/* Copyright (C) 2006-2007 The Android Open Source Project
**
** This software is licensed under the terms of the GNU General Public
** License version 2, as published by the Free Software Foundation, and
** may be copied, distributed, and modified under those terms.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <inttypes.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <errno.h>
#include <sys/time.h>
#include <time.h>
#include "cpu.h"
#include "exec-all.h"
#include "android-trace.h"
#include "varint.h"
#include "android/utils/path.h"
// For tracing dynamic execution of basic blocks
typedef struct TraceBB {
char *filename;
FILE *fstream;
BBRec buffer[kMaxNumBasicBlocks];
BBRec *next; // points to next record in buffer
uint64_t flush_time; // time of last buffer flush
char compressed[kCompressedSize];
char *compressed_ptr;
char *high_water_ptr;
int64_t prev_bb_num;
uint64_t prev_bb_time;
uint64_t current_bb_num;
uint64_t current_bb_start_time;
uint64_t recnum; // counts number of trace records
uint32_t current_bb_addr;
int num_insns;
} TraceBB;
// For tracing simuation start times of instructions
typedef struct TraceInsn {
char *filename;
FILE *fstream;
InsnRec dummy; // this is here so we can use buffer[-1]
InsnRec buffer[kInsnBufferSize];
InsnRec *current;
uint64_t prev_time; // time of last instruction start
char compressed[kCompressedSize];
char *compressed_ptr;
char *high_water_ptr;
} TraceInsn;
// For tracing the static information about a basic block
typedef struct TraceStatic {
char *filename;
FILE *fstream;
uint32_t insns[kMaxInsnPerBB];
int next_insn;
uint64_t bb_num;
uint32_t bb_addr;
int is_thumb;
} TraceStatic;
// For tracing load and store addresses
typedef struct TraceAddr {
char *filename;
FILE *fstream;
AddrRec buffer[kMaxNumAddrs];
AddrRec *next;
char compressed[kCompressedSize];
char *compressed_ptr;
char *high_water_ptr;
uint32_t prev_addr;
uint64_t prev_time;
} TraceAddr;
// For tracing exceptions
typedef struct TraceExc {
char *filename;
FILE *fstream;
char compressed[kCompressedSize];
char *compressed_ptr;
char *high_water_ptr;
uint64_t prev_time;
uint64_t prev_bb_recnum;
} TraceExc;
// For tracing process id changes
typedef struct TracePid {
char *filename;
FILE *fstream;
char compressed[kCompressedSize];
char *compressed_ptr;
uint64_t prev_time;
} TracePid;
// For tracing Dalvik VM method enter and exit
typedef struct TraceMethod {
char *filename;
FILE *fstream;
char compressed[kCompressedSize];
char *compressed_ptr;
uint64_t prev_time;
uint32_t prev_addr;
int32_t prev_pid;
} TraceMethod;
extern TraceBB trace_bb;
extern TraceInsn trace_insn;
extern TraceStatic trace_static;
extern TraceAddr trace_load;
extern TraceAddr trace_store;
extern TraceExc trace_exc;
extern TracePid trace_pid;
extern TraceMethod trace_method;
TraceBB trace_bb;
TraceInsn trace_insn;
TraceStatic trace_static;
TraceAddr trace_load;
TraceAddr trace_store;
TraceExc trace_exc;
TracePid trace_pid;
TraceMethod trace_method;
static TraceHeader header;
const char *trace_filename;
int tracing;
int trace_cache_miss;
int trace_all_addr;
// The simulation time in cpu clock cycles
uint64_t sim_time = 1;
// The current process id
int current_pid;
// The start and end (wall-clock) time in microseconds
uint64_t start_time, end_time;
uint64_t elapsed_usecs;
// For debugging output
FILE *ftrace_debug;
// The maximum number of bytes consumed by an InsnRec after compression.
// This is very conservative but needed to ensure no buffer overflows.
#define kMaxInsnCompressed 14
// The maximum number of bytes consumed by an BBRec after compression.
// This is very conservative but needed to ensure no buffer overflows.
#define kMaxBBCompressed 32
// The maximum number of bytes consumed by an AddrRec after compression.
// This is very conservative but needed to ensure no buffer overflows.
#define kMaxAddrCompressed 14
// The maximum number of bytes consumed by a MethodRec after compression.
// This is very conservative but needed to ensure no buffer overflows.
#define kMaxMethodCompressed 18
// The maximum number of bytes consumed by an exception record after
// compression.
#define kMaxExcCompressed 38
// The maximum number of bytes consumed by a pid record for
// kPidSwitch, or kPidExit after compression.
#define kMaxPidCompressed 15
// The maximum number of bytes consumed by a pid record for kPidFork,
// or kPidClone after compression.
#define kMaxPid2Compressed 20
// The maximum number of bytes consumed by a pid record for kPidExecArgs
// after compression, not counting the bytes for the args.
#define kMaxExecArgsCompressed 15
// The maximum number of bytes consumed by a pid record for kPidName
// after compression, not counting the bytes for the name.
#define kMaxNameCompressed 20
// The maximum number of bytes consumed by a pid record for kPidMmap
// after compression, not counting the bytes for the pathname.
#define kMaxMmapCompressed 33
// The maximum number of bytes consumed by a pid record for kPidMunmap,
// after compression.
#define kMaxMunmapCompressed 28
// The maximum number of bytes consumed by a pid record for kPidSymbol
// after compression, not counting the bytes for the symbol name.
#define kMaxSymbolCompressed 24
// The maximum number of bytes consumed by a pid record for kPidKthreadName
// after compression, not counting the bytes for the name.
#define kMaxKthreadNameCompressed 25
void trace_cleanup();
// Return current time in microseconds as a 64-bit integer.
uint64 Now() {
struct timeval tv;
gettimeofday(&tv, NULL);
uint64 val = tv.tv_sec;
val = val * 1000000ull + tv.tv_usec;
return val;
}
static void create_trace_dir(const char *dirname)
{
int err;
err = path_mkdir(dirname, 0755);
if (err != 0 && errno != EEXIST) {
printf("err: %d\n", err);
perror(dirname);
exit(1);
}
}
static char *create_trace_path(const char *filename, const char *ext)
{
char *fname;
const char *base_start, *base_end;
int ii, len, base_len, dir_len, path_len, qtrace_len;
// Handle error cases
if (filename == NULL || *filename == 0 || strcmp(filename, "/") == 0)
return NULL;
// Ignore a trailing slash, if any
len = strlen(filename);
if (filename[len - 1] == '/')
len -= 1;
// Find the basename. We don't use basename(3) because there are
// different behaviors for GNU and Posix in the case where the
// last character is a slash.
base_start = base_end = &filename[len];
for (ii = 0; ii < len; ++ii) {
base_start -= 1;
if (*base_start == '/') {
base_start += 1;
break;
}
}
base_len = base_end - base_start;
dir_len = len - base_len;
qtrace_len = strlen("/qtrace");
// Create space for the pathname: "/dir/basename/qtrace.ext"
// The "ext" string already contains the dot, so just add a byte
// for the terminating zero.
path_len = dir_len + base_len + qtrace_len + strlen(ext) + 1;
fname = malloc(path_len);
if (dir_len > 0)
strncpy(fname, filename, dir_len);
fname[dir_len] = 0;
strncat(fname, base_start, base_len);
strcat(fname, "/qtrace");
strcat(fname, ext);
return fname;
}
void convert_secs_to_date_time(time_t secs, uint32_t *pdate, uint32_t *ptime)
{
struct tm *tm = localtime(&secs);
uint32_t year = tm->tm_year + 1900;
uint32_t thousands = year / 1000;
year -= thousands * 1000;
uint32_t hundreds = year / 100;
year -= hundreds * 100;
uint32_t tens = year / 10;
year -= tens * 10;
uint32_t ones = year;
year = (thousands << 12) | (hundreds << 8) | (tens << 4) | ones;
uint32_t mon = tm->tm_mon + 1;
tens = mon / 10;
ones = (mon - tens * 10);
mon = (tens << 4) | ones;
uint32_t day = tm->tm_mday;
tens = day / 10;
ones = (day - tens * 10);
day = (tens << 4) | ones;
*pdate = (year << 16) | (mon << 8) | day;
uint32_t hour = tm->tm_hour;
tens = hour / 10;
ones = (hour - tens * 10);
hour = (tens << 4) | ones;
uint32_t min = tm->tm_min;
tens = min / 10;
ones = (min - tens * 10);
min = (tens << 4) | ones;
uint32_t sec = tm->tm_sec;
tens = sec / 10;
ones = (sec - tens * 10);
sec = (tens << 4) | ones;
*ptime = (hour << 16) | (min << 8) | sec;
}
void write_trace_header(TraceHeader *header)
{
TraceHeader swappedHeader;
memcpy(&swappedHeader, header, sizeof(TraceHeader));
convert32(swappedHeader.version);
convert32(swappedHeader.start_sec);
convert32(swappedHeader.start_usec);
convert32(swappedHeader.pdate);
convert32(swappedHeader.ptime);
convert32(swappedHeader.num_used_pids);
convert32(swappedHeader.first_unused_pid);
convert64(swappedHeader.num_static_bb);
convert64(swappedHeader.num_static_insn);
convert64(swappedHeader.num_dynamic_bb);
convert64(swappedHeader.num_dynamic_insn);
convert64(swappedHeader.elapsed_usecs);
fwrite(&swappedHeader, sizeof(TraceHeader), 1, trace_static.fstream);
}
void create_trace_bb(const char *filename)
{
char *fname = create_trace_path(filename, ".bb");
trace_bb.filename = fname;
FILE *fstream = fopen(fname, "wb");
if (fstream == NULL) {
perror(fname);
exit(1);
}
trace_bb.fstream = fstream;
trace_bb.next = &trace_bb.buffer[0];
trace_bb.flush_time = 0;
trace_bb.compressed_ptr = trace_bb.compressed;
trace_bb.high_water_ptr = &trace_bb.compressed[kCompressedSize] - kMaxBBCompressed;
trace_bb.prev_bb_num = 0;
trace_bb.prev_bb_time = 0;
trace_bb.num_insns = 0;
trace_bb.recnum = 0;
}
void create_trace_insn(const char *filename)
{
// Create the instruction time trace file
char *fname = create_trace_path(filename, ".insn");
trace_insn.filename = fname;
FILE *fstream = fopen(fname, "wb");
if (fstream == NULL) {
perror(fname);
exit(1);
}
trace_insn.fstream = fstream;
trace_insn.current = &trace_insn.dummy;
trace_insn.dummy.time_diff = 0;
trace_insn.dummy.repeat = 0;
trace_insn.prev_time = 0;
trace_insn.compressed_ptr = trace_insn.compressed;
trace_insn.high_water_ptr = &trace_insn.compressed[kCompressedSize] - kMaxInsnCompressed;
}
void create_trace_static(const char *filename)
{
// Create the static basic block trace file
char *fname = create_trace_path(filename, ".static");
trace_static.filename = fname;
FILE *fstream = fopen(fname, "wb");
if (fstream == NULL) {
perror(fname);
exit(1);
}
trace_static.fstream = fstream;
trace_static.next_insn = 0;
trace_static.bb_num = 1;
trace_static.bb_addr = 0;
// Write an empty header to reserve space for it in the file.
// The header will be filled in later when post-processing the
// trace file.
memset(&header, 0, sizeof(TraceHeader));
// Write out the version number so that tools can detect if the trace
// file format is the same as what they expect.
header.version = TRACE_VERSION;
// Record the start time in the header now.
struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
header.start_sec = tv.tv_sec;
header.start_usec = tv.tv_usec;
convert_secs_to_date_time(header.start_sec, &header.pdate, &header.ptime);
write_trace_header(&header);
// Write out the record for the unused basic block number 0.
uint64_t zero = 0;
fwrite(&zero, sizeof(uint64_t), 1, trace_static.fstream); // bb_num
fwrite(&zero, sizeof(uint32_t), 1, trace_static.fstream); // bb_addr
fwrite(&zero, sizeof(uint32_t), 1, trace_static.fstream); // num_insns
}
void create_trace_addr(const char *filename)
{
// The "qtrace.load" and "qtrace.store" files are optional
trace_load.fstream = NULL;
trace_store.fstream = NULL;
if (trace_all_addr || trace_cache_miss) {
// Create the "qtrace.load" file
char *fname = create_trace_path(filename, ".load");
trace_load.filename = fname;
FILE *fstream = fopen(fname, "wb");
if (fstream == NULL) {
perror(fname);
exit(1);
}
trace_load.fstream = fstream;
trace_load.next = &trace_load.buffer[0];
trace_load.compressed_ptr = trace_load.compressed;
trace_load.high_water_ptr = &trace_load.compressed[kCompressedSize] - kMaxAddrCompressed;
trace_load.prev_addr = 0;
trace_load.prev_time = 0;
// Create the "qtrace.store" file
fname = create_trace_path(filename, ".store");
trace_store.filename = fname;
fstream = fopen(fname, "wb");
if (fstream == NULL) {
perror(fname);
exit(1);
}
trace_store.fstream = fstream;
trace_store.next = &trace_store.buffer[0];
trace_store.compressed_ptr = trace_store.compressed;
trace_store.high_water_ptr = &trace_store.compressed[kCompressedSize] - kMaxAddrCompressed;
trace_store.prev_addr = 0;
trace_store.prev_time = 0;
}
}
void create_trace_exc(const char *filename)
{
// Create the exception trace file
char *fname = create_trace_path(filename, ".exc");
trace_exc.filename = fname;
FILE *fstream = fopen(fname, "wb");
if (fstream == NULL) {
perror(fname);
exit(1);
}
trace_exc.fstream = fstream;
trace_exc.compressed_ptr = trace_exc.compressed;
trace_exc.high_water_ptr = &trace_exc.compressed[kCompressedSize] - kMaxExcCompressed;
trace_exc.prev_time = 0;
trace_exc.prev_bb_recnum = 0;
}
void create_trace_pid(const char *filename)
{
// Create the pid trace file
char *fname = create_trace_path(filename, ".pid");
trace_pid.filename = fname;
FILE *fstream = fopen(fname, "wb");
if (fstream == NULL) {
perror(fname);
exit(1);
}
trace_pid.fstream = fstream;
trace_pid.compressed_ptr = trace_pid.compressed;
trace_pid.prev_time = 0;
}
void create_trace_method(const char *filename)
{
// Create the method trace file
char *fname = create_trace_path(filename, ".method");
trace_method.filename = fname;
FILE *fstream = fopen(fname, "wb");
if (fstream == NULL) {
perror(fname);
exit(1);
}
trace_method.fstream = fstream;
trace_method.compressed_ptr = trace_method.compressed;
trace_method.prev_time = 0;
trace_method.prev_addr = 0;
trace_method.prev_pid = 0;
}
void trace_init(const char *filename)
{
// Create the trace files
create_trace_dir(filename);
create_trace_bb(filename);
create_trace_insn(filename);
create_trace_static(filename);
create_trace_addr(filename);
create_trace_exc(filename);
create_trace_pid(filename);
create_trace_method(filename);
#if 0
char *fname = create_trace_path(filename, ".debug");
ftrace_debug = fopen(fname, "wb");
if (ftrace_debug == NULL) {
perror(fname);
exit(1);
}
#else
ftrace_debug = NULL;
#endif
atexit(trace_cleanup);
// If tracing is on, then start timing the simulator
if (tracing)
start_time = Now();
}
/* the following array is used to deal with def-use register interlocks, which we
* can compute statically (ignoring conditions), very fortunately.
*
* the idea is that interlock_base contains the number of cycles "executed" from
* the start of a basic block. It is set to 0 in trace_bb_start, and incremented
* in each call to get_insn_ticks_arm.
*
* interlocks[N] correspond to the value of interlock_base after which a register N
* can be used by another operation, it is set each time an instruction writes to
* the register in get_insn_ticks()
*/
static int interlocks[16];
static int interlock_base;
static void
_interlock_def(int reg, int delay)
{
if (reg >= 0)
interlocks[reg] = interlock_base + delay;
}
static int
_interlock_use(int reg)
{
int delay = 0;
if (reg >= 0)
{
delay = interlocks[reg] - interlock_base;
if (delay < 0)
delay = 0;
}
return delay;
}
void trace_bb_start(uint32_t bb_addr)
{
int nn;
trace_static.bb_addr = bb_addr;
trace_static.is_thumb = 0;
interlock_base = 0;
for (nn = 0; nn < 16; nn++)
interlocks[nn] = 0;
}
void trace_add_insn(uint32_t insn, int is_thumb)
{
trace_static.insns[trace_static.next_insn++] = insn;
// This relies on the fact that a basic block does not contain a mix
// of ARM and Thumb instructions. If that is not true, then many
// software tools that read the trace will have to change.
trace_static.is_thumb = is_thumb;
}
void trace_bb_end()
{
int ii, num_insns;
uint32_t insn;
uint64_t bb_num = hostToLE64(trace_static.bb_num);
// If these are Thumb instructions, then encode that fact by setting
// the low bit of the basic-block address to 1.
uint32_t bb_addr = trace_static.bb_addr | trace_static.is_thumb;
bb_addr = hostToLE32(bb_addr);
num_insns = hostToLE32(trace_static.next_insn);
fwrite(&bb_num, sizeof(bb_num), 1, trace_static.fstream);
fwrite(&bb_addr, sizeof(bb_addr), 1, trace_static.fstream);
fwrite(&num_insns, sizeof(num_insns), 1, trace_static.fstream);
for (ii = 0; ii < trace_static.next_insn; ++ii) {
insn = hostToLE32(trace_static.insns[ii]);
fwrite(&insn, sizeof(insn), 1, trace_static.fstream);
}
trace_static.bb_num += 1;
trace_static.next_insn = 0;
}
void trace_cleanup()
{
if (tracing) {
end_time = Now();
elapsed_usecs += end_time - start_time;
}
header.elapsed_usecs = elapsed_usecs;
double elapsed_secs = elapsed_usecs / 1000000.0;
double cycles_per_sec = 0;
if (elapsed_secs != 0)
cycles_per_sec = sim_time / elapsed_secs;
char *suffix = "";
if (cycles_per_sec >= 1000000) {
cycles_per_sec /= 1000000.0;
suffix = "M";
} else if (cycles_per_sec > 1000) {
cycles_per_sec /= 1000.0;
suffix = "K";
}
printf("Elapsed seconds: %.2f, simulated cycles/sec: %.1f%s\n",
elapsed_secs, cycles_per_sec, suffix);
if (trace_bb.fstream) {
BBRec *ptr;
BBRec *next = trace_bb.next;
char *comp_ptr = trace_bb.compressed_ptr;
int64_t prev_bb_num = trace_bb.prev_bb_num;
uint64_t prev_bb_time = trace_bb.prev_bb_time;
for (ptr = trace_bb.buffer; ptr != next; ++ptr) {
if (comp_ptr >= trace_bb.high_water_ptr) {
uint32_t size = comp_ptr - trace_bb.compressed;
fwrite(trace_bb.compressed, sizeof(char), size,
trace_bb.fstream);
comp_ptr = trace_bb.compressed;
}
int64_t bb_diff = ptr->bb_num - prev_bb_num;
prev_bb_num = ptr->bb_num;
uint64_t time_diff = ptr->start_time - prev_bb_time;
prev_bb_time = ptr->start_time;
comp_ptr = varint_encode_signed(bb_diff, comp_ptr);
comp_ptr = varint_encode(time_diff, comp_ptr);
comp_ptr = varint_encode(ptr->repeat, comp_ptr);
if (ptr->repeat)
comp_ptr = varint_encode(ptr->time_diff, comp_ptr);
}
// Add an extra record at the end containing the ending simulation
// time and a basic block number of 0.
uint64_t time_diff = sim_time - prev_bb_time;
if (time_diff > 0) {
int64_t bb_diff = -prev_bb_num;
comp_ptr = varint_encode_signed(bb_diff, comp_ptr);
comp_ptr = varint_encode(time_diff, comp_ptr);
comp_ptr = varint_encode(0, comp_ptr);
}
uint32_t size = comp_ptr - trace_bb.compressed;
if (size)
fwrite(trace_bb.compressed, sizeof(char), size, trace_bb.fstream);
// Terminate the file with three zeros so that we can detect
// the end of file quickly.
uint32_t zeros = 0;
fwrite(&zeros, 3, 1, trace_bb.fstream);
fclose(trace_bb.fstream);
}
if (trace_insn.fstream) {
InsnRec *ptr;
InsnRec *current = trace_insn.current + 1;
char *comp_ptr = trace_insn.compressed_ptr;
for (ptr = trace_insn.buffer; ptr != current; ++ptr) {
if (comp_ptr >= trace_insn.high_water_ptr) {
uint32_t size = comp_ptr - trace_insn.compressed;
uint32_t rval = fwrite(trace_insn.compressed, sizeof(char),
size, trace_insn.fstream);
if (rval != size) {
fprintf(stderr, "fwrite() failed\n");
perror(trace_insn.filename);
exit(1);
}
comp_ptr = trace_insn.compressed;
}
comp_ptr = varint_encode(ptr->time_diff, comp_ptr);
comp_ptr = varint_encode(ptr->repeat, comp_ptr);
}
uint32_t size = comp_ptr - trace_insn.compressed;
if (size) {
uint32_t rval = fwrite(trace_insn.compressed, sizeof(char), size,
trace_insn.fstream);
if (rval != size) {
fprintf(stderr, "fwrite() failed\n");
perror(trace_insn.filename);
exit(1);
}
}
fclose(trace_insn.fstream);
}
if (trace_static.fstream) {
fseek(trace_static.fstream, 0, SEEK_SET);
write_trace_header(&header);
fclose(trace_static.fstream);
}
if (trace_load.fstream) {
AddrRec *ptr;
char *comp_ptr = trace_load.compressed_ptr;
AddrRec *next = trace_load.next;
uint32_t prev_addr = trace_load.prev_addr;
uint64_t prev_time = trace_load.prev_time;
for (ptr = trace_load.buffer; ptr != next; ++ptr) {
if (comp_ptr >= trace_load.high_water_ptr) {
uint32_t size = comp_ptr - trace_load.compressed;
fwrite(trace_load.compressed, sizeof(char), size,
trace_load.fstream);
comp_ptr = trace_load.compressed;
}
int addr_diff = ptr->addr - prev_addr;
uint64_t time_diff = ptr->time - prev_time;
prev_addr = ptr->addr;
prev_time = ptr->time;
comp_ptr = varint_encode_signed(addr_diff, comp_ptr);
comp_ptr = varint_encode(time_diff, comp_ptr);
}
uint32_t size = comp_ptr - trace_load.compressed;
if (size) {
fwrite(trace_load.compressed, sizeof(char), size,
trace_load.fstream);
}
// Terminate the file with two zeros so that we can detect
// the end of file quickly.
uint32_t zeros = 0;
fwrite(&zeros, 2, 1, trace_load.fstream);
fclose(trace_load.fstream);
}
if (trace_store.fstream) {
AddrRec *ptr;
char *comp_ptr = trace_store.compressed_ptr;
AddrRec *next = trace_store.next;
uint32_t prev_addr = trace_store.prev_addr;
uint64_t prev_time = trace_store.prev_time;
for (ptr = trace_store.buffer; ptr != next; ++ptr) {
if (comp_ptr >= trace_store.high_water_ptr) {
uint32_t size = comp_ptr - trace_store.compressed;
fwrite(trace_store.compressed, sizeof(char), size,
trace_store.fstream);
comp_ptr = trace_store.compressed;
}
int addr_diff = ptr->addr - prev_addr;
uint64_t time_diff = ptr->time - prev_time;
prev_addr = ptr->addr;
prev_time = ptr->time;
comp_ptr = varint_encode_signed(addr_diff, comp_ptr);
comp_ptr = varint_encode(time_diff, comp_ptr);
}
uint32_t size = comp_ptr - trace_store.compressed;
if (size) {
fwrite(trace_store.compressed, sizeof(char), size,
trace_store.fstream);
}
// Terminate the file with two zeros so that we can detect
// the end of file quickly.
uint32_t zeros = 0;
fwrite(&zeros, 2, 1, trace_store.fstream);
fclose(trace_store.fstream);
}
if (trace_exc.fstream) {
uint32_t size = trace_exc.compressed_ptr - trace_exc.compressed;
if (size) {
fwrite(trace_exc.compressed, sizeof(char), size,
trace_exc.fstream);
}
// Terminate the file with 7 zeros so that we can detect
// the end of file quickly.
uint64_t zeros = 0;
fwrite(&zeros, 7, 1, trace_exc.fstream);
fclose(trace_exc.fstream);
}
if (trace_pid.fstream) {
uint32_t size = trace_pid.compressed_ptr - trace_pid.compressed;
if (size) {
fwrite(trace_pid.compressed, sizeof(char), size,
trace_pid.fstream);
}
// Terminate the file with 2 zeros so that we can detect
// the end of file quickly.
uint64_t zeros = 0;
fwrite(&zeros, 2, 1, trace_pid.fstream);
fclose(trace_pid.fstream);
}
if (trace_method.fstream) {
uint32_t size = trace_method.compressed_ptr - trace_method.compressed;
if (size) {
fwrite(trace_method.compressed, sizeof(char), size,
trace_method.fstream);
}
// Terminate the file with 2 zeros so that we can detect
// the end of file quickly.
uint64_t zeros = 0;
fwrite(&zeros, 2, 1, trace_method.fstream);
fclose(trace_method.fstream);
}
if (ftrace_debug)
fclose(ftrace_debug);
}
// Define the number of clock ticks for some instructions. Add one to these
// (in some cases) if there is an interlock. We currently do not check for
// interlocks.
#define TICKS_OTHER 1
#define TICKS_SMULxy 1
#define TICKS_SMLAWy 1
#define TICKS_SMLALxy 2
#define TICKS_MUL 2
#define TICKS_MLA 2
#define TICKS_MULS 4 // no interlock penalty
#define TICKS_MLAS 4 // no interlock penalty
#define TICKS_UMULL 3
#define TICKS_UMLAL 3
#define TICKS_SMULL 3
#define TICKS_SMLAL 3
#define TICKS_UMULLS 5 // no interlock penalty
#define TICKS_UMLALS 5 // no interlock penalty
#define TICKS_SMULLS 5 // no interlock penalty
#define TICKS_SMLALS 5 // no interlock penalty
// Compute the number of cycles that this instruction will take,
// not including any I-cache or D-cache misses. This function
// is called for each instruction in a basic block when that
// block is being translated.
int get_insn_ticks_arm(uint32_t insn)
{
#if 1
int result = 1; /* by default, use 1 cycle */
/* See Chapter 12 of the ARM920T Reference Manual for details about clock cycles */
/* first check for invalid condition codes */
if ((insn >> 28) == 0xf)
{
if ((insn >> 25) == 0x7d) { /* BLX */
result = 3;
goto Exit;
}
/* XXX: if we get there, we're either in an UNDEFINED instruction */
/* or in co-processor related ones. For now, only return 1 cycle */
goto Exit;
}
/* other cases */
switch ((insn >> 25) & 7)
{
case 0:
if ((insn & 0x00000090) == 0x00000090) /* Multiplies, extra load/store, Table 3-2 */
{
/* XXX: TODO: Add support for multiplier operand content penalties in the translator */
if ((insn & 0x0fc000f0) == 0x00000090) /* 3-2: Multiply (accumulate) */
{
int Rm = (insn & 15);
int Rs = (insn >> 8) & 15;
int Rn = (insn >> 12) & 15;
if ((insn & 0x00200000) != 0) { /* MLA */
result += _interlock_use(Rn);
} else { /* MLU */
if (Rn != 0) /* UNDEFINED */
goto Exit;
}
/* cycles=2+m, assume m=1, this should be adjusted at interpretation time */
result += 2 + _interlock_use(Rm) + _interlock_use(Rs);
}
else if ((insn & 0x0f8000f0) == 0x00800090) /* 3-2: Multiply (accumulate) long */
{
int Rm = (insn & 15);
int Rs = (insn >> 8) & 15;
int RdLo = (insn >> 12) & 15;
int RdHi = (insn >> 16) & 15;
if ((insn & 0x00200000) != 0) { /* SMLAL & UMLAL */
result += _interlock_use(RdLo) + _interlock_use(RdHi);
}
/* else SMLL and UMLL */
/* cucles=3+m, assume m=1, this should be adjusted at interpretation time */
result += 3 + _interlock_use(Rm) + _interlock_use(Rs);
}
else if ((insn & 0x0fd00ff0) == 0x01000090) /* 3-2: Swap/swap byte */
{
int Rm = (insn & 15);
int Rd = (insn >> 8) & 15;
result = 2 + _interlock_use(Rm);
_interlock_def(Rd, result+1);
}
else if ((insn & 0x0e400ff0) == 0x00000090) /* 3-2: load/store halfword, reg offset */
{
int Rm = (insn & 15);
int Rd = (insn >> 12) & 15;
int Rn = (insn >> 16) & 15;
result += _interlock_use(Rn) + _interlock_use(Rm);
if ((insn & 0x00100000) != 0) /* it's a load, there's a 2-cycle interlock */
_interlock_def(Rd, result+2);
}
else if ((insn & 0x0e400ff0) == 0x00400090) /* 3-2: load/store halfword, imm offset */
{
int Rd = (insn >> 12) & 15;
int Rn = (insn >> 16) & 15;
result += _interlock_use(Rn);
if ((insn & 0x00100000) != 0) /* it's a load, there's a 2-cycle interlock */
_interlock_def(Rd, result+2);
}
else if ((insn & 0x0e500fd0) == 0x000000d0) /* 3-2: load/store two words, reg offset */
{
/* XXX: TODO: Enhanced DSP instructions */
}
else if ((insn & 0x0e500fd0) == 0x001000d0) /* 3-2: load/store half/byte, reg offset */
{
int Rm = (insn & 15);
int Rd = (insn >> 12) & 15;
int Rn = (insn >> 16) & 15;
result += _interlock_use(Rn) + _interlock_use(Rm);
if ((insn & 0x00100000) != 0) /* load, 2-cycle interlock */
_interlock_def(Rd, result+2);
}
else if ((insn & 0x0e5000d0) == 0x004000d0) /* 3-2: load/store two words, imm offset */
{
/* XXX: TODO: Enhanced DSP instructions */
}
else if ((insn & 0x0e5000d0) == 0x005000d0) /* 3-2: load/store half/byte, imm offset */
{
int Rd = (insn >> 12) & 15;
int Rn = (insn >> 16) & 15;
result += _interlock_use(Rn);
if ((insn & 0x00100000) != 0) /* load, 2-cycle interlock */
_interlock_def(Rd, result+2);
}
else
{
/* UNDEFINED */
}
}
else if ((insn & 0x0f900000) == 0x01000000) /* Misc. instructions, table 3-3 */
{
switch ((insn >> 4) & 15)
{
case 0:
if ((insn & 0x0fb0fff0) == 0x0120f000) /* move register to status register */
{
int Rm = (insn & 15);
result += _interlock_use(Rm);
}
break;
case 1:
if ( ((insn & 0x0ffffff0) == 0x01200010) || /* branch/exchange */
((insn & 0x0fff0ff0) == 0x01600010) ) /* count leading zeroes */
{
int Rm = (insn & 15);
result += _interlock_use(Rm);
}
break;
case 3:
if ((insn & 0x0ffffff0) == 0x01200030) /* link/exchange */
{
int Rm = (insn & 15);
result += _interlock_use(Rm);
}
break;
default:
/* TODO: Enhanced DSP instructions */
;
}
}
else /* Data processing */
{
int Rm = (insn & 15);
int Rn = (insn >> 16) & 15;
result += _interlock_use(Rn) + _interlock_use(Rm);
if ((insn & 0x10)) { /* register-controlled shift => 1 cycle penalty */
int Rs = (insn >> 8) & 15;
result += 1 + _interlock_use(Rs);
}
}
break;
case 1:
if ((insn & 0x01900000) == 0x01900000)
{
/* either UNDEFINED or move immediate to CPSR */
}
else /* Data processing immediate */
{
int Rn = (insn >> 12) & 15;
result += _interlock_use(Rn);
}
break;
case 2: /* load/store immediate */
{
int Rn = (insn >> 16) & 15;
result += _interlock_use(Rn);
if (insn & 0x00100000) { /* LDR */
int Rd = (insn >> 12) & 15;
if (Rd == 15) /* loading PC */
result = 5;
else
_interlock_def(Rd,result+1);
}
}
break;
case 3:
if ((insn & 0x10) == 0) /* load/store register offset */
{
int Rm = (insn & 15);
int Rn = (insn >> 16) & 15;
result += _interlock_use(Rm) + _interlock_use(Rn);
if (insn & 0x00100000) { /* LDR */
int Rd = (insn >> 12) & 15;
if (Rd == 15)
result = 5;
else
_interlock_def(Rd,result+1);
}
}
/* else UNDEFINED */
break;
case 4: /* load/store multiple */
{
int Rn = (insn >> 16) & 15;
uint32_t mask = (insn & 0xffff);
int count;
for (count = 0; mask; count++)
mask &= (mask-1);
result += _interlock_use(Rn);
if (insn & 0x00100000) /* LDM */
{
int nn;
if (insn & 0x8000) { /* loading PC */
result = count+4;
} else { /* not loading PC */
result = (count < 2) ? 2 : count;
}
/* create defs, all registers locked until the end of the load */
for (nn = 0; nn < 15; nn++)
if ((insn & (1U << nn)) != 0)
_interlock_def(nn,result);
}
else /* STM */
result = (count < 2) ? 2 : count;
}
break;
case 5: /* branch and branch+link */
break;
case 6: /* coprocessor load/store */
{
int Rn = (insn >> 16) & 15;
if (insn & 0x00100000)
result += _interlock_use(Rn);
/* XXX: other things to do ? */
}
break;
default: /* i.e. 7 */
/* XXX: TODO: co-processor related things */
;
}
Exit:
interlock_base += result;
return result;
#else /* old code - this seems to be completely buggy ?? */
if ((insn & 0x0ff0f090) == 0x01600080) {
return TICKS_SMULxy;
} else if ((insn & 0x0ff00090) == 0x01200080) {
return TICKS_SMLAWy;
} else if ((insn & 0x0ff00090) == 0x01400080) {
return TICKS_SMLALxy;
} else if ((insn & 0x0f0000f0) == 0x00000090) {
// multiply
uint8_t bit23 = (insn >> 23) & 0x1;
uint8_t bit22_U = (insn >> 22) & 0x1;
uint8_t bit21_A = (insn >> 21) & 0x1;
uint8_t bit20_S = (insn >> 20) & 0x1;
if (bit23 == 0) {
// 32-bit multiply
if (bit22_U != 0) {
// This is an unexpected bit pattern.
return TICKS_OTHER;
}
if (bit21_A == 0) {
if (bit20_S)
return TICKS_MULS;
return TICKS_MUL;
}
if (bit20_S)
return TICKS_MLAS;
return TICKS_MLA;
}
// 64-bit multiply
if (bit22_U == 0) {
// Unsigned multiply long
if (bit21_A == 0) {
if (bit20_S)
return TICKS_UMULLS;
return TICKS_UMULL;
}
if (bit20_S)
return TICKS_UMLALS;
return TICKS_UMLAL;
}
// Signed multiply long
if (bit21_A == 0) {
if (bit20_S)
return TICKS_SMULLS;
return TICKS_SMULL;
}
if (bit20_S)
return TICKS_SMLALS;
return TICKS_SMLAL;
}
return TICKS_OTHER;
#endif
}
int get_insn_ticks_thumb(uint32_t insn)
{
#if 1
int result = 1;
switch ((insn >> 11) & 31)
{
case 0:
case 1:
case 2: /* Shift by immediate */
{
int Rm = (insn >> 3) & 7;
result += _interlock_use(Rm);
}
break;
case 3: /* Add/Substract */
{
int Rn = (insn >> 3) & 7;
result += _interlock_use(Rn);
if ((insn & 0x0400) == 0) { /* register value */
int Rm = (insn >> 6) & 7;
result += _interlock_use(Rm);
}
}
break;
case 4: /* move immediate */
break;
case 5:
case 6:
case 7: /* add/substract/compare immediate */
{
int Rd = (insn >> 8) & 7;
result += _interlock_use(Rd);
}
break;
case 8:
{
if ((insn & 0x0400) == 0) /* data processing register */
{
/* the registers can also be Rs and Rn in some cases */
/* but they're always read anyway and located at the */
/* same place, so we don't check the opcode */
int Rm = (insn >> 3) & 7;
int Rd = (insn >> 3) & 7;
result += _interlock_use(Rm) + _interlock_use(Rd);
}
else switch ((insn >> 8) & 3)
{
case 0:
case 1:
case 2: /* special data processing */
{
int Rn = (insn & 7) | ((insn >> 4) & 0x8);
int Rm = ((insn >> 3) & 15);
result += _interlock_use(Rn) + _interlock_use(Rm);
}
break;
case 3:
if ((insn & 0xff07) == 0x4700) /* branch/exchange */
{
int Rm = (insn >> 3) & 15;
result = 3 + _interlock_use(Rm);
}
/* else UNDEFINED */
break;
}
}
break;
case 9: /* load from literal pool */
{
int Rd = (insn >> 8) & 7;
_interlock_def(Rd,result+1);
}
break;
case 10:
case 11: /* load/store register offset */
{
int Rd = (insn & 7);
int Rn = (insn >> 3) & 7;
int Rm = (insn >> 6) & 7;
result += _interlock_use(Rn) + _interlock_use(Rm);
switch ((insn >> 9) & 7)
{
case 0: /* STR */
case 1: /* STRH */
case 2: /* STRB */
result += _interlock_use(Rd);
break;
case 3: /* LDRSB */
case 5: /* LDRH */
case 6: /* LDRB */
case 7: /* LDRSH */
_interlock_def(Rd,result+2);
break;
case 4: /* LDR */
_interlock_def(Rd,result+1);
}
}
break;
case 12: /* store word immediate offset */
case 14: /* store byte immediate offset */
{
int Rd = (insn & 7);
int Rn = (insn >> 3) & 7;
result += _interlock_use(Rd) + _interlock_use(Rn);
}
break;
case 13: /* load word immediate offset */
{
int Rd = (insn & 7);
int Rn = (insn >> 3) & 7;
result += _interlock_use(Rn);
_interlock_def(Rd,result+1);
}
break;
case 15: /* load byte immediate offset */
{
int Rd = (insn & 7);
int Rn = (insn >> 3) & 7;
result += _interlock_use(Rn);
_interlock_def(Rd,result+2);
}
break;
case 16: /* store halfword immediate offset */
{
int Rd = (insn & 7);
int Rn = (insn >> 3) & 7;
result += _interlock_use(Rn) + _interlock_use(Rd);
}
break;
case 17: /* load halfword immediate offset */
{
int Rd = (insn & 7);
int Rn = (insn >> 3) & 7;
result += _interlock_use(Rn);
_interlock_def(Rd,result+2);
}
break;
case 18: /* store to stack */
{
int Rd = (insn >> 8) & 3;
result += _interlock_use(Rd);
}
break;
case 19: /* load from stack */
{
int Rd = (insn >> 8) & 3;
_interlock_def(Rd,result+1);
}
break;
case 20: /* add to PC */
case 21: /* add to SP */
{
int Rd = (insn >> 8) & 3;
result += _interlock_use(Rd);
}
break;
case 22:
case 23: /* misc. instructions, table 6-2 */
{
if ((insn & 0xff00) == 0xb000) /* adjust stack pointer */
{
result += _interlock_use(14);
}
else if ((insn & 0x0600) == 0x0400) /* push pop register list */
{
uint32_t mask = insn & 0x01ff;
int count, nn;
for (count = 0; mask; count++)
mask &= (mask-1);
result = (count < 2) ? 2 : count;
if (insn & 0x0800) /* pop register list */
{
for (nn = 0; nn < 9; nn++)
if (insn & (1 << nn))
_interlock_def(nn, result);
}
else /* push register list */
{
for (nn = 0; nn < 9; nn++)
if (insn & (1 << nn))
result += _interlock_use(nn);
}
}
/* else software breakpoint */
}
break;
case 24: /* store multiple */
{
int Rd = (insn >> 8) & 7;
uint32_t mask = insn & 255;
int count, nn;
for (count = 0; mask; count++)
mask &= (mask-1);
result = (count < 2) ? 2 : count;
result += _interlock_use(Rd);
for (nn = 0; nn < 8; nn++)
if (insn & (1 << nn))
result += _interlock_use(nn);
}
break;
case 25: /* load multiple */
{
int Rd = (insn >> 8) & 7;
uint32_t mask = insn & 255;
int count, nn;
for (count = 0; mask; count++)
mask &= (mask-1);
result = (count < 2) ? 2 : count;
result += _interlock_use(Rd);
for (nn = 0; nn < 8; nn++)
if (insn & (1 << nn))
_interlock_def(nn, result);
}
break;
case 26:
case 27: /* conditional branch / undefined / software interrupt */
switch ((insn >> 8) & 15)
{
case 14: /* UNDEFINED */
case 15: /* SWI */
break;
default: /* conditional branch */
result = 3;
}
break;
case 28: /* unconditional branch */
result = 3;
break;
case 29: /* BLX suffix or undefined */
if ((insn & 1) == 0)
result = 3;
break;
case 30: /* BLX/BLX prefix */
break;
case 31: /* BL suffix */
result = 3;
break;
}
interlock_base += result;
return result;
#else /* old code */
if ((insn & 0xfc00) == 0x4340) /* MUL */
return TICKS_SMULxy;
return TICKS_OTHER;
#endif
}
// Adds an exception trace record.
void trace_exception(uint32 target_pc)
{
if (trace_exc.fstream == NULL)
return;
// Sometimes we get an unexpected exception as the first record. If the
// basic block number is zero, then we know it is bogus.
if (trace_bb.current_bb_num == 0)
return;
uint32_t current_pc = trace_bb.current_bb_addr + 4 * (trace_bb.num_insns - 1);
#if 0
if (ftrace_debug) {
fprintf(ftrace_debug, "t%llu exc pc: 0x%x bb_addr: 0x%x num_insns: %d current_pc: 0x%x bb_num %llu bb_start_time %llu\n",
sim_time, target_pc, trace_bb.current_bb_addr,
trace_bb.num_insns, current_pc, trace_bb.current_bb_num,
trace_bb.current_bb_start_time);
}
#endif
char *comp_ptr = trace_exc.compressed_ptr;
if (comp_ptr >= trace_exc.high_water_ptr) {
uint32_t size = comp_ptr - trace_exc.compressed;
fwrite(trace_exc.compressed, sizeof(char), size, trace_exc.fstream);
comp_ptr = trace_exc.compressed;
}
uint64_t time_diff = sim_time - trace_exc.prev_time;
trace_exc.prev_time = sim_time;
uint64_t bb_recnum_diff = trace_bb.recnum - trace_exc.prev_bb_recnum;
trace_exc.prev_bb_recnum = trace_bb.recnum;
comp_ptr = varint_encode(time_diff, comp_ptr);
comp_ptr = varint_encode(current_pc, comp_ptr);
comp_ptr = varint_encode(bb_recnum_diff, comp_ptr);
comp_ptr = varint_encode(target_pc, comp_ptr);
comp_ptr = varint_encode(trace_bb.current_bb_num, comp_ptr);
comp_ptr = varint_encode(trace_bb.current_bb_start_time, comp_ptr);
comp_ptr = varint_encode(trace_bb.num_insns, comp_ptr);
trace_exc.compressed_ptr = comp_ptr;
}
void trace_pid_1arg(int pid, int rec_type)
{
if (trace_pid.fstream == NULL)
return;
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + kMaxPidCompressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(pid, comp_ptr);
trace_pid.compressed_ptr = comp_ptr;
}
void trace_pid_2arg(int tgid, int pid, int rec_type)
{
if (trace_pid.fstream == NULL)
return;
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + kMaxPid2Compressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(tgid, comp_ptr);
comp_ptr = varint_encode(pid, comp_ptr);
trace_pid.compressed_ptr = comp_ptr;
}
void trace_switch(int pid)
{
#if 0
if (ftrace_debug && trace_pid.fstream)
fprintf(ftrace_debug, "t%lld switch %d\n", sim_time, pid);
#endif
trace_pid_1arg(pid, kPidSwitch);
current_pid = pid;
}
void trace_fork(int tgid, int pid)
{
#if 0
if (ftrace_debug && trace_pid.fstream)
fprintf(ftrace_debug, "t%lld fork %d\n", sim_time, pid);
#endif
trace_pid_2arg(tgid, pid, kPidFork);
}
void trace_clone(int tgid, int pid)
{
#if 0
if (ftrace_debug && trace_pid.fstream)
fprintf(ftrace_debug, "t%lld clone %d\n", sim_time, pid);
#endif
trace_pid_2arg(tgid, pid, kPidClone);
}
void trace_exit(int exitcode)
{
#if 0
if (ftrace_debug && trace_pid.fstream)
fprintf(ftrace_debug, "t%lld exit %d\n", sim_time, exitcode);
#endif
trace_pid_1arg(exitcode, kPidExit);
}
void trace_name(char *name)
{
#if 0
if (ftrace_debug && trace_pid.fstream) {
fprintf(ftrace_debug, "t%lld pid %d name %s\n",
sim_time, current_pid, name);
}
#endif
if (trace_pid.fstream == NULL)
return;
int len = strlen(name);
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + len + kMaxNameCompressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
int rec_type = kPidName;
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(current_pid, comp_ptr);
comp_ptr = varint_encode(len, comp_ptr);
strncpy(comp_ptr, name, len);
comp_ptr += len;
trace_pid.compressed_ptr = comp_ptr;
}
void trace_execve(const char *argv, int len)
{
int ii;
if (trace_pid.fstream == NULL)
return;
// Count the number of args
int alen = 0;
int sum_len = 0;
int argc = 0;
const char *ptr = argv;
while (sum_len < len) {
argc += 1;
alen = strlen(ptr);
ptr += alen + 1;
sum_len += alen + 1;
}
#if 0
if (ftrace_debug) {
fprintf(ftrace_debug, "t%lld argc: %d\n", sim_time, argc);
alen = 0;
ptr = argv;
for (ii = 0; ii < argc; ++ii) {
fprintf(ftrace_debug, " argv[%d]: %s\n", ii, ptr);
alen = strlen(ptr);
ptr += alen + 1;
}
}
#endif
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + len + 5 * argc + kMaxExecArgsCompressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
int rec_type = kPidExec;
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(argc, comp_ptr);
ptr = argv;
for (ii = 0; ii < argc; ++ii) {
alen = strlen(ptr);
comp_ptr = varint_encode(alen, comp_ptr);
strncpy(comp_ptr, ptr, alen);
comp_ptr += alen;
ptr += alen + 1;
}
trace_pid.compressed_ptr = comp_ptr;
}
void trace_mmap(unsigned long vstart, unsigned long vend,
unsigned long offset, const char *path)
{
if (trace_pid.fstream == NULL)
return;
#if 0
if (ftrace_debug)
fprintf(ftrace_debug, "t%lld mmap %08lx - %08lx, offset %08lx '%s'\n",
sim_time, vstart, vend, offset, path);
#endif
int len = strlen(path);
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + len + kMaxMmapCompressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
int rec_type = kPidMmap;
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(vstart, comp_ptr);
comp_ptr = varint_encode(vend, comp_ptr);
comp_ptr = varint_encode(offset, comp_ptr);
comp_ptr = varint_encode(len, comp_ptr);
strncpy(comp_ptr, path, len);
trace_pid.compressed_ptr = comp_ptr + len;
}
void trace_munmap(unsigned long vstart, unsigned long vend)
{
if (trace_pid.fstream == NULL)
return;
#if 0
if (ftrace_debug)
fprintf(ftrace_debug, "t%lld munmap %08lx - %08lx\n",
sim_time, vstart, vend);
#endif
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + kMaxMunmapCompressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
int rec_type = kPidMunmap;
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(vstart, comp_ptr);
comp_ptr = varint_encode(vend, comp_ptr);
trace_pid.compressed_ptr = comp_ptr;
}
void trace_dynamic_symbol_add(unsigned long vaddr, const char *name)
{
if (trace_pid.fstream == NULL)
return;
#if 0
if (ftrace_debug)
fprintf(ftrace_debug, "t%lld sym %08lx '%s'\n", sim_time, vaddr, name);
#endif
int len = strlen(name);
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + len + kMaxSymbolCompressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
int rec_type = kPidSymbolAdd;
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(vaddr, comp_ptr);
comp_ptr = varint_encode(len, comp_ptr);
strncpy(comp_ptr, name, len);
trace_pid.compressed_ptr = comp_ptr + len;
}
void trace_dynamic_symbol_remove(unsigned long vaddr)
{
if (trace_pid.fstream == NULL)
return;
#if 0
if (ftrace_debug)
fprintf(ftrace_debug, "t%lld remove %08lx\n", sim_time, vaddr);
#endif
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + kMaxSymbolCompressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
int rec_type = kPidSymbolRemove;
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(vaddr, comp_ptr);
trace_pid.compressed_ptr = comp_ptr;
}
void trace_init_name(int tgid, int pid, const char *name)
{
if (trace_pid.fstream == NULL)
return;
#if 0
if (ftrace_debug)
fprintf(ftrace_debug, "t%lld kthread %d %s\n", sim_time, pid, name);
#endif
int len = strlen(name);
char *comp_ptr = trace_pid.compressed_ptr;
char *max_end_ptr = comp_ptr + len + kMaxKthreadNameCompressed;
if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_pid.compressed;
fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream);
comp_ptr = trace_pid.compressed;
}
uint64_t time_diff = sim_time - trace_pid.prev_time;
trace_pid.prev_time = sim_time;
comp_ptr = varint_encode(time_diff, comp_ptr);
int rec_type = kPidKthreadName;
comp_ptr = varint_encode(rec_type, comp_ptr);
comp_ptr = varint_encode(tgid, comp_ptr);
comp_ptr = varint_encode(pid, comp_ptr);
comp_ptr = varint_encode(len, comp_ptr);
strncpy(comp_ptr, name, len);
trace_pid.compressed_ptr = comp_ptr + len;
}
void trace_init_exec(unsigned long start, unsigned long end,
unsigned long offset, const char *exe)
{
}
// This function is called by the generated code to record the basic
// block number.
void trace_bb_helper(uint64_t bb_num, TranslationBlock *tb)
{
BBRec *bb_rec = tb->bb_rec;
uint64_t prev_time = tb->prev_time;
trace_bb.current_bb_addr = tb->pc;
trace_bb.current_bb_num = bb_num;
trace_bb.current_bb_start_time = sim_time;
trace_bb.num_insns = 0;
trace_bb.recnum += 1;
#if 0
if (ftrace_debug)
fprintf(ftrace_debug, "t%lld %lld\n", sim_time, bb_num);
#endif
if (bb_rec && bb_rec->bb_num == bb_num && prev_time > trace_bb.flush_time) {
uint64_t time_diff = sim_time - prev_time;
if (bb_rec->repeat == 0) {
bb_rec->repeat = 1;
bb_rec->time_diff = time_diff;
tb->prev_time = sim_time;
return;
} else if (time_diff == bb_rec->time_diff) {
bb_rec->repeat += 1;
tb->prev_time = sim_time;
return;
}
}
BBRec *next = trace_bb.next;
if (next == &trace_bb.buffer[kMaxNumBasicBlocks]) {
BBRec *ptr;
char *comp_ptr = trace_bb.compressed_ptr;
int64_t prev_bb_num = trace_bb.prev_bb_num;
uint64_t prev_bb_time = trace_bb.prev_bb_time;
for (ptr = trace_bb.buffer; ptr != next; ++ptr) {
if (comp_ptr >= trace_bb.high_water_ptr) {
uint32_t size = comp_ptr - trace_bb.compressed;
fwrite(trace_bb.compressed, sizeof(char), size, trace_bb.fstream);
comp_ptr = trace_bb.compressed;
}
int64_t bb_diff = ptr->bb_num - prev_bb_num;
prev_bb_num = ptr->bb_num;
uint64_t time_diff = ptr->start_time - prev_bb_time;
prev_bb_time = ptr->start_time;
comp_ptr = varint_encode_signed(bb_diff, comp_ptr);
comp_ptr = varint_encode(time_diff, comp_ptr);
comp_ptr = varint_encode(ptr->repeat, comp_ptr);
if (ptr->repeat)
comp_ptr = varint_encode(ptr->time_diff, comp_ptr);
}
trace_bb.compressed_ptr = comp_ptr;
trace_bb.prev_bb_num = prev_bb_num;
trace_bb.prev_bb_time = prev_bb_time;
next = trace_bb.buffer;
trace_bb.flush_time = sim_time;
}
tb->bb_rec = next;
next->bb_num = bb_num;
next->start_time = sim_time;
next->time_diff = 0;
next->repeat = 0;
tb->prev_time = sim_time;
next += 1;
trace_bb.next = next;
}
// This function is called by the generated code to record the simulation
// time at the start of each instruction.
void trace_insn_helper()
{
InsnRec *current = trace_insn.current;
uint64_t time_diff = sim_time - trace_insn.prev_time;
trace_insn.prev_time = sim_time;
// Keep track of the number of traced instructions so far in this
// basic block in case we get an exception in the middle of the bb.
trace_bb.num_insns += 1;
#if 0
if (ftrace_debug) {
uint32_t current_pc = trace_bb.current_bb_addr + 4 * (trace_bb.num_insns - 1);
fprintf(ftrace_debug, "%llu %x\n", sim_time, current_pc);
}
#endif
if (time_diff == current->time_diff) {
current->repeat += 1;
if (current->repeat != 0)
return;
// The repeat count wrapped around, so back up one and create
// a new record.
current->repeat -= 1;
}
current += 1;
if (current == &trace_insn.buffer[kInsnBufferSize]) {
InsnRec *ptr;
char *comp_ptr = trace_insn.compressed_ptr;
for (ptr = trace_insn.buffer; ptr != current; ++ptr) {
if (comp_ptr >= trace_insn.high_water_ptr) {
uint32_t size = comp_ptr - trace_insn.compressed;
uint32_t rval = fwrite(trace_insn.compressed, sizeof(char),
size, trace_insn.fstream);
if (rval != size) {
fprintf(stderr, "fwrite() failed\n");
perror(trace_insn.filename);
exit(1);
}
comp_ptr = trace_insn.compressed;
}
comp_ptr = varint_encode(ptr->time_diff, comp_ptr);
comp_ptr = varint_encode(ptr->repeat, comp_ptr);
}
trace_insn.compressed_ptr = comp_ptr;
current = trace_insn.buffer;
}
current->time_diff = time_diff;
current->repeat = 0;
trace_insn.current = current;
}
// Adds an interpreted method trace record. Each trace record is a time
// stamped entry or exit to a method in a language executed by a "virtual
// machine". This allows profiling tools to show the method names instead
// of the core virtual machine interpreter.
void trace_interpreted_method(uint32_t addr, int call_type)
{
if (trace_method.fstream == NULL)
return;
#if 0
fprintf(stderr, "trace_method time: %llu p%d 0x%x %d\n",
sim_time, current_pid, addr, call_type);
#endif
char *comp_ptr = trace_method.compressed_ptr;
char *max_end_ptr = comp_ptr + kMaxMethodCompressed;
if (max_end_ptr >= &trace_method.compressed[kCompressedSize]) {
uint32_t size = comp_ptr - trace_method.compressed;
fwrite(trace_method.compressed, sizeof(char), size, trace_method.fstream);
comp_ptr = trace_method.compressed;
}
uint64_t time_diff = sim_time - trace_method.prev_time;
trace_method.prev_time = sim_time;
int32_t addr_diff = addr - trace_method.prev_addr;
trace_method.prev_addr = addr;
int32_t pid_diff = current_pid - trace_method.prev_pid;
trace_method.prev_pid = current_pid;
comp_ptr = varint_encode(time_diff, comp_ptr);
comp_ptr = varint_encode_signed(addr_diff, comp_ptr);
comp_ptr = varint_encode_signed(pid_diff, comp_ptr);
comp_ptr = varint_encode(call_type, comp_ptr);
trace_method.compressed_ptr = comp_ptr;
}
uint64_t trace_static_bb_num(void)
{
return trace_static.bb_num;
}