) {
return -1;
}
if (!mls_level_between(&new_user->exp_dfltlevel,
&new_user->exp_range.level[0],
&new_user->exp_range.level[1])) {
ERR(state->handle, "default level not within user "
"range");
return -1;
}
} else {
/* require that the MLS info match */
mls_range_t tmp_range;
mls_level_t tmp_level;
if (mls_semantic_range_expand(&user->range, &tmp_range,
state->out, state->handle)) {
return -1;
}
if (mls_semantic_level_expand(&user->dfltlevel, &tmp_level,
state->out, state->handle)) {
mls_range_destroy(&tmp_range);
return -1;
}
if (!mls_range_eq(&new_user->exp_range, &tmp_range) ||
!mls_level_eq(&new_user->exp_dfltlevel, &tmp_level)) {
mls_range_destroy(&tmp_range);
mls_level_destroy(&tmp_level);
return -1;
}
mls_range_destroy(&tmp_range);
mls_level_destroy(&tmp_level);
}
ebitmap_init(&tmp_union);
/* get global roles for this user */
if (role_set_expand(&user->roles, &tmp_union, state->out, state->base, state->rolemap)) {
ERR(state->handle, "Out of memory!");
ebitmap_destroy(&tmp_union);
return -1;
}
if (ebitmap_union(&new_user->roles.roles, &tmp_union)) {
ERR(state->handle, "Out of memory!");
ebitmap_destroy(&tmp_union);
return -1;
}
ebitmap_destroy(&tmp_union);
return 0;
}
static int bool_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
int ret;
expand_state_t *state;
cond_bool_datum_t *bool, *new_bool;
char *id, *new_id;
id = key;
bool = (cond_bool_datum_t *) datum;
state = (expand_state_t *) data;
if (!is_id_enabled(id, state->base, SYM_BOOLS)) {
/* identifier's scope is not enabled */
return 0;
}
if (bool->flags & COND_BOOL_FLAGS_TUNABLE) {
/* Skip tunables */
return 0;
}
if (state->verbose)
INFO(state->handle, "copying boolean %s", id);
new_bool = (cond_bool_datum_t *) malloc(sizeof(cond_bool_datum_t));
if (!new_bool) {
ERR(state->handle, "Out of memory!");
return -1;
}
new_id = strdup(id);
if (!new_id) {
ERR(state->handle, "Out of memory!");
free(new_bool);
return -1;
}
state->out->p_bools.nprim++;
new_bool->s.value = state->out->p_bools.nprim;
ret = hashtab_insert(state->out->p_bools.table,
(hashtab_key_t) new_id,
(hashtab_datum_t) new_bool);
if (ret) {
ERR(state->handle, "hashtab overflow");
free(new_bool);
free(new_id);
return -1;
}
state->boolmap[bool->s.value - 1] = new_bool->s.value;
new_bool->state = bool->state;
new_bool->flags = bool->flags;
return 0;
}
static int sens_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
expand_state_t *state = (expand_state_t *) data;
level_datum_t *level = (level_datum_t *) datum, *new_level = NULL;
char *id = (char *)key, *new_id = NULL;
if (!is_id_enabled(id, state->base, SYM_LEVELS)) {
/* identifier's scope is not enabled */
return 0;
}
if (state->verbose)
INFO(state->handle, "copying sensitivity level %s", id);
new_level = (level_datum_t *) malloc(sizeof(level_datum_t));
if (!new_level)
goto out_of_mem;
level_datum_init(new_level);
new_level->level = (mls_level_t *) malloc(sizeof(mls_level_t));
if (!new_level->level)
goto out_of_mem;
mls_level_init(new_level->level);
new_id = strdup(id);
if (!new_id)
goto out_of_mem;
if (mls_level_cpy(new_level->level, level->level)) {
goto out_of_mem;
}
new_level->isalias = level->isalias;
state->out->p_levels.nprim++;
if (hashtab_insert(state->out->p_levels.table,
(hashtab_key_t) new_id,
(hashtab_datum_t) new_level)) {
goto out_of_mem;
}
return 0;
out_of_mem:
ERR(state->handle, "Out of memory!");
if (new_level != NULL && new_level->level != NULL) {
mls_level_destroy(new_level->level);
free(new_level->level);
}
level_datum_destroy(new_level);
free(new_level);
free(new_id);
return -1;
}
static int cats_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
void *data)
{
expand_state_t *state = (expand_state_t *) data;
cat_datum_t *cat = (cat_datum_t *) datum, *new_cat = NULL;
char *id = (char *)key, *new_id = NULL;
if (!is_id_enabled(id, state->base, SYM_CATS)) {
/* identifier's scope is not enabled */
return 0;
}
if (state->verbose)
INFO(state->handle, "copying category attribute %s", id);
new_cat = (cat_datum_t *) malloc(sizeof(cat_datum_t));
if (!new_cat)
goto out_of_mem;
cat_datum_init(new_cat);
new_id = strdup(id);
if (!new_id)
goto out_of_mem;
new_cat->s.value = cat->s.value;
new_cat->isalias = cat->isalias;
state->out->p_cats.nprim++;
if (hashtab_insert(state->out->p_cats.table,
(hashtab_key_t) new_id, (hashtab_datum_t) new_cat)) {
goto out_of_mem;
}
return 0;
out_of_mem:
ERR(state->handle, "Out of memory!");
cat_datum_destroy(new_cat);
free(new_cat);
free(new_id);
return -1;
}
static int copy_role_allows(expand_state_t * state, role_allow_rule_t * rules)
{
unsigned int i, j;
role_allow_t *cur_allow, *n, *l;
role_allow_rule_t *cur;
ebitmap_t roles, new_roles;
ebitmap_node_t *snode, *tnode;
/* start at the end of the list */
for (l = state->out->role_allow; l && l->next; l = l->next) ;
cur = rules;
while (cur) {
ebitmap_init(&roles);
ebitmap_init(&new_roles);
if (role_set_expand(&cur->roles, &roles, state->out, state->base, state->rolemap)) {
ERR(state->handle, "Out of memory!");
return -1;
}
if (role_set_expand(&cur->new_roles, &new_roles, state->out, state->base, state->rolemap)) {
ERR(state->handle, "Out of memory!");
return -1;
}
ebitmap_for_each_bit(&roles, snode, i) {
if (!ebitmap_node_get_bit(snode, i))
continue;
ebitmap_for_each_bit(&new_roles, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
/* check for duplicates */
cur_allow = state->out->role_allow;
while (cur_allow) {
if ((cur_allow->role == i + 1) &&
(cur_allow->new_role == j + 1))
break;
cur_allow = cur_allow->next;
}
if (cur_allow)
continue;
n = (role_allow_t *)
malloc(sizeof(role_allow_t));
if (!n) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(n, 0, sizeof(role_allow_t));
n->role = i + 1;
n->new_role = j + 1;
if (l) {
l->next = n;
} else {
state->out->role_allow = n;
}
l = n;
}
}
ebitmap_destroy(&roles);
ebitmap_destroy(&new_roles);
cur = cur->next;
}
return 0;
}
static int copy_role_trans(expand_state_t * state, role_trans_rule_t * rules)
{
unsigned int i, j, k;
role_trans_t *n, *l, *cur_trans;
role_trans_rule_t *cur;
ebitmap_t roles, types;
ebitmap_node_t *rnode, *tnode, *cnode;
/* start at the end of the list */
for (l = state->out->role_tr; l && l->next; l = l->next) ;
cur = rules;
while (cur) {
ebitmap_init(&roles);
ebitmap_init(&types);
if (role_set_expand(&cur->roles, &roles, state->out, state->base, state->rolemap)) {
ERR(state->handle, "Out of memory!");
return -1;
}
if (expand_convert_type_set
(state->out, state->typemap, &cur->types, &types, 1)) {
ERR(state->handle, "Out of memory!");
return -1;
}
ebitmap_for_each_bit(&roles, rnode, i) {
if (!ebitmap_node_get_bit(rnode, i))
continue;
ebitmap_for_each_bit(&types, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
ebitmap_for_each_bit(&cur->classes, cnode, k) {
if (!ebitmap_node_get_bit(cnode, k))
continue;
cur_trans = state->out->role_tr;
while (cur_trans) {
unsigned int mapped_role;
mapped_role = state->rolemap[cur->new_role - 1];
if ((cur_trans->role ==
i + 1) &&
(cur_trans->type ==
j + 1) &&
(cur_trans->tclass ==
k + 1)) {
if (cur_trans->new_role == mapped_role) {
break;
} else {
ERR(state->handle,
"Conflicting role trans rule %s %s : %s { %s vs %s }",
state->out->p_role_val_to_name[i],
state->out->p_type_val_to_name[j],
state->out->p_class_val_to_name[k],
state->out->p_role_val_to_name[mapped_role - 1],
state->out->p_role_val_to_name[cur_trans->new_role - 1]);
return -1;
}
}
cur_trans = cur_trans->next;
}
if (cur_trans)
continue;
n = (role_trans_t *)
malloc(sizeof(role_trans_t));
if (!n) {
ERR(state->handle,
"Out of memory!");
return -1;
}
memset(n, 0, sizeof(role_trans_t));
n->role = i + 1;
n->type = j + 1;
n->tclass = k + 1;
n->new_role = state->rolemap
[cur->new_role - 1];
if (l)
l->next = n;
else
state->out->role_tr = n;
l = n;
}
}
}
ebitmap_destroy(&roles);
ebitmap_destroy(&types);
cur = cur->next;
}
return 0;
}
static int expand_filename_trans(expand_state_t *state, filename_trans_rule_t *rules)
{
unsigned int i, j;
filename_trans_t *new_trans, *cur_trans;
filename_trans_rule_t *cur_rule;
ebitmap_t stypes, ttypes;
ebitmap_node_t *snode, *tnode;
cur_rule = rules;
while (cur_rule) {
uint32_t mapped_otype;
ebitmap_init(&stypes);
ebitmap_init(&ttypes);
if (expand_convert_type_set(state->out, state->typemap,
&cur_rule->stypes, &stypes, 1)) {
ERR(state->handle, "Out of memory!");
return -1;
}
if (expand_convert_type_set(state->out, state->typemap,
&cur_rule->ttypes, &ttypes, 1)) {
ERR(state->handle, "Out of memory!");
return -1;
}
mapped_otype = state->typemap[cur_rule->otype - 1];
ebitmap_for_each_bit(&stypes, snode, i) {
if (!ebitmap_node_get_bit(snode, i))
continue;
ebitmap_for_each_bit(&ttypes, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
cur_trans = state->out->filename_trans;
while (cur_trans) {
if ((cur_trans->stype == i + 1) &&
(cur_trans->ttype == j + 1) &&
(cur_trans->tclass == cur_rule->tclass) &&
(!strcmp(cur_trans->name, cur_rule->name))) {
/* duplicate rule, who cares */
if (cur_trans->otype == mapped_otype)
break;
ERR(state->handle, "Conflicting filename trans rules %s %s %s : %s otype1:%s otype2:%s",
cur_trans->name,
state->out->p_type_val_to_name[i],
state->out->p_type_val_to_name[j],
state->out->p_class_val_to_name[cur_trans->tclass - 1],
state->out->p_type_val_to_name[cur_trans->otype - 1],
state->out->p_type_val_to_name[mapped_otype - 1]);
return -1;
}
cur_trans = cur_trans->next;
}
/* duplicate rule, who cares */
if (cur_trans)
continue;
new_trans = malloc(sizeof(*new_trans));
if (!new_trans) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(new_trans, 0, sizeof(*new_trans));
new_trans->next = state->out->filename_trans;
state->out->filename_trans = new_trans;
new_trans->name = strdup(cur_rule->name);
if (!new_trans->name) {
ERR(state->handle, "Out of memory!");
return -1;
}
new_trans->stype = i + 1;
new_trans->ttype = j + 1;
new_trans->tclass = cur_rule->tclass;
new_trans->otype = mapped_otype;
}
}
ebitmap_destroy(&stypes);
ebitmap_destroy(&ttypes);
cur_rule = cur_rule->next;
}
return 0;
}
static int exp_rangetr_helper(uint32_t stype, uint32_t ttype, uint32_t tclass,
mls_semantic_range_t * trange,
expand_state_t * state)
{
range_trans_t *rt, *check_rt = state->out->range_tr;
mls_range_t exp_range;
int rc = -1;
if (mls_semantic_range_expand(trange, &exp_range, state->out,
state->handle))
goto out;
/* check for duplicates/conflicts */
while (check_rt) {
if ((check_rt->source_type == stype) &&
(check_rt->target_type == ttype) &&
(check_rt->target_class == tclass)) {
if (mls_range_eq(&check_rt->target_range, &exp_range)) {
/* duplicate */
break;
} else {
/* conflict */
ERR(state->handle,
"Conflicting range trans rule %s %s : %s",
state->out->p_type_val_to_name[stype - 1],
state->out->p_type_val_to_name[ttype - 1],
state->out->p_class_val_to_name[tclass -
1]);
goto out;
}
}
check_rt = check_rt->next;
}
if (check_rt) {
/* this is a dup - skip */
rc = 0;
goto out;
}
rt = (range_trans_t *) calloc(1, sizeof(range_trans_t));
if (!rt) {
ERR(state->handle, "Out of memory!");
goto out;
}
rt->next = state->out->range_tr;
state->out->range_tr = rt;
rt->source_type = stype;
rt->target_type = ttype;
rt->target_class = tclass;
if (mls_range_cpy(&rt->target_range, &exp_range)) {
ERR(state->handle, "Out of memory!");
goto out;
}
rc = 0;
out:
mls_range_destroy(&exp_range);
return rc;
}
static int expand_range_trans(expand_state_t * state,
range_trans_rule_t * rules)
{
unsigned int i, j, k;
range_trans_rule_t *rule;
ebitmap_t stypes, ttypes;
ebitmap_node_t *snode, *tnode, *cnode;
if (state->verbose)
INFO(state->handle, "expanding range transitions");
for (rule = rules; rule; rule = rule->next) {
ebitmap_init(&stypes);
ebitmap_init(&ttypes);
/* expand the type sets */
if (expand_convert_type_set(state->out, state->typemap,
&rule->stypes, &stypes, 1)) {
ERR(state->handle, "Out of memory!");
return -1;
}
if (expand_convert_type_set(state->out, state->typemap,
&rule->ttypes, &ttypes, 1)) {
ebitmap_destroy(&stypes);
ERR(state->handle, "Out of memory!");
return -1;
}
/* loop on source type */
ebitmap_for_each_bit(&stypes, snode, i) {
if (!ebitmap_node_get_bit(snode, i))
continue;
/* loop on target type */
ebitmap_for_each_bit(&ttypes, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
/* loop on target class */
ebitmap_for_each_bit(&rule->tclasses, cnode, k) {
if (!ebitmap_node_get_bit(cnode, k))
continue;
if (exp_rangetr_helper(i + 1,
j + 1,
k + 1,
&rule->trange,
state)) {
ebitmap_destroy(&stypes);
ebitmap_destroy(&ttypes);
return -1;
}
}
}
}
ebitmap_destroy(&stypes);
ebitmap_destroy(&ttypes);
}
return 0;
}
/* Search for an AV tab node within a hash table with the given key.
* If the node does not exist, create it and return it; otherwise
* return the pre-existing one.
*/
static avtab_ptr_t find_avtab_node(sepol_handle_t * handle,
avtab_t * avtab, avtab_key_t * key,
cond_av_list_t ** cond)
{
avtab_ptr_t node;
avtab_datum_t avdatum;
cond_av_list_t *nl;
node = avtab_search_node(avtab, key);
/* If this is for conditional policies, keep searching in case
the node is part of my conditional avtab. */
if (cond) {
while (node) {
if (node->parse_context == cond)
break;
node = avtab_search_node_next(node, key->specified);
}
}
if (!node) {
memset(&avdatum, 0, sizeof avdatum);
/* this is used to get the node - insertion is actually unique */
node = avtab_insert_nonunique(avtab, key, &avdatum);
if (!node) {
ERR(handle, "hash table overflow");
return NULL;
}
if (cond) {
node->parse_context = cond;
nl = (cond_av_list_t *) malloc(sizeof(cond_av_list_t));
if (!nl) {
ERR(handle, "Memory error");
return NULL;
}
memset(nl, 0, sizeof(cond_av_list_t));
nl->node = node;
nl->next = *cond;
*cond = nl;
}
}
return node;
}
#define EXPAND_RULE_SUCCESS 1
#define EXPAND_RULE_CONFLICT 0
#define EXPAND_RULE_ERROR -1
static int expand_terule_helper(sepol_handle_t * handle,
policydb_t * p, uint32_t * typemap,
uint32_t specified, cond_av_list_t ** cond,
cond_av_list_t ** other, uint32_t stype,
uint32_t ttype, class_perm_node_t * perms,
avtab_t * avtab, int enabled)
{
avtab_key_t avkey;
avtab_datum_t *avdatump;
avtab_ptr_t node;
class_perm_node_t *cur;
int conflict;
uint32_t oldtype = 0, spec = 0;
if (specified & AVRULE_TRANSITION) {
spec = AVTAB_TRANSITION;
} else if (specified & AVRULE_MEMBER) {
spec = AVTAB_MEMBER;
} else if (specified & AVRULE_CHANGE) {
spec = AVTAB_CHANGE;
} else {
assert(0); /* unreachable */
}
cur = perms;
while (cur) {
uint32_t remapped_data =
typemap ? typemap[cur->data - 1] : cur->data;
avkey.source_type = stype + 1;
avkey.target_type = ttype + 1;
avkey.target_class = cur->class;
avkey.specified = spec;
conflict = 0;
/* check to see if the expanded TE already exists --
* either in the global scope or in another
* conditional AV tab */
node = avtab_search_node(&p->te_avtab, &avkey);
if (node) {
conflict = 1;
} else {
node = avtab_search_node(&p->te_cond_avtab, &avkey);
if (node && node->parse_context != other) {
conflict = 2;
}
}
if (conflict) {
avdatump = &node->datum;
if (specified & AVRULE_TRANSITION) {
oldtype = avdatump->data;
} else if (specified & AVRULE_MEMBER) {
oldtype = avdatump->data;
} else if (specified & AVRULE_CHANGE) {
oldtype = avdatump->data;
}
if (oldtype == remapped_data) {
/* if the duplicate is inside the same scope (eg., unconditional
* or in same conditional then ignore it */
if ((conflict == 1 && cond == NULL)
|| node->parse_context == cond)
return EXPAND_RULE_SUCCESS;
ERR(handle, "duplicate TE rule for %s %s:%s %s",
p->p_type_val_to_name[avkey.source_type -
1],
p->p_type_val_to_name[avkey.target_type -
1],
p->p_class_val_to_name[avkey.target_class -
1],
p->p_type_val_to_name[oldtype - 1]);
return EXPAND_RULE_CONFLICT;
}
ERR(handle,
"conflicting TE rule for (%s, %s:%s): old was %s, new is %s",
p->p_type_val_to_name[avkey.source_type - 1],
p->p_type_val_to_name[avkey.target_type - 1],
p->p_class_val_to_name[avkey.target_class - 1],
p->p_type_val_to_name[oldtype - 1],
p->p_type_val_to_name[remapped_data - 1]);
return EXPAND_RULE_CONFLICT;
}
node = find_avtab_node(handle, avtab, &avkey, cond);
if (!node)
return -1;
if (enabled) {
node->key.specified |= AVTAB_ENABLED;
} else {
node->key.specified &= ~AVTAB_ENABLED;
}
avdatump = &node->datum;
if (specified & AVRULE_TRANSITION) {
avdatump->data = remapped_data;
} else if (specified & AVRULE_MEMBER) {
avdatump->data = remapped_data;
} else if (specified & AVRULE_CHANGE) {
avdatump->data = remapped_data;
} else {
assert(0); /* should never occur */
}
cur = cur->next;
}
return EXPAND_RULE_SUCCESS;
}
static int expand_avrule_helper(sepol_handle_t * handle,
uint32_t specified,
cond_av_list_t ** cond,
uint32_t stype, uint32_t ttype,
class_perm_node_t * perms, avtab_t * avtab,
int enabled)
{
avtab_key_t avkey;
avtab_datum_t *avdatump;
avtab_ptr_t node;
class_perm_node_t *cur;
uint32_t spec = 0;
if (specified & AVRULE_ALLOWED) {
spec = AVTAB_ALLOWED;
} else if (specified & AVRULE_AUDITALLOW) {
spec = AVTAB_AUDITALLOW;
} else if (specified & AVRULE_AUDITDENY) {
spec = AVTAB_AUDITDENY;
} else if (specified & AVRULE_DONTAUDIT) {
if (handle && handle->disable_dontaudit)
return EXPAND_RULE_SUCCESS;
spec = AVTAB_AUDITDENY;
} else if (specified & AVRULE_NEVERALLOW) {
spec = AVTAB_NEVERALLOW;
} else {
assert(0); /* unreachable */
}
cur = perms;
while (cur) {
avkey.source_type = stype + 1;
avkey.target_type = ttype + 1;
avkey.target_class = cur->class;
avkey.specified = spec;
node = find_avtab_node(handle, avtab, &avkey, cond);
if (!node)
return EXPAND_RULE_ERROR;
if (enabled) {
node->key.specified |= AVTAB_ENABLED;
} else {
node->key.specified &= ~AVTAB_ENABLED;
}
avdatump = &node->datum;
if (specified & AVRULE_ALLOWED) {
avdatump->data |= cur->data;
} else if (specified & AVRULE_AUDITALLOW) {
avdatump->data |= cur->data;
} else if (specified & AVRULE_NEVERALLOW) {
avdatump->data |= cur->data;
} else if (specified & AVRULE_AUDITDENY) {
/* Since a '0' in an auditdeny mask represents
* a permission we do NOT want to audit
* (dontaudit), we use the '&' operand to
* ensure that all '0's in the mask are
* retained (much unlike the allow and
* auditallow cases).
*/
avdatump->data &= cur->data;
} else if (specified & AVRULE_DONTAUDIT) {
if (avdatump->data)
avdatump->data &= ~cur->data;
else
avdatump->data = ~cur->data;
} else {
assert(0); /* should never occur */
}
cur = cur->next;
}
return EXPAND_RULE_SUCCESS;
}
static int expand_rule_helper(sepol_handle_t * handle,
policydb_t * p, uint32_t * typemap,
avrule_t * source_rule, avtab_t * dest_avtab,
cond_av_list_t ** cond, cond_av_list_t ** other,
int enabled,
ebitmap_t * stypes, ebitmap_t * ttypes)
{
unsigned int i, j;
int retval;
ebitmap_node_t *snode, *tnode;
ebitmap_for_each_bit(stypes, snode, i) {
if (!ebitmap_node_get_bit(snode, i))
continue;
if (source_rule->flags & RULE_SELF) {
if (source_rule->specified & AVRULE_AV) {
retval = expand_avrule_helper(handle, source_rule->specified,
cond, i, i, source_rule->perms,
dest_avtab, enabled);
if (retval != EXPAND_RULE_SUCCESS)
return retval;
} else {
retval = expand_terule_helper(handle, p, typemap,
source_rule->specified, cond,
other, i, i, source_rule->perms,
dest_avtab, enabled);
if (retval != EXPAND_RULE_SUCCESS)
return retval;
}
}
ebitmap_for_each_bit(ttypes, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
if (source_rule->specified & AVRULE_AV) {
retval = expand_avrule_helper(handle, source_rule->specified,
cond, i, j, source_rule->perms,
dest_avtab, enabled);
if (retval != EXPAND_RULE_SUCCESS)
return retval;
} else {
retval = expand_terule_helper(handle, p, typemap,
source_rule->specified, cond,
other, i, j, source_rule->perms,
dest_avtab, enabled);
if (retval != EXPAND_RULE_SUCCESS)
return retval;
}
}
}
return EXPAND_RULE_SUCCESS;
}
/*
* Expand a rule into a given avtab - checking for conflicting type
* rules in the destination policy. Return EXPAND_RULE_SUCCESS on
* success, EXPAND_RULE_CONFLICT if the rule conflicts with something
* (and hence was not added), or EXPAND_RULE_ERROR on error.
*/
static int convert_and_expand_rule(sepol_handle_t * handle,
policydb_t * dest_pol, uint32_t * typemap,
avrule_t * source_rule, avtab_t * dest_avtab,
cond_av_list_t ** cond,
cond_av_list_t ** other, int enabled,
int do_neverallow)
{
int retval;
ebitmap_t stypes, ttypes;
unsigned char alwaysexpand;
if (!do_neverallow && source_rule->specified & AVRULE_NEVERALLOW)
return EXPAND_RULE_SUCCESS;
ebitmap_init(&stypes);
ebitmap_init(&ttypes);
/* Force expansion for type rules and for self rules. */
alwaysexpand = ((source_rule->specified & AVRULE_TYPE) ||
(source_rule->flags & RULE_SELF));
if (expand_convert_type_set
(dest_pol, typemap, &source_rule->stypes, &stypes, alwaysexpand))
return EXPAND_RULE_ERROR;
if (expand_convert_type_set
(dest_pol, typemap, &source_rule->ttypes, &ttypes, alwaysexpand))
return EXPAND_RULE_ERROR;
retval = expand_rule_helper(handle, dest_pol, typemap,
source_rule, dest_avtab,
cond, other, enabled, &stypes, &ttypes);
ebitmap_destroy(&stypes);
ebitmap_destroy(&ttypes);
return retval;
}
static int cond_avrule_list_copy(policydb_t * dest_pol, avrule_t * source_rules,
avtab_t * dest_avtab, cond_av_list_t ** list,
cond_av_list_t ** other, uint32_t * typemap,
int enabled, expand_state_t * state)
{
avrule_t *cur;
cur = source_rules;
while (cur) {
if (convert_and_expand_rule(state->handle, dest_pol,
typemap, cur, dest_avtab,
list, other, enabled,
0) != EXPAND_RULE_SUCCESS) {
return -1;
}
cur = cur->next;
}
return 0;
}
static int cond_node_map_bools(expand_state_t * state, cond_node_t * cn)
{
cond_expr_t *cur;
unsigned int i;
cur = cn->expr;
while (cur) {
if (cur->bool)
cur->bool = state->boolmap[cur->bool - 1];
cur = cur->next;
}
for (i = 0; i < min(cn->nbools, COND_MAX_BOOLS); i++)
cn->bool_ids[i] = state->boolmap[cn->bool_ids[i] - 1];
if (cond_normalize_expr(state->out, cn)) {
ERR(state->handle, "Error while normalizing conditional");
return -1;
}
return 0;
}
/* copy the nodes in *reverse* order -- the result is that the last
* given conditional appears first in the policy, so as to match the
* behavior of the upstream compiler */
static int cond_node_copy(expand_state_t * state, cond_node_t * cn)
{
cond_node_t *new_cond, *tmp;
if (cn == NULL) {
return 0;
}
if (cond_node_copy(state, cn->next)) {
return -1;
}
/* If current cond_node_t is of tunable, its effective branch
* has been appended to its home decl->avrules list during link
* and now we should just skip it. */
if (cn->flags & COND_NODE_FLAGS_TUNABLE)
return 0;
if (cond_normalize_expr(state->base, cn)) {
ERR(state->handle, "Error while normalizing conditional");
return -1;
}
/* create a new temporary conditional node with the booleans
* mapped */
tmp = cond_node_create(state->base, cn);
if (!tmp) {
ERR(state->handle, "Out of memory");
return -1;
}
if (cond_node_map_bools(state, tmp)) {
ERR(state->handle, "Error mapping booleans");
free(tmp);
return -1;
}
new_cond = cond_node_search(state->out, state->out->cond_list, tmp);
if (!new_cond) {
cond_node_destroy(tmp);
free(tmp);
ERR(state->handle, "Out of memory!");
return -1;
}
cond_node_destroy(tmp);
free(tmp);
if (cond_avrule_list_copy
(state->out, cn->avtrue_list, &state->out->te_cond_avtab,
&new_cond->true_list, &new_cond->false_list, state->typemap,
new_cond->cur_state, state))
return -1;
if (cond_avrule_list_copy
(state->out, cn->avfalse_list, &state->out->te_cond_avtab,
&new_cond->false_list, &new_cond->true_list, state->typemap,
!new_cond->cur_state, state))
return -1;
return 0;
}
static int context_copy(context_struct_t * dst, context_struct_t * src,
expand_state_t * state)
{
dst->user = state->usermap[src->user - 1];
dst->role = state->rolemap[src->role - 1];
dst->type = state->typemap[src->type - 1];
return mls_context_cpy(dst, src);
}
static int ocontext_copy_xen(expand_state_t *state)
{
unsigned int i;
ocontext_t *c, *n, *l;
for (i = 0; i < OCON_NUM; i++) {
l = NULL;
for (c = state->base->ocontexts[i]; c; c = c->next) {
n = malloc(sizeof(ocontext_t));
if (!n) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(n, 0, sizeof(ocontext_t));
if (l)
l->next = n;
else
state->out->ocontexts[i] = n;
l = n;
switch (i) {
case OCON_XEN_ISID:
if (c->context[0].user == 0) {
ERR(state->handle,
"Missing context for %s initial sid",
c->u.name);
return -1;
}
n->sid[0] = c->sid[0];
break;
case OCON_XEN_PIRQ:
n->u.pirq = c->u.pirq;
break;
case OCON_XEN_IOPORT:
n->u.ioport.low_ioport = c->u.ioport.low_ioport;
n->u.ioport.high_ioport =
c->u.ioport.high_ioport;
break;
case OCON_XEN_IOMEM:
n->u.iomem.low_iomem = c->u.iomem.low_iomem;
n->u.iomem.high_iomem = c->u.iomem.high_iomem;
break;
case OCON_XEN_PCIDEVICE:
n->u.device = c->u.device;
break;
default:
/* shouldn't get here */
ERR(state->handle, "Unknown ocontext");
return -1;
}
if (context_copy(&n->context[0], &c->context[0],
state)) {
ERR(state->handle, "Out of memory!");
return -1;
}
}
}
return 0;
}
static int ocontext_copy_selinux(expand_state_t *state)
{
unsigned int i, j;
ocontext_t *c, *n, *l;
for (i = 0; i < OCON_NUM; i++) {
l = NULL;
for (c = state->base->ocontexts[i]; c; c = c->next) {
n = malloc(sizeof(ocontext_t));
if (!n) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(n, 0, sizeof(ocontext_t));
if (l)
l->next = n;
else
state->out->ocontexts[i] = n;
l = n;
switch (i) {
case OCON_ISID:
if (c->context[0].user == 0) {
ERR(state->handle,
"Missing context for %s initial sid",
c->u.name);
return -1;
}
n->sid[0] = c->sid[0];
break;
case OCON_FS: /* FALLTHROUGH */
case OCON_NETIF:
n->u.name = strdup(c->u.name);
if (!n->u.name) {
ERR(state->handle, "Out of memory!");
return -1;
}
if (context_copy
(&n->context[1], &c->context[1], state)) {
ERR(state->handle, "Out of memory!");
return -1;
}
break;
case OCON_PORT:
n->u.port.protocol = c->u.port.protocol;
n->u.port.low_port = c->u.port.low_port;
n->u.port.high_port = c->u.port.high_port;
break;
case OCON_NODE:
n->u.node.addr = c->u.node.addr;
n->u.node.mask = c->u.node.mask;
break;
case OCON_FSUSE:
n->v.behavior = c->v.behavior;
n->u.name = strdup(c->u.name);
if (!n->u.name) {
ERR(state->handle, "Out of memory!");
return -1;
}
break;
case OCON_NODE6:
for (j = 0; j < 4; j++)
n->u.node6.addr[j] = c->u.node6.addr[j];
for (j = 0; j < 4; j++)
n->u.node6.mask[j] = c->u.node6.mask[j];
break;
default:
/* shouldn't get here */
ERR(state->handle, "Unknown ocontext");
return -1;
}
if (context_copy(&n->context[0], &c->context[0], state)) {
ERR(state->handle, "Out of memory!");
return -1;
}
}
}
return 0;
}
static int ocontext_copy(expand_state_t *state, uint32_t target)
{
int rc = -1;
switch (target) {
case SEPOL_TARGET_SELINUX:
rc = ocontext_copy_selinux(state);
break;
case SEPOL_TARGET_XEN:
rc = ocontext_copy_xen(state);
break;
default:
ERR(state->handle, "Unknown target");
return -1;
}
return rc;
}
static int genfs_copy(expand_state_t * state)
{
ocontext_t *c, *newc, *l;
genfs_t *genfs, *newgenfs, *end;
end = NULL;
for (genfs = state->base->genfs; genfs; genfs = genfs->next) {
newgenfs = malloc(sizeof(genfs_t));
if (!newgenfs) {
ERR(state->handle, "Out of memory!");
return -1;
}
memset(newgenfs, 0, sizeof(genfs_t));
newgenfs->fstype = strdup(genfs->fstype);
if (!newgenfs->fstype) {
ERR(state->handle, "Out of memory!");
free(newgenfs);
return -1;
}
l = NULL;
for (c = genfs->head; c; c = c->next) {
newc = malloc(sizeof(ocontext_t));
if (!newc) {
ERR(state->handle, "Out of memory!");
free(newgenfs->fstype);
free(newgenfs);
return -1;
}
memset(newc, 0, sizeof(ocontext_t));
newc->u.name = strdup(c->u.name);
if (!newc->u.name) {
ERR(state->handle, "Out of memory!");
free(newc);
free(newgenfs->fstype);
free(newgenfs);
return -1;
}
newc->v.sclass = c->v.sclass;
context_copy(&newc->context[0], &c->context[0], state);
if (l)
l->next = newc;
else
newgenfs->head = newc;
l = newc;
}
if (!end) {
state->out->genfs = newgenfs;
} else {
end->next = newgenfs;
}
end = newgenfs;
}
return 0;
}
static int type_attr_map(hashtab_key_t key
__attribute__ ((unused)), hashtab_datum_t datum,
void *ptr)
{
type_datum_t *type;
expand_state_t *state = ptr;
policydb_t *p = state->out;
unsigned int i;
ebitmap_node_t *tnode;
type = (type_datum_t *) datum;
if (type->flavor == TYPE_ATTRIB) {
if (ebitmap_cpy(&p->attr_type_map[type->s.value - 1],
&type->types)) {
ERR(state->handle, "Out of memory!");
return -1;
}
ebitmap_for_each_bit(&type->types, tnode, i) {
if (!ebitmap_node_get_bit(tnode, i))
continue;
if (ebitmap_set_bit(&p->type_attr_map[i],
type->s.value - 1, 1)) {
ERR(state->handle, "Out of memory!");
return -1;
}
}
}
return 0;
}
/* converts typeset using typemap and expands into ebitmap_t types using the attributes in the passed in policy.
* this should not be called until after all the blocks have been processed and the attributes in target policy
* are complete. */
int expand_convert_type_set(policydb_t * p, uint32_t * typemap,
type_set_t * set, ebitmap_t * types,
unsigned char alwaysexpand)
{
type_set_t tmpset;
type_set_init(&tmpset);
if (map_ebitmap(&set->types, &tmpset.types, typemap))
return -1;
if (map_ebitmap(&set->negset, &tmpset.negset, typemap))
return -1;
tmpset.flags = set->flags;
if (type_set_expand(&tmpset, types, p, alwaysexpand))
return -1;
type_set_destroy(&tmpset);
return 0;
}
/* Expand a rule into a given avtab - checking for conflicting type
* rules. Return 1 on success, 0 if the rule conflicts with something
* (and hence was not added), or -1 on error. */
int expand_rule(sepol_handle_t * handle,
policydb_t * source_pol,
avrule_t * source_rule, avtab_t * dest_avtab,
cond_av_list_t ** cond, cond_av_list_t ** other, int enabled)
{
int retval;
ebitmap_t stypes, ttypes;
if (source_rule->specified & AVRULE_NEVERALLOW)
return 1;
ebitmap_init(&stypes);
ebitmap_init(&ttypes);
if (type_set_expand(&source_rule->stypes, &stypes, source_pol, 1))
return -1;
if (type_set_expand(&source_rule->ttypes, &ttypes, source_pol, 1))
return -1;
retval = expand_rule_helper(handle, source_pol, NULL,
source_rule, dest_avtab,
cond, other, enabled, &stypes, &ttypes);
ebitmap_destroy(&stypes);
ebitmap_destroy(&ttypes);
return retval;
}
/* Expand a role set into an ebitmap containing the roles.
* This handles the attribute and flags.
* Attribute expansion depends on if the rolemap is available.
* During module compile the rolemap is not available, the
* possible duplicates of a regular role and the role attribute
* the regular role belongs to could be properly handled by
* copy_role_trans and copy_role_allow.
*/
int role_set_expand(role_set_t * x, ebitmap_t * r, policydb_t * out, policydb_t * base, uint32_t * rolemap)
{
unsigned int i;
ebitmap_node_t *rnode;
ebitmap_t mapped_roles, roles;
policydb_t *p = out;
role_datum_t *role;
ebitmap_init(r);
if (x->flags & ROLE_STAR) {
for (i = 0; i < p->p_roles.nprim++; i++)
if (ebitmap_set_bit(r, i, 1))
return -1;
return 0;
}
ebitmap_init(&mapped_roles);
ebitmap_init(&roles);
if (rolemap) {
assert(base != NULL);
ebitmap_for_each_bit(&x->roles, rnode, i) {
if (ebitmap_node_get_bit(rnode, i)) {
/* take advantage of p_role_val_to_struct[]
* of the base module */
role = base->role_val_to_struct[i];
assert(role != NULL);
if (role->flavor == ROLE_ATTRIB) {
if (ebitmap_union(&roles,
&role->roles))
goto bad;
} else {
if (ebitmap_set_bit(&roles, i, 1))
goto bad;
}
}
}
if (map_ebitmap(&roles, &mapped_roles, rolemap))
goto bad;
} else {
if (ebitmap_cpy(&mapped_roles, &x->roles))
goto bad;
}
ebitmap_for_each_bit(&mapped_roles, rnode, i) {
if (ebitmap_node_get_bit(rnode, i)) {
if (ebitmap_set_bit(r, i, 1))
goto bad;
}
}
ebitmap_destroy(&mapped_roles);
ebitmap_destroy(&roles);
/* if role is to be complimented, invert the entire bitmap here */
if (x->flags & ROLE_COMP) {
for (i = 0; i < ebitmap_length(r); i++) {
if (ebitmap_get_bit(r, i)) {
if (ebitmap_set_bit(r, i, 0))
return -1;
} else {
if (ebitmap_set_bit(r, i, 1))
return -1;
}
}
}
return 0;
bad:
ebitmap_destroy(&mapped_roles);
ebitmap_destroy(&roles);
return -1;
}
/* Expand a type set into an ebitmap containing the types. This
* handles the negset, attributes, and flags.
* Attribute expansion depends on several factors:
* - if alwaysexpand is 1, then they will be expanded,
* - if the type set has a negset or flags, then they will be expanded,
* - otherwise, they will not be expanded.
*/
int type_set_expand(type_set_t * set, ebitmap_t * t, policydb_t * p,
unsigned char alwaysexpand)
{
unsigned int i;
ebitmap_t types, neg_types;
ebitmap_node_t *tnode;
ebitmap_init(&types);
ebitmap_init(t);
if (alwaysexpand || ebitmap_length(&set->negset) || set->flags) {
/* First go through the types and OR all the attributes to types */
ebitmap_for_each_bit(&set->types, tnode, i) {
if (ebitmap_node_get_bit(tnode, i)) {
if (p->type_val_to_struct[i]->flavor ==
TYPE_ATTRIB) {
if (ebitmap_union
(&types,
&p->type_val_to_struct[i]->
types)) {
return -1;
}
} else {
if (ebitmap_set_bit(&types, i, 1)) {
return -1;
}
}
}
}
} else {
/* No expansion of attributes, just copy the set as is. */
if (ebitmap_cpy(&types, &set->types))
return -1;
}
/* Now do the same thing for negset */
ebitmap_init(&neg_types);
ebitmap_for_each_bit(&set->negset, tnode, i) {
if (ebitmap_node_get_bit(tnode, i)) {
if (p->type_val_to_struct[i] &&
p->type_val_to_struct[i]->flavor == TYPE_ATTRIB) {
if (ebitmap_union
(&neg_types,
&p->type_val_to_struct[i]->types)) {
return -1;
}
} else {
if (ebitmap_set_bit(&neg_types, i, 1)) {
return -1;
}
}
}
}
if (set->flags & TYPE_STAR) {
/* set all types not in neg_types */
for (i = 0; i < p->p_types.nprim; i++) {
if (ebitmap_get_bit(&neg_types, i))
continue;
if (p->type_val_to_struct[i] &&
p->type_val_to_struct[i]->flavor == TYPE_ATTRIB)
continue;
if (ebitmap_set_bit(t, i, 1))
return -1;
}
goto out;
}
ebitmap_for_each_bit(&types, tnode, i) {
if (ebitmap_node_get_bit(tnode, i)
&& (!ebitmap_get_bit(&neg_types, i)))
if (ebitmap_set_bit(t, i, 1))
return -1;
}
if (set->flags & TYPE_COMP) {
for (i = 0; i < p->p_types.nprim; i++) {
if (p->type_val_to_struct[i] &&
p->type_val_to_struct[i]->flavor == TYPE_ATTRIB) {
assert(!ebitmap_get_bit(t, i));
continue;
}
if (ebitmap_get_bit(t, i)) {
if (ebitmap_set_bit(t, i, 0))
return -1;
} else {
if (ebitmap_set_bit(t, i, 1))
return -1;
}
}
}
out:
ebitmap_destroy(&types);
ebitmap_destroy(&neg_types);
return 0;
}
static int copy_neverallow(policydb_t * dest_pol, uint32_t * typemap,
avrule_t * source_rule)
{
ebitmap_t stypes, ttypes;
avrule_t *avrule;
class_perm_node_t *cur_perm, *new_perm, *tail_perm;
ebitmap_init(&stypes);
ebitmap_init(&ttypes);
if (expand_convert_type_set
(dest_pol, typemap, &source_rule->stypes, &stypes, 1))
return -1;
if (expand_convert_type_set
(dest_pol, typemap, &source_rule->ttypes, &ttypes, 1))
return -1;
avrule = (avrule_t *) malloc(sizeof(avrule_t));
if (!avrule)
return -1;
avrule_init(avrule);
avrule->specified = AVRULE_NEVERALLOW;
avrule->line = source_rule->line;
avrule->flags = source_rule->flags;
if (ebitmap_cpy(&avrule->stypes.types, &stypes))
goto err;
if (ebitmap_cpy(&avrule->ttypes.types, &ttypes))
goto err;
cur_perm = source_rule->perms;
tail_perm = NULL;
while (cur_perm) {
new_perm =
(class_perm_node_t *) malloc(sizeof(class_perm_node_t));
if (!new_perm)
goto err;
class_perm_node_init(new_perm);
new_perm->class = cur_perm->class;
assert(new_perm->class);
/* once we have modules with permissions we'll need to map the permissions (and classes) */
new_perm->data = cur_perm->data;
if (!avrule->perms)
avrule->perms = new_perm;
if (tail_perm)
tail_perm->next = new_perm;
tail_perm = new_perm;
cur_perm = cur_perm->next;
}
/* just prepend the avrule to the first branch; it'll never be
written to disk */
if (!dest_pol->global->branch_list->avrules)
dest_pol->global->branch_list->avrules = avrule;
else {
avrule->next = dest_pol->global->branch_list->avrules;
dest_pol->global->branch_list->avrules = avrule;
}
ebitmap_destroy(&stypes);
ebitmap_destroy(&ttypes);
return 0;
err:
ebitmap_destroy(&stypes);
ebitmap_destroy(&ttypes);
ebitmap_destroy(&avrule->stypes.types);
ebitmap_destroy(&avrule->ttypes.types);
cur_perm = avrule->perms;
while (cur_perm) {
tail_perm = cur_perm->next;
free(cur_perm);
cur_perm = tail_perm;
}
free(avrule);
return -1;
}
/*
* Expands the avrule blocks for a policy. RBAC rules are copied. Neverallow
* rules are copied or expanded as per the settings in the state object; all
* other AV rules are expanded. If neverallow rules are expanded, they are not
* copied, otherwise they are copied for later use by the assertion checker.
*/
static int copy_and_expand_avrule_block(expand_state_t * state)
{
avrule_block_t *curblock = state->base->global;
avrule_block_t *prevblock;
int retval = -1;
if (avtab_alloc(&state->out->te_avtab, MAX_AVTAB_SIZE)) {
ERR(state->handle, "Out of Memory!");
return -1;
}
if (avtab_alloc(&state->out->te_cond_avtab, MAX_AVTAB_SIZE)) {
ERR(state->handle, "Out of Memory!");
return -1;
}
while (curblock) {
avrule_decl_t *decl = curblock->enabled;
avrule_t *cur_avrule;
if (decl == NULL) {
/* nothing was enabled within this block */
goto cont;
}
/* copy role allows and role trans */
if (copy_role_allows(state, decl->role_allow_rules) != 0 ||
copy_role_trans(state, decl->role_tr_rules) != 0) {
goto cleanup;
}
if (expand_filename_trans(state, decl->filename_trans_rules))
goto cleanup;
/* expand the range transition rules */
if (expand_range_trans(state, decl->range_tr_rules))
goto cleanup;
/* copy rules */
cur_avrule = decl->avrules;
while (cur_avrule != NULL) {
if (!(state->expand_neverallow)
&& cur_avrule->specified & AVRULE_NEVERALLOW) {
/* copy this over directly so that assertions are checked later */
if (copy_neverallow
(state->out, state->typemap, cur_avrule))
ERR(state->handle,
"Error while copying neverallow.");
} else {
if (cur_avrule->specified & AVRULE_NEVERALLOW) {
state->out->unsupported_format = 1;
}
if (convert_and_expand_rule
(state->handle, state->out, state->typemap,
cur_avrule, &state->out->te_avtab, NULL,
NULL, 0,
state->expand_neverallow) !=
EXPAND_RULE_SUCCESS) {
goto cleanup;
}
}
cur_avrule = cur_avrule->next;
}
/* copy conditional rules */
if (cond_node_copy(state, decl->cond_list))
goto cleanup;
cont:
prevblock = curblock;
curblock = curblock->next;
if (state->handle && state->handle->expand_consume_base) {
/* set base top avrule block in case there
* is an error condition and the policy needs
* to be destroyed */
state->base->global = curblock;
avrule_block_destroy(prevblock);
}
}
retval = 0;
cleanup:
return retval;
}
/*
* This function allows external users of the library (such as setools) to
* expand only the avrules and optionally perform expansion of neverallow rules
* or expand into the same policy for analysis purposes.
*/
int expand_module_avrules(sepol_handle_t * handle, policydb_t * base,
policydb_t * out, uint32_t * typemap,
uint32_t * boolmap, uint32_t * rolemap,
uint32_t * usermap, int verbose,
int expand_neverallow)
{
expand_state_t state;
expand_state_init(&state);
state.base = base;
state.out = out;
state.typemap = typemap;
state.boolmap = boolmap;
state.rolemap = rolemap;
state.usermap = usermap;
state.handle = handle;
state.verbose = verbose;
state.expand_neverallow = expand_neverallow;
return copy_and_expand_avrule_block(&state);
}
static void discard_tunables(sepol_handle_t *sh, policydb_t *pol)
{
avrule_block_t *block;
avrule_decl_t *decl;
cond_node_t *cur_node;
cond_expr_t *cur_expr;
int cur_state, preserve_tunables = 0;
avrule_t *tail, *to_be_appended;
if (sh && sh->preserve_tunables)
preserve_tunables = 1;
/* Iterate through all cond_node of all enabled decls, if a cond_node
* is about tunable, calculate its state value and concatenate one of
* its avrule list to the current decl->avrules list. On the other
* hand, the disabled unused branch of a tunable would be discarded.
*
* Note, such tunable cond_node would be skipped over in expansion,
* so we won't have to worry about removing it from decl->cond_list
* here :-)
*
* If tunables are requested to be preserved then they would be
* "transformed" as booleans by having their TUNABLE flag cleared.
*/
for (block = pol->global; block != NULL; block = block->next) {
decl = block->enabled;
if (decl == NULL || decl->enabled == 0)
continue;
tail = decl->avrules;
while (tail && tail->next)
tail = tail->next;
for (cur_node = decl->cond_list; cur_node != NULL;
cur_node = cur_node->next) {
int booleans, tunables, i;
cond_bool_datum_t *booldatum;
cond_bool_datum_t *tmp[COND_EXPR_MAXDEPTH];
booleans = tunables = 0;
memset(tmp, 0, sizeof(cond_bool_datum_t *) * COND_EXPR_MAXDEPTH);
for (cur_expr = cur_node->expr; cur_expr != NULL;
cur_expr = cur_expr->next) {
if (cur_expr->expr_type != COND_BOOL)
continue;
booldatum = pol->bool_val_to_struct[cur_expr->bool - 1];
if (booldatum->flags & COND_BOOL_FLAGS_TUNABLE)
tmp[tunables++] = booldatum;
else
booleans++;
}
/* bool_copy_callback() at link phase has ensured
* that no mixture of tunables and booleans in one
* expression. However, this would be broken by the
* request to preserve tunables */
if (!preserve_tunables)
assert(!(booleans && tunables));
if (booleans || preserve_tunables) {
cur_node->flags &= ~COND_NODE_FLAGS_TUNABLE;
if (tunables) {
for (i = 0; i < tunables; i++)
tmp[i]->flags &= ~COND_BOOL_FLAGS_TUNABLE;
}
} else {
cur_node->flags |= COND_NODE_FLAGS_TUNABLE;
cur_state = cond_evaluate_expr(pol, cur_node->expr);
if (cur_state == -1) {
printf("Expression result was "
"undefined, skipping all"
"rules\n");
continue;
}
to_be_appended = (cur_state == 1) ?
cur_node->avtrue_list : cur_node->avfalse_list;
if (tail)
tail->next = to_be_appended;
else
tail = decl->avrules = to_be_appended;
/* Now that the effective branch has been
* appended, neutralize its original pointer */
if (cur_state == 1)
cur_node->avtrue_list = NULL;
else
cur_node->avfalse_list = NULL;
/* Update the tail of decl->avrules for
* further concatenation */
while (tail && tail->next)
tail = tail->next;
}
}
}
}
/* Linking should always be done before calling expand, even if
* there is only a base since all optionals are dealt with at link time
* the base passed in should be indexed and avrule blocks should be
* enabled.
*/
int expand_module(sepol_handle_t * handle,
policydb_t * base, policydb_t * out, int verbose, int check)
{
int retval = -1;
unsigned int i;
expand_state_t state;
avrule_block_t *curblock;
/* Append tunable's avtrue_list or avfalse_list to the avrules list
* of its home decl depending on its state value, so that the effect
* rules of a tunable would be added to te_avtab permanently. Whereas
* the disabled unused branch would be discarded.
*
* Originally this function is called at the very end of link phase,
* however, we need to keep the linked policy intact for analysis
* purpose. */
discard_tunables(handle, base);
expand_state_init(&state);
state.verbose = verbose;
state.typemap = NULL;
state.base = base;
state.out = out;
state.handle = handle;
if (base->policy_type != POLICY_BASE) {
ERR(handle, "Target of expand was not a base policy.");
return -1;
}
state.out->policy_type = POLICY_KERN;
state.out->policyvers = POLICYDB_VERSION_MAX;
/* Copy mls state from base to out */
out->mls = base->mls;
out->handle_unknown = base->handle_unknown;
/* Copy target from base to out */
out->target_platform = base->target_platform;
/* Copy policy capabilities */
if (ebitmap_cpy(&out->policycaps, &base->policycaps)) {
ERR(handle, "Out of memory!");
goto cleanup;
}
if ((state.typemap =
(uint32_t *) calloc(state.base->p_types.nprim,
sizeof(uint32_t))) == NULL) {
ERR(handle, "Out of memory!");
goto cleanup;
}
state.boolmap = (uint32_t *)calloc(state.base->p_bools.nprim, sizeof(uint32_t));
if (!state.boolmap) {
ERR(handle, "Out of memory!");
goto cleanup;
}
state.rolemap = (uint32_t *)calloc(state.base->p_roles.nprim, sizeof(uint32_t));
if (!state.rolemap) {
ERR(handle, "Out of memory!");
goto cleanup;
}
state.usermap = (uint32_t *)calloc(state.base->p_users.nprim, sizeof(uint32_t));
if (!state.usermap) {
ERR(handle, "Out of memory!");
goto cleanup;
}
/* order is important - types must be first */
/* copy types */
if (hashtab_map(state.base->p_types.table, type_copy_callback, &state)) {
goto cleanup;
}
/* convert attribute type sets */
if (hashtab_map
(state.base->p_types.table, attr_convert_callback, &state)) {
goto cleanup;
}
/* copy commons */
if (hashtab_map
(state.base->p_commons.table, common_copy_callback, &state)) {
goto cleanup;
}
/* copy classes, note, this does not copy constraints, constraints can't be
* copied until after all the blocks have been processed and attributes are complete */
if (hashtab_map
(state.base->p_classes.table, class_copy_callback, &state)) {
goto cleanup;
}
/* copy type bounds */
if (hashtab_map(state.base->p_types.table,
type_bounds_copy_callback, &state))
goto cleanup;
/* copy aliases */
if (hashtab_map(state.base->p_types.table, alias_copy_callback, &state))
goto cleanup;
/* index here so that type indexes are available for role_copy_callback */
if (policydb_index_others(handle, out, verbose)) {
ERR(handle, "Error while indexing out symbols");
goto cleanup;
}
/* copy roles */
if (hashtab_map(state.base->p_roles.table, role_copy_callback, &state))
goto cleanup;
if (hashtab_map(state.base->p_roles.table,
role_bounds_copy_callback, &state))
goto cleanup;
/* escalate the type_set_t in a role attribute to all regular roles
* that belongs to it. */
if (hashtab_map(state.base->p_roles.table, role_fix_callback, &state))
goto cleanup;
/* copy MLS's sensitivity level and categories - this needs to be done
* before expanding users (they need to be indexed too) */
if (hashtab_map(state.base->p_levels.table, sens_copy_callback, &state))
goto cleanup;
if (hashtab_map(state.base->p_cats.table, cats_copy_callback, &state))
goto cleanup;
if (policydb_index_others(handle, out, verbose)) {
ERR(handle, "Error while indexing out symbols");
goto cleanup;
}
/* copy users */
if (hashtab_map(state.base->p_users.table, user_copy_callback, &state))
goto cleanup;
if (hashtab_map(state.base->p_users.table,
user_bounds_copy_callback, &state))
goto cleanup;
/* copy bools */
if (hashtab_map(state.base->p_bools.table, bool_copy_callback, &state))
goto cleanup;
if (policydb_index_classes(out)) {
ERR(handle, "Error while indexing out classes");
goto cleanup;
}
if (policydb_index_others(handle, out, verbose)) {
ERR(handle, "Error while indexing out symbols");
goto cleanup;
}
/* loop through all decls and union attributes, roles, users */
for (curblock = state.base->global; curblock != NULL;
curblock = curblock->next) {
avrule_decl_t *decl = curblock->enabled;
if (decl == NULL) {
/* nothing was enabled within this block */
continue;
}
/* convert attribute type sets */
if (hashtab_map
(decl->p_types.table, attr_convert_callback, &state)) {
goto cleanup;
}
/* copy roles */
if (hashtab_map
(decl->p_roles.table, role_copy_callback, &state))
goto cleanup;
/* copy users */
if (hashtab_map
(decl->p_users.table, user_copy_callback, &state))
goto cleanup;
}
/* remap role dominates bitmaps */
if (hashtab_map(state.out->p_roles.table, role_remap_dominates, &state)) {
goto cleanup;
}
if (copy_and_expand_avrule_block(&state) < 0) {
ERR(handle, "Error during expand");
goto cleanup;
}
/* copy constraints */
if (hashtab_map
(state.base->p_classes.table, constraint_copy_callback, &state)) {
goto cleanup;
}
cond_optimize_lists(state.out->cond_list);
evaluate_conds(state.out);
/* copy ocontexts */
if (ocontext_copy(&state, out->target_platform))
goto cleanup;
/* copy genfs */
if (genfs_copy(&state))
goto cleanup;
/* Build the type<->attribute maps and remove attributes. */
state.out->attr_type_map = malloc(state.out->p_types.nprim *
sizeof(ebitmap_t));
state.out->type_attr_map = malloc(state.out->p_types.nprim *
sizeof(ebitmap_t));
if (!state.out->attr_type_map || !state.out->type_attr_map) {
ERR(handle, "Out of memory!");
goto cleanup;
}
for (i = 0; i < state.out->p_types.nprim; i++) {
ebitmap_init(&state.out->type_attr_map[i]);
ebitmap_init(&state.out->attr_type_map[i]);
/* add the type itself as the degenerate case */
if (ebitmap_set_bit(&state.out->type_attr_map[i], i, 1)) {
ERR(handle, "Out of memory!");
goto cleanup;
}
}
if (hashtab_map(state.out->p_types.table, type_attr_map, &state))
goto cleanup;
if (check) {
if (hierarchy_check_constraints(handle, state.out))
goto cleanup;
if (check_assertions
(handle, state.out,
state.out->global->branch_list->avrules))
goto cleanup;
}
retval = 0;
cleanup:
free(state.typemap);
free(state.boolmap);
free(state.rolemap);
free(state.usermap);
return retval;
}
static int expand_avtab_insert(avtab_t * a, avtab_key_t * k, avtab_datum_t * d)
{
avtab_ptr_t node;
avtab_datum_t *avd;
int rc;
node = avtab_search_node(a, k);
if (!node) {
rc = avtab_insert(a, k, d);
if (rc)
ERR(NULL, "Out of memory!");
return rc;
}
if ((k->specified & AVTAB_ENABLED) !=
(node->key.specified & AVTAB_ENABLED)) {
node = avtab_insert_nonunique(a, k, d);
if (!node) {
ERR(NULL, "Out of memory!");
return -1;
}
return 0;
}
avd = &node->datum;
switch (k->specified & ~AVTAB_ENABLED) {
case AVTAB_ALLOWED:
case AVTAB_AUDITALLOW:
avd->data |= d->data;
break;
case AVTAB_AUDITDENY:
avd->data &= d->data;
break;
default:
ERR(NULL, "Type conflict!");
return -1;
}
return 0;
}
struct expand_avtab_data {
avtab_t *expa;
policydb_t *p;
};
static int expand_avtab_node(avtab_key_t * k, avtab_datum_t * d, void *args)
{
struct expand_avtab_data *ptr = args;
avtab_t *expa = ptr->expa;
policydb_t *p = ptr->p;
type_datum_t *stype = p->type_val_to_struct[k->source_type - 1];
type_datum_t *ttype = p->type_val_to_struct[k->target_type - 1];
ebitmap_t *sattr = &p->attr_type_map[k->source_type - 1];
ebitmap_t *tattr = &p->attr_type_map[k->target_type - 1];
ebitmap_node_t *snode, *tnode;
unsigned int i, j;
avtab_key_t newkey;
int rc;
newkey.target_class = k->target_class;
newkey.specified = k->specified;
if (stype->flavor != TYPE_ATTRIB && ttype->flavor != TYPE_ATTRIB) {
/* Both are individual types, no expansion required. */
return expand_avtab_insert(expa, k, d);
}
if (stype->flavor != TYPE_ATTRIB) {
/* Source is an individual type, target is an attribute. */
newkey.source_type = k->source_type;
ebitmap_for_each_bit(tattr, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
newkey.target_type = j + 1;
rc = expand_avtab_insert(expa, &newkey, d);
if (rc)
return -1;
}
return 0;
}
if (ttype->flavor != TYPE_ATTRIB) {
/* Target is an individual type, source is an attribute. */
newkey.target_type = k->target_type;
ebitmap_for_each_bit(sattr, snode, i) {
if (!ebitmap_node_get_bit(snode, i))
continue;
newkey.source_type = i + 1;
rc = expand_avtab_insert(expa, &newkey, d);
if (rc)
return -1;
}
return 0;
}
/* Both source and target type are attributes. */
ebitmap_for_each_bit(sattr, snode, i) {
if (!ebitmap_node_get_bit(snode, i))
continue;
ebitmap_for_each_bit(tattr, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
newkey.source_type = i + 1;
newkey.target_type = j + 1;
rc = expand_avtab_insert(expa, &newkey, d);
if (rc)
return -1;
}
}
return 0;
}
int expand_avtab(policydb_t * p, avtab_t * a, avtab_t * expa)
{
struct expand_avtab_data data;
if (avtab_alloc(expa, MAX_AVTAB_SIZE)) {
ERR(NULL, "Out of memory!");
return -1;
}
data.expa = expa;
data.p = p;
return avtab_map(a, expand_avtab_node, &data);
}
static int expand_cond_insert(cond_av_list_t ** l,
avtab_t * expa,
avtab_key_t * k, avtab_datum_t * d)
{
avtab_ptr_t node;
avtab_datum_t *avd;
cond_av_list_t *nl;
node = avtab_search_node(expa, k);
if (!node ||
(k->specified & AVTAB_ENABLED) !=
(node->key.specified & AVTAB_ENABLED)) {
node = avtab_insert_nonunique(expa, k, d);
if (!node) {
ERR(NULL, "Out of memory!");
return -1;
}
node->parse_context = (void *)1;
nl = (cond_av_list_t *) malloc(sizeof(*nl));
if (!nl) {
ERR(NULL, "Out of memory!");
return -1;
}
memset(nl, 0, sizeof(*nl));
nl->node = node;
nl->next = *l;
*l = nl;
return 0;
}
avd = &node->datum;
switch (k->specified & ~AVTAB_ENABLED) {
case AVTAB_ALLOWED:
case AVTAB_AUDITALLOW:
avd->data |= d->data;
break;
case AVTAB_AUDITDENY:
avd->data &= d->data;
break;
default:
ERR(NULL, "Type conflict!");
return -1;
}
return 0;
}
int expand_cond_av_node(policydb_t * p,
avtab_ptr_t node,
cond_av_list_t ** newl, avtab_t * expa)
{
avtab_key_t *k = &node->key;
avtab_datum_t *d = &node->datum;
type_datum_t *stype = p->type_val_to_struct[k->source_type - 1];
type_datum_t *ttype = p->type_val_to_struct[k->target_type - 1];
ebitmap_t *sattr = &p->attr_type_map[k->source_type - 1];
ebitmap_t *tattr = &p->attr_type_map[k->target_type - 1];
ebitmap_node_t *snode, *tnode;
unsigned int i, j;
avtab_key_t newkey;
int rc;
newkey.target_class = k->target_class;
newkey.specified = k->specified;
if (stype->flavor != TYPE_ATTRIB && ttype->flavor != TYPE_ATTRIB) {
/* Both are individual types, no expansion required. */
return expand_cond_insert(newl, expa, k, d);
}
if (stype->flavor != TYPE_ATTRIB) {
/* Source is an individual type, target is an attribute. */
newkey.source_type = k->source_type;
ebitmap_for_each_bit(tattr, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
newkey.target_type = j + 1;
rc = expand_cond_insert(newl, expa, &newkey, d);
if (rc)
return -1;
}
return 0;
}
if (ttype->flavor != TYPE_ATTRIB) {
/* Target is an individual type, source is an attribute. */
newkey.target_type = k->target_type;
ebitmap_for_each_bit(sattr, snode, i) {
if (!ebitmap_node_get_bit(snode, i))
continue;
newkey.source_type = i + 1;
rc = expand_cond_insert(newl, expa, &newkey, d);
if (rc)
return -1;
}
return 0;
}
/* Both source and target type are attributes. */
ebitmap_for_each_bit(sattr, snode, i) {
if (!ebitmap_node_get_bit(snode, i))
continue;
ebitmap_for_each_bit(tattr, tnode, j) {
if (!ebitmap_node_get_bit(tnode, j))
continue;
newkey.source_type = i + 1;
newkey.target_type = j + 1;
rc = expand_cond_insert(newl, expa, &newkey, d);
if (rc)
return -1;
}
}
return 0;
}
int expand_cond_av_list(policydb_t * p, cond_av_list_t * l,
cond_av_list_t ** newl, avtab_t * expa)
{
cond_av_list_t *cur;
avtab_ptr_t node;
int rc;
if (avtab_alloc(expa, MAX_AVTAB_SIZE)) {
ERR(NULL, "Out of memory!");
return -1;
}
*newl = NULL;
for (cur = l; cur; cur = cur->next) {
node = cur->node;
rc = expand_cond_av_node(p, node, newl, expa);
if (rc)
return rc;
}
return 0;
}