// weight.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: riley@google.com (Michael Riley)
//
// \file
// General weight set and associated semiring operation definitions.
//
// A semiring is specified by two binary operations Plus and Times and
// two designated elements Zero and One with the following properties:
// Plus: associative, commutative, and has Zero as its identity.
// Times: associative and has identity One, distributes w.r.t. Plus, and
// has Zero as an annihilator:
// Times(Zero(), a) == Times(a, Zero()) = Zero().
//
// A left semiring distributes on the left; a right semiring is
// similarly defined.
//
// A Weight class must have binary functions =Plus= and =Times= and
// static member functions =Zero()= and =One()= and these must form
// (at least) a left or right semiring.
//
// In addition, the following should be defined for a Weight:
// Member: predicate on set membership.
// NoWeight: static member function that returns an element that is
// not a set member; used to signal an error.
// >>: reads textual representation of a weight.
// <<: prints textual representation of a weight.
// Read(istream &strm): reads binary representation of a weight.
// Write(ostream &strm): writes binary representation of a weight.
// Hash: maps weight to size_t.
// ApproxEqual: approximate equality (for inexact weights)
// Quantize: quantizes wrt delta (for inexact weights)
// Divide: for all a,b,c s.t. Times(a, b) == c
// --> b' = Divide(c, a, DIVIDE_LEFT) if a left semiring, b'.Member()
// and Times(a, b') == c
// --> a' = Divide(c, b, DIVIDE_RIGHT) if a right semiring, a'.Member()
// and Times(a', b) == c
// --> b' = Divide(c, a) = Divide(c, a, DIVIDE_ANY) =
// Divide(c, a, DIVIDE_LEFT) = Divide(c, a, DIVIDE_RIGHT) if a
// commutative semiring, b'.Member() and Times(a, b') = Times(b', a) = c
// ReverseWeight: the type of the corresponding reverse weight.
// Typically the same type as Weight for a (both left and right) semiring.
// For the left string semiring, it is the right string semiring.
// Reverse: a mapping from Weight to ReverseWeight s.t.
// --> Reverse(Reverse(a)) = a
// --> Reverse(Plus(a, b)) = Plus(Reverse(a), Reverse(b))
// --> Reverse(Times(a, b)) = Times(Reverse(b), Reverse(a))
// Typically the identity mapping in a (both left and right) semiring.
// In the left string semiring, it maps to the reverse string
// in the right string semiring.
// Properties: specifies additional properties that hold:
// LeftSemiring: indicates weights form a left semiring.
// RightSemiring: indicates weights form a right semiring.
// Commutative: for all a,b: Times(a,b) == Times(b,a)
// Idempotent: for all a: Plus(a, a) == a.
// Path: for all a, b: Plus(a, b) == a or Plus(a, b) == b.
#ifndef FST_LIB_WEIGHT_H__
#define FST_LIB_WEIGHT_H__
#include <cmath>
#include <cctype>
#include <iostream>
#include <sstream>
#include <fst/compat.h>
#include <fst/util.h>
namespace fst {
//
// CONSTANT DEFINITIONS
//
// A representable float near .001
const float kDelta = 1.0F/1024.0F;
// For all a,b,c: Times(c, Plus(a,b)) = Plus(Times(c,a), Times(c, b))
const uint64 kLeftSemiring = 0x0000000000000001ULL;
// For all a,b,c: Times(Plus(a,b), c) = Plus(Times(a,c), Times(b, c))
const uint64 kRightSemiring = 0x0000000000000002ULL;
const uint64 kSemiring = kLeftSemiring | kRightSemiring;
// For all a,b: Times(a,b) = Times(b,a)
const uint64 kCommutative = 0x0000000000000004ULL;
// For all a: Plus(a, a) = a
const uint64 kIdempotent = 0x0000000000000008ULL;
// For all a,b: Plus(a,b) = a or Plus(a,b) = b
const uint64 kPath = 0x0000000000000010ULL;
// Determines direction of division.
enum DivideType { DIVIDE_LEFT, // left division
DIVIDE_RIGHT, // right division
DIVIDE_ANY }; // division in a commutative semiring
// NATURAL ORDER
//
// By definition:
// a <= b iff a + b = a
// The natural order is a negative partial order iff the semiring is
// idempotent. It is trivially monotonic for plus. It is left
// (resp. right) monotonic for times iff the semiring is left
// (resp. right) distributive. It is a total order iff the semiring
// has the path property. See Mohri, "Semiring Framework and
// Algorithms for Shortest-Distance Problems", Journal of Automata,
// Languages and Combinatorics 7(3):321-350, 2002. We define the
// strict version of this order below.
template <class W>
class NaturalLess {
public:
typedef W Weight;
NaturalLess() {
if (!(W::Properties() & kIdempotent)) {
FSTERROR() << "NaturalLess: Weight type is not idempotent: "
<< W::Type();
}
}
bool operator()(const W &w1, const W &w2) const {
return (Plus(w1, w2) == w1) && w1 != w2;
}
};
// Power is the iterated product for arbitrary semirings such that
// Power(w, 0) is One() for the semiring, and
// Power(w, n) = Times(Power(w, n-1), w)
template <class W>
W Power(W w, size_t n) {
W result = W::One();
for (size_t i = 0; i < n; ++i) {
result = Times(result, w);
}
return result;
}
// General weight converter - raises error.
template <class W1, class W2>
struct WeightConvert {
W2 operator()(W1 w1) const {
FSTERROR() << "WeightConvert: can't convert weight from \""
<< W1::Type() << "\" to \"" << W2::Type();
return W2::NoWeight();
}
};
// Specialized weight converter to self.
template <class W>
struct WeightConvert<W, W> {
W operator()(W w) const { return w; }
};
} // namespace fst
#endif // FST_LIB_WEIGHT_H__