// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The LazyInstance<Type, Traits> class manages a single instance of Type,
// which will be lazily created on the first time it's accessed. This class is
// useful for places you would normally use a function-level static, but you
// need to have guaranteed thread-safety. The Type constructor will only ever
// be called once, even if two threads are racing to create the object. Get()
// and Pointer() will always return the same, completely initialized instance.
//
// LazyInstance is completely thread safe, assuming that you create it safely.
// The class was designed to be POD initialized, so it shouldn't require a
// static constructor. It really only makes sense to declare a LazyInstance as
// a global variable using the LAZY_INSTANCE_INITIALIZER initializer.
//
// LazyInstance is similar to Singleton, except it does not have the singleton
// property. You can have multiple LazyInstance's of the same type, and each
// will manage a unique instance. It also preallocates the space for Type, as
// to avoid allocating the Type instance on the heap. This may help with the
// performance of creating the instance, and reducing heap fragmentation. This
// requires that Type be a complete type so we can determine the size. See
// notes for advanced users below for more explanations.
//
// Example usage:
// static LazyInstance<MyClass>::type my_instance = LAZY_INSTANCE_INITIALIZER;
// void SomeMethod() {
// my_instance.Get().SomeMethod(); // MyClass::SomeMethod()
//
// MyClass* ptr = my_instance.Pointer();
// ptr->DoDoDo(); // MyClass::DoDoDo
// }
//
// Additionally you can override the way your instance is constructed by
// providing your own trait:
// Example usage:
// struct MyCreateTrait {
// static void Construct(MyClass* allocated_ptr) {
// new (allocated_ptr) MyClass(/* extra parameters... */);
// }
// };
// static LazyInstance<MyClass, MyCreateTrait>::type my_instance =
// LAZY_INSTANCE_INITIALIZER;
//
// WARNING: This implementation of LazyInstance is NOT thread-safe by default.
// See ThreadSafeInitOnceTrait declared below for that.
//
// Notes for advanced users:
// LazyInstance can actually be used in two different ways:
//
// - "Static mode" which is the default mode since it is the most efficient
// (no extra heap allocation). In this mode, the instance is statically
// allocated (stored in the global data section at compile time).
// The macro LAZY_STATIC_INSTANCE_INITIALIZER (= LAZY_INSTANCE_INITIALIZER)
// must be used to initialize static lazy instances.
//
// - "Dynamic mode". In this mode, the instance is dynamically allocated and
// constructed (using new) by default. This mode is useful if you have to
// deal with some code already allocating the instance for you (e.g.
// OS::Mutex() which returns a new private OS-dependent subclass of Mutex).
// The macro LAZY_DYNAMIC_INSTANCE_INITIALIZER must be used to initialize
// dynamic lazy instances.
#ifndef V8_LAZY_INSTANCE_H_
#define V8_LAZY_INSTANCE_H_
#include "once.h"
namespace v8 {
namespace internal {
#define LAZY_STATIC_INSTANCE_INITIALIZER { V8_ONCE_INIT, {} }
#define LAZY_DYNAMIC_INSTANCE_INITIALIZER { V8_ONCE_INIT, 0 }
// Default to static mode.
#define LAZY_INSTANCE_INITIALIZER LAZY_STATIC_INSTANCE_INITIALIZER
template <typename T>
struct LeakyInstanceTrait {
static void Destroy(T* /* instance */) {}
};
// Traits that define how an instance is allocated and accessed.
// TODO(kalmard): __alignof__ is only defined for GCC > 4.2. Fix alignment issue
// on MIPS with other compilers.
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ > 2))
#define LAZY_ALIGN(x) __attribute__((aligned(__alignof__(x))))
#else
#define LAZY_ALIGN(x)
#endif
template <typename T>
struct StaticallyAllocatedInstanceTrait {
typedef char StorageType[sizeof(T)] LAZY_ALIGN(T);
static T* MutableInstance(StorageType* storage) {
return reinterpret_cast<T*>(storage);
}
template <typename ConstructTrait>
static void InitStorageUsingTrait(StorageType* storage) {
ConstructTrait::Construct(MutableInstance(storage));
}
};
#undef LAZY_ALIGN
template <typename T>
struct DynamicallyAllocatedInstanceTrait {
typedef T* StorageType;
static T* MutableInstance(StorageType* storage) {
return *storage;
}
template <typename CreateTrait>
static void InitStorageUsingTrait(StorageType* storage) {
*storage = CreateTrait::Create();
}
};
template <typename T>
struct DefaultConstructTrait {
// Constructs the provided object which was already allocated.
static void Construct(T* allocated_ptr) {
new(allocated_ptr) T();
}
};
template <typename T>
struct DefaultCreateTrait {
static T* Create() {
return new T();
}
};
struct ThreadSafeInitOnceTrait {
template <typename Function, typename Storage>
static void Init(OnceType* once, Function function, Storage storage) {
CallOnce(once, function, storage);
}
};
// Initialization trait for users who don't care about thread-safety.
struct SingleThreadInitOnceTrait {
template <typename Function, typename Storage>
static void Init(OnceType* once, Function function, Storage storage) {
if (*once == ONCE_STATE_UNINITIALIZED) {
function(storage);
*once = ONCE_STATE_DONE;
}
}
};
// TODO(pliard): Handle instances destruction (using global destructors).
template <typename T, typename AllocationTrait, typename CreateTrait,
typename InitOnceTrait, typename DestroyTrait /* not used yet. */>
struct LazyInstanceImpl {
public:
typedef typename AllocationTrait::StorageType StorageType;
private:
static void InitInstance(StorageType* storage) {
AllocationTrait::template InitStorageUsingTrait<CreateTrait>(storage);
}
void Init() const {
InitOnceTrait::Init(
&once_,
// Casts to void* are needed here to avoid breaking strict aliasing
// rules.
reinterpret_cast<void(*)(void*)>(&InitInstance), // NOLINT
reinterpret_cast<void*>(&storage_));
}
public:
T* Pointer() {
Init();
return AllocationTrait::MutableInstance(&storage_);
}
const T& Get() const {
Init();
return *AllocationTrait::MutableInstance(&storage_);
}
mutable OnceType once_;
// Note that the previous field, OnceType, is an AtomicWord which guarantees
// 4-byte alignment of the storage field below. If compiling with GCC (>4.2),
// the LAZY_ALIGN macro above will guarantee correctness for any alignment.
mutable StorageType storage_;
};
template <typename T,
typename CreateTrait = DefaultConstructTrait<T>,
typename InitOnceTrait = SingleThreadInitOnceTrait,
typename DestroyTrait = LeakyInstanceTrait<T> >
struct LazyStaticInstance {
typedef LazyInstanceImpl<T, StaticallyAllocatedInstanceTrait<T>,
CreateTrait, InitOnceTrait, DestroyTrait> type;
};
template <typename T,
typename CreateTrait = DefaultConstructTrait<T>,
typename InitOnceTrait = SingleThreadInitOnceTrait,
typename DestroyTrait = LeakyInstanceTrait<T> >
struct LazyInstance {
// A LazyInstance is a LazyStaticInstance.
typedef typename LazyStaticInstance<T, CreateTrait, InitOnceTrait,
DestroyTrait>::type type;
};
template <typename T,
typename CreateTrait = DefaultConstructTrait<T>,
typename InitOnceTrait = SingleThreadInitOnceTrait,
typename DestroyTrait = LeakyInstanceTrait<T> >
struct LazyDynamicInstance {
typedef LazyInstanceImpl<T, DynamicallyAllocatedInstanceTrait<T>,
CreateTrait, InitOnceTrait, DestroyTrait> type;
};
} } // namespace v8::internal
#endif // V8_LAZY_INSTANCE_H_