// shortest-distance.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: allauzen@google.com (Cyril Allauzen)
//
// \file
// Functions and classes to find shortest distance in an FST.
#ifndef FST_LIB_SHORTEST_DISTANCE_H__
#define FST_LIB_SHORTEST_DISTANCE_H__
#include <deque>
using std::deque;
#include <vector>
using std::vector;
#include <fst/arcfilter.h>
#include <fst/cache.h>
#include <fst/queue.h>
#include <fst/reverse.h>
#include <fst/test-properties.h>
namespace fst {
template <class Arc, class Queue, class ArcFilter>
struct ShortestDistanceOptions {
typedef typename Arc::StateId StateId;
Queue *state_queue; // Queue discipline used; owned by caller
ArcFilter arc_filter; // Arc filter (e.g., limit to only epsilon graph)
StateId source; // If kNoStateId, use the Fst's initial state
float delta; // Determines the degree of convergence required
bool first_path; // For a semiring with the path property (o.w.
// undefined), compute the shortest-distances along
// along the first path to a final state found
// by the algorithm. That path is the shortest-path
// only if the FST has a unique final state (or all
// the final states have the same final weight), the
// queue discipline is shortest-first and all the
// weights in the FST are between One() and Zero()
// according to NaturalLess.
ShortestDistanceOptions(Queue *q, ArcFilter filt, StateId src = kNoStateId,
float d = kDelta)
: state_queue(q), arc_filter(filt), source(src), delta(d),
first_path(false) {}
};
// Computation state of the shortest-distance algorithm. Reusable
// information is maintained across calls to member function
// ShortestDistance(source) when 'retain' is true for improved
// efficiency when calling multiple times from different source states
// (e.g., in epsilon removal). Contrary to usual conventions, 'fst'
// may not be freed before this class. Vector 'distance' should not be
// modified by the user between these calls.
// The Error() method returns true if an error was encountered.
template<class Arc, class Queue, class ArcFilter>
class ShortestDistanceState {
public:
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
ShortestDistanceState(
const Fst<Arc> &fst,
vector<Weight> *distance,
const ShortestDistanceOptions<Arc, Queue, ArcFilter> &opts,
bool retain)
: fst_(fst), distance_(distance), state_queue_(opts.state_queue),
arc_filter_(opts.arc_filter), delta_(opts.delta),
first_path_(opts.first_path), retain_(retain), source_id_(0),
error_(false) {
distance_->clear();
}
~ShortestDistanceState() {}
void ShortestDistance(StateId source);
bool Error() const { return error_; }
private:
const Fst<Arc> &fst_;
vector<Weight> *distance_;
Queue *state_queue_;
ArcFilter arc_filter_;
float delta_;
bool first_path_;
bool retain_; // Retain and reuse information across calls
vector<Weight> rdistance_; // Relaxation distance.
vector<bool> enqueued_; // Is state enqueued?
vector<StateId> sources_; // Source ID for ith state in 'distance_',
// 'rdistance_', and 'enqueued_' if retained.
StateId source_id_; // Unique ID characterizing each call to SD
bool error_;
};
// Compute the shortest distance. If 'source' is kNoStateId, use
// the initial state of the Fst.
template <class Arc, class Queue, class ArcFilter>
void ShortestDistanceState<Arc, Queue, ArcFilter>::ShortestDistance(
StateId source) {
if (fst_.Start() == kNoStateId) {
if (fst_.Properties(kError, false)) error_ = true;
return;
}
if (!(Weight::Properties() & kRightSemiring)) {
FSTERROR() << "ShortestDistance: Weight needs to be right distributive: "
<< Weight::Type();
error_ = true;
return;
}
if (first_path_ && !(Weight::Properties() & kPath)) {
FSTERROR() << "ShortestDistance: first_path option disallowed when "
<< "Weight does not have the path property: "
<< Weight::Type();
error_ = true;
return;
}
state_queue_->Clear();
if (!retain_) {
distance_->clear();
rdistance_.clear();
enqueued_.clear();
}
if (source == kNoStateId)
source = fst_.Start();
while (distance_->size() <= source) {
distance_->push_back(Weight::Zero());
rdistance_.push_back(Weight::Zero());
enqueued_.push_back(false);
}
if (retain_) {
while (sources_.size() <= source)
sources_.push_back(kNoStateId);
sources_[source] = source_id_;
}
(*distance_)[source] = Weight::One();
rdistance_[source] = Weight::One();
enqueued_[source] = true;
state_queue_->Enqueue(source);
while (!state_queue_->Empty()) {
StateId s = state_queue_->Head();
state_queue_->Dequeue();
while (distance_->size() <= s) {
distance_->push_back(Weight::Zero());
rdistance_.push_back(Weight::Zero());
enqueued_.push_back(false);
}
if (first_path_ && (fst_.Final(s) != Weight::Zero()))
break;
enqueued_[s] = false;
Weight r = rdistance_[s];
rdistance_[s] = Weight::Zero();
for (ArcIterator< Fst<Arc> > aiter(fst_, s);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (!arc_filter_(arc))
continue;
while (distance_->size() <= arc.nextstate) {
distance_->push_back(Weight::Zero());
rdistance_.push_back(Weight::Zero());
enqueued_.push_back(false);
}
if (retain_) {
while (sources_.size() <= arc.nextstate)
sources_.push_back(kNoStateId);
if (sources_[arc.nextstate] != source_id_) {
(*distance_)[arc.nextstate] = Weight::Zero();
rdistance_[arc.nextstate] = Weight::Zero();
enqueued_[arc.nextstate] = false;
sources_[arc.nextstate] = source_id_;
}
}
Weight &nd = (*distance_)[arc.nextstate];
Weight &nr = rdistance_[arc.nextstate];
Weight w = Times(r, arc.weight);
if (!ApproxEqual(nd, Plus(nd, w), delta_)) {
nd = Plus(nd, w);
nr = Plus(nr, w);
if (!nd.Member() || !nr.Member()) {
error_ = true;
return;
}
if (!enqueued_[arc.nextstate]) {
state_queue_->Enqueue(arc.nextstate);
enqueued_[arc.nextstate] = true;
} else {
state_queue_->Update(arc.nextstate);
}
}
}
}
++source_id_;
if (fst_.Properties(kError, false)) error_ = true;
}
// Shortest-distance algorithm: this version allows fine control
// via the options argument. See below for a simpler interface.
//
// This computes the shortest distance from the 'opts.source' state to
// each visited state S and stores the value in the 'distance' vector.
// An unvisited state S has distance Zero(), which will be stored in
// the 'distance' vector if S is less than the maximum visited state.
// The state queue discipline, arc filter, and convergence delta are
// taken in the options argument.
// The 'distance' vector will contain a unique element for which
// Member() is false if an error was encountered.
//
// The weights must must be right distributive and k-closed (i.e., 1 +
// x + x^2 + ... + x^(k +1) = 1 + x + x^2 + ... + x^k).
//
// The algorithm is from Mohri, "Semiring Framweork and Algorithms for
// Shortest-Distance Problems", Journal of Automata, Languages and
// Combinatorics 7(3):321-350, 2002. The complexity of algorithm
// depends on the properties of the semiring and the queue discipline
// used. Refer to the paper for more details.
template<class Arc, class Queue, class ArcFilter>
void ShortestDistance(
const Fst<Arc> &fst,
vector<typename Arc::Weight> *distance,
const ShortestDistanceOptions<Arc, Queue, ArcFilter> &opts) {
ShortestDistanceState<Arc, Queue, ArcFilter>
sd_state(fst, distance, opts, false);
sd_state.ShortestDistance(opts.source);
if (sd_state.Error()) {
distance->clear();
distance->resize(1, Arc::Weight::NoWeight());
}
}
// Shortest-distance algorithm: simplified interface. See above for a
// version that allows finer control.
//
// If 'reverse' is false, this computes the shortest distance from the
// initial state to each state S and stores the value in the
// 'distance' vector. If 'reverse' is true, this computes the shortest
// distance from each state to the final states. An unvisited state S
// has distance Zero(), which will be stored in the 'distance' vector
// if S is less than the maximum visited state. The state queue
// discipline is automatically-selected.
// The 'distance' vector will contain a unique element for which
// Member() is false if an error was encountered.
//
// The weights must must be right (left) distributive if reverse is
// false (true) and k-closed (i.e., 1 + x + x^2 + ... + x^(k +1) = 1 +
// x + x^2 + ... + x^k).
//
// The algorithm is from Mohri, "Semiring Framweork and Algorithms for
// Shortest-Distance Problems", Journal of Automata, Languages and
// Combinatorics 7(3):321-350, 2002. The complexity of algorithm
// depends on the properties of the semiring and the queue discipline
// used. Refer to the paper for more details.
template<class Arc>
void ShortestDistance(const Fst<Arc> &fst,
vector<typename Arc::Weight> *distance,
bool reverse = false,
float delta = kDelta) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
if (!reverse) {
AnyArcFilter<Arc> arc_filter;
AutoQueue<StateId> state_queue(fst, distance, arc_filter);
ShortestDistanceOptions< Arc, AutoQueue<StateId>, AnyArcFilter<Arc> >
opts(&state_queue, arc_filter);
opts.delta = delta;
ShortestDistance(fst, distance, opts);
} else {
typedef ReverseArc<Arc> ReverseArc;
typedef typename ReverseArc::Weight ReverseWeight;
AnyArcFilter<ReverseArc> rarc_filter;
VectorFst<ReverseArc> rfst;
Reverse(fst, &rfst);
vector<ReverseWeight> rdistance;
AutoQueue<StateId> state_queue(rfst, &rdistance, rarc_filter);
ShortestDistanceOptions< ReverseArc, AutoQueue<StateId>,
AnyArcFilter<ReverseArc> >
ropts(&state_queue, rarc_filter);
ropts.delta = delta;
ShortestDistance(rfst, &rdistance, ropts);
distance->clear();
if (rdistance.size() == 1 && !rdistance[0].Member()) {
distance->resize(1, Arc::Weight::NoWeight());
return;
}
while (distance->size() < rdistance.size() - 1)
distance->push_back(rdistance[distance->size() + 1].Reverse());
}
}
// Return the sum of the weight of all successful paths in an FST, i.e.,
// the shortest-distance from the initial state to the final states.
// Returns a weight such that Member() is false if an error was encountered.
template <class Arc>
typename Arc::Weight ShortestDistance(const Fst<Arc> &fst, float delta = kDelta) {
typedef typename Arc::Weight Weight;
typedef typename Arc::StateId StateId;
vector<Weight> distance;
if (Weight::Properties() & kRightSemiring) {
ShortestDistance(fst, &distance, false, delta);
if (distance.size() == 1 && !distance[0].Member())
return Arc::Weight::NoWeight();
Weight sum = Weight::Zero();
for (StateId s = 0; s < distance.size(); ++s)
sum = Plus(sum, Times(distance[s], fst.Final(s)));
return sum;
} else {
ShortestDistance(fst, &distance, true, delta);
StateId s = fst.Start();
if (distance.size() == 1 && !distance[0].Member())
return Arc::Weight::NoWeight();
return s != kNoStateId && s < distance.size() ?
distance[s] : Weight::Zero();
}
}
} // namespace fst
#endif // FST_LIB_SHORTEST_DISTANCE_H__