//===---- HexagonFixupHwLoops.cpp - Fixup HW loops too far from LOOPn. ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// The loop start address in the LOOPn instruction is encoded as a distance
// from the LOOPn instruction itself. If the start address is too far from
// the LOOPn instruction, the loop needs to be set up manually, i.e. via
// direct transfers to SAn and LCn.
// This pass will identify and convert such LOOPn instructions to a proper
// form.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/PassSupport.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "Hexagon.h"
#include "HexagonTargetMachine.h"
using namespace llvm;
namespace llvm {
void initializeHexagonFixupHwLoopsPass(PassRegistry&);
}
namespace {
struct HexagonFixupHwLoops : public MachineFunctionPass {
public:
static char ID;
HexagonFixupHwLoops() : MachineFunctionPass(ID) {
initializeHexagonFixupHwLoopsPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// \brief Maximum distance between the loop instr and the basic block.
/// Just an estimate.
static const unsigned MAX_LOOP_DISTANCE = 200;
/// \brief Check the offset between each loop instruction and
/// the loop basic block to determine if we can use the LOOP instruction
/// or if we need to set the LC/SA registers explicitly.
bool fixupLoopInstrs(MachineFunction &MF);
/// \brief Add the instruction to set the LC and SA registers explicitly.
void convertLoopInstr(MachineFunction &MF,
MachineBasicBlock::iterator &MII,
RegScavenger &RS);
};
char HexagonFixupHwLoops::ID = 0;
}
INITIALIZE_PASS(HexagonFixupHwLoops, "hwloopsfixup",
"Hexagon Hardware Loops Fixup", false, false)
FunctionPass *llvm::createHexagonFixupHwLoops() {
return new HexagonFixupHwLoops();
}
/// \brief Returns true if the instruction is a hardware loop instruction.
static bool isHardwareLoop(const MachineInstr *MI) {
return MI->getOpcode() == Hexagon::LOOP0_r ||
MI->getOpcode() == Hexagon::LOOP0_i;
}
bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
bool Changed = fixupLoopInstrs(MF);
return Changed;
}
/// \brief For Hexagon, if the loop label is to far from the
/// loop instruction then we need to set the LC0 and SA0 registers
/// explicitly instead of using LOOP(start,count). This function
/// checks the distance, and generates register assignments if needed.
///
/// This function makes two passes over the basic blocks. The first
/// pass computes the offset of the basic block from the start.
/// The second pass checks all the loop instructions.
bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
// Offset of the current instruction from the start.
unsigned InstOffset = 0;
// Map for each basic block to it's first instruction.
DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
// First pass - compute the offset of each basic block.
for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
MBB != MBBe; ++MBB) {
BlockToInstOffset[MBB] = InstOffset;
InstOffset += (MBB->size() * 4);
}
// Second pass - check each loop instruction to see if it needs to
// be converted.
InstOffset = 0;
bool Changed = false;
RegScavenger RS;
// Loop over all the basic blocks.
for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
MBB != MBBe; ++MBB) {
InstOffset = BlockToInstOffset[MBB];
RS.enterBasicBlock(MBB);
// Loop over all the instructions.
MachineBasicBlock::iterator MIE = MBB->end();
MachineBasicBlock::iterator MII = MBB->begin();
while (MII != MIE) {
if (isHardwareLoop(MII)) {
RS.forward(MII);
assert(MII->getOperand(0).isMBB() &&
"Expect a basic block as loop operand");
int Sub = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
unsigned Dist = Sub > 0 ? Sub : -Sub;
if (Dist > MAX_LOOP_DISTANCE) {
// Convert to explicity setting LC0 and SA0.
convertLoopInstr(MF, MII, RS);
MII = MBB->erase(MII);
Changed = true;
} else {
++MII;
}
} else {
++MII;
}
InstOffset += 4;
}
}
return Changed;
}
/// \brief convert a loop instruction to a sequence of instructions that
/// set the LC0 and SA0 register explicitly.
void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
MachineBasicBlock::iterator &MII,
RegScavenger &RS) {
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
MachineBasicBlock *MBB = MII->getParent();
DebugLoc DL = MII->getDebugLoc();
unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0);
// First, set the LC0 with the trip count.
if (MII->getOperand(1).isReg()) {
// Trip count is a register
BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
.addReg(MII->getOperand(1).getReg());
} else {
// Trip count is an immediate.
BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
.addImm(MII->getOperand(1).getImm());
BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
.addReg(Scratch);
}
// Then, set the SA0 with the loop start address.
BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
.addMBB(MII->getOperand(0).getMBB());
BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0)
.addReg(Scratch);
}