/*
* Copyright (C) 2009, 2010 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef LinkBuffer_h
#define LinkBuffer_h
#if ENABLE(ASSEMBLER)
#define DUMP_LINK_STATISTICS 0
#define DUMP_CODE 0
#include <MacroAssembler.h>
#include <wtf/Noncopyable.h>
namespace JSC {
// LinkBuffer:
//
// This class assists in linking code generated by the macro assembler, once code generation
// has been completed, and the code has been copied to is final location in memory. At this
// time pointers to labels within the code may be resolved, and relative offsets to external
// addresses may be fixed.
//
// Specifically:
// * Jump objects may be linked to external targets,
// * The address of Jump objects may taken, such that it can later be relinked.
// * The return address of a Call may be acquired.
// * The address of a Label pointing into the code may be resolved.
// * The value referenced by a DataLabel may be set.
//
class LinkBuffer {
WTF_MAKE_NONCOPYABLE(LinkBuffer);
typedef MacroAssemblerCodeRef CodeRef;
typedef MacroAssemblerCodePtr CodePtr;
typedef MacroAssembler::Label Label;
typedef MacroAssembler::Jump Jump;
typedef MacroAssembler::JumpList JumpList;
typedef MacroAssembler::Call Call;
typedef MacroAssembler::DataLabel32 DataLabel32;
typedef MacroAssembler::DataLabelPtr DataLabelPtr;
typedef MacroAssembler::JmpDst JmpDst;
#if ENABLE(BRANCH_COMPACTION)
typedef MacroAssembler::LinkRecord LinkRecord;
typedef MacroAssembler::JumpLinkType JumpLinkType;
#endif
public:
// Note: Initialization sequence is significant, since executablePool is a PassRefPtr.
// First, executablePool is copied into m_executablePool, then the initialization of
// m_code uses m_executablePool, *not* executablePool, since this is no longer valid.
// The linkOffset parameter should only be non-null when recompiling for exception info
LinkBuffer(MacroAssembler* masm, PassRefPtr<ExecutablePool> executablePool, void* linkOffset)
: m_executablePool(executablePool)
, m_size(0)
, m_code(0)
, m_assembler(masm)
#ifndef NDEBUG
, m_completed(false)
#endif
{
linkCode(linkOffset);
}
~LinkBuffer()
{
ASSERT(m_completed);
}
// These methods are used to link or set values at code generation time.
void link(Call call, FunctionPtr function)
{
ASSERT(call.isFlagSet(Call::Linkable));
call.m_jmp = applyOffset(call.m_jmp);
MacroAssembler::linkCall(code(), call, function);
}
void link(Jump jump, CodeLocationLabel label)
{
jump.m_jmp = applyOffset(jump.m_jmp);
MacroAssembler::linkJump(code(), jump, label);
}
void link(JumpList list, CodeLocationLabel label)
{
for (unsigned i = 0; i < list.m_jumps.size(); ++i)
link(list.m_jumps[i], label);
}
void patch(DataLabelPtr label, void* value)
{
JmpDst target = applyOffset(label.m_label);
MacroAssembler::linkPointer(code(), target, value);
}
void patch(DataLabelPtr label, CodeLocationLabel value)
{
JmpDst target = applyOffset(label.m_label);
MacroAssembler::linkPointer(code(), target, value.executableAddress());
}
// These methods are used to obtain handles to allow the code to be relinked / repatched later.
CodeLocationCall locationOf(Call call)
{
ASSERT(call.isFlagSet(Call::Linkable));
ASSERT(!call.isFlagSet(Call::Near));
return CodeLocationCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_jmp)));
}
CodeLocationNearCall locationOfNearCall(Call call)
{
ASSERT(call.isFlagSet(Call::Linkable));
ASSERT(call.isFlagSet(Call::Near));
return CodeLocationNearCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_jmp)));
}
CodeLocationLabel locationOf(Label label)
{
return CodeLocationLabel(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label)));
}
CodeLocationDataLabelPtr locationOf(DataLabelPtr label)
{
return CodeLocationDataLabelPtr(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label)));
}
CodeLocationDataLabel32 locationOf(DataLabel32 label)
{
return CodeLocationDataLabel32(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label)));
}
// This method obtains the return address of the call, given as an offset from
// the start of the code.
unsigned returnAddressOffset(Call call)
{
call.m_jmp = applyOffset(call.m_jmp);
return MacroAssembler::getLinkerCallReturnOffset(call);
}
// Upon completion of all patching either 'finalizeCode()' or 'finalizeCodeAddendum()' should be called
// once to complete generation of the code. 'finalizeCode()' is suited to situations
// where the executable pool must also be retained, the lighter-weight 'finalizeCodeAddendum()' is
// suited to adding to an existing allocation.
CodeRef finalizeCode()
{
performFinalization();
return CodeRef(m_code, m_executablePool, m_size);
}
CodeLocationLabel finalizeCodeAddendum()
{
performFinalization();
return CodeLocationLabel(code());
}
CodePtr trampolineAt(Label label)
{
return CodePtr(MacroAssembler::AssemblerType_T::getRelocatedAddress(code(), applyOffset(label.m_label)));
}
#ifndef NDEBUG
void* debugAddress()
{
return m_code;
}
#endif
private:
template <typename T> T applyOffset(T src)
{
#if ENABLE(BRANCH_COMPACTION)
src.m_offset -= m_assembler->executableOffsetFor(src.m_offset);
#endif
return src;
}
// Keep this private! - the underlying code should only be obtained externally via
// finalizeCode() or finalizeCodeAddendum().
void* code()
{
return m_code;
}
void linkCode(void* linkOffset)
{
UNUSED_PARAM(linkOffset);
ASSERT(!m_code);
#if !ENABLE(BRANCH_COMPACTION)
m_code = m_assembler->m_assembler.executableCopy(m_executablePool.get());
m_size = m_assembler->size();
#else
size_t initialSize = m_assembler->size();
m_code = (uint8_t*)m_executablePool->alloc(initialSize);
if (!m_code)
return;
ExecutableAllocator::makeWritable(m_code, m_assembler->size());
uint8_t* inData = (uint8_t*)m_assembler->unlinkedCode();
uint8_t* outData = reinterpret_cast<uint8_t*>(m_code);
const uint8_t* linkBase = linkOffset ? reinterpret_cast<uint8_t*>(linkOffset) : outData;
int readPtr = 0;
int writePtr = 0;
Vector<LinkRecord>& jumpsToLink = m_assembler->jumpsToLink();
unsigned jumpCount = jumpsToLink.size();
for (unsigned i = 0; i < jumpCount; ++i) {
int offset = readPtr - writePtr;
ASSERT(!(offset & 1));
// Copy the instructions from the last jump to the current one.
size_t regionSize = jumpsToLink[i].from() - readPtr;
memcpy(outData + writePtr, inData + readPtr, regionSize);
m_assembler->recordLinkOffsets(readPtr, jumpsToLink[i].from(), offset);
readPtr += regionSize;
writePtr += regionSize;
// Calculate absolute address of the jump target, in the case of backwards
// branches we need to be precise, forward branches we are pessimistic
const uint8_t* target;
if (jumpsToLink[i].to() >= jumpsToLink[i].from())
target = linkBase + jumpsToLink[i].to() - offset; // Compensate for what we have collapsed so far
else
target = linkBase + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to());
JumpLinkType jumpLinkType = m_assembler->computeJumpType(jumpsToLink[i], linkBase + writePtr, target);
// Compact branch if we can...
if (m_assembler->canCompact(jumpsToLink[i].type())) {
// Step back in the write stream
int32_t delta = m_assembler->jumpSizeDelta(jumpsToLink[i].type(), jumpLinkType);
if (delta) {
writePtr -= delta;
m_assembler->recordLinkOffsets(jumpsToLink[i].from() - delta, readPtr, readPtr - writePtr);
}
}
jumpsToLink[i].setFrom(writePtr);
}
// Copy everything after the last jump
memcpy(outData + writePtr, inData + readPtr, m_assembler->size() - readPtr);
m_assembler->recordLinkOffsets(readPtr, m_assembler->size(), readPtr - writePtr);
// Actually link everything (don't link if we've be given a linkoffset as it's a
// waste of time: linkOffset is used for recompiling to get exception info)
if (!linkOffset) {
for (unsigned i = 0; i < jumpCount; ++i) {
uint8_t* location = outData + jumpsToLink[i].from();
uint8_t* target = outData + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to());
m_assembler->link(jumpsToLink[i], location, target);
}
}
jumpsToLink.clear();
m_size = writePtr + m_assembler->size() - readPtr;
m_executablePool->tryShrink(m_code, initialSize, m_size);
#if DUMP_LINK_STATISTICS
dumpLinkStatistics(m_code, initialSize, m_size);
#endif
#if DUMP_CODE
dumpCode(m_code, m_size);
#endif
#endif
}
void performFinalization()
{
#ifndef NDEBUG
ASSERT(!m_completed);
m_completed = true;
#endif
ExecutableAllocator::makeExecutable(code(), m_size);
ExecutableAllocator::cacheFlush(code(), m_size);
}
#if DUMP_LINK_STATISTICS
static void dumpLinkStatistics(void* code, size_t initialSize, size_t finalSize)
{
static unsigned linkCount = 0;
static unsigned totalInitialSize = 0;
static unsigned totalFinalSize = 0;
linkCount++;
totalInitialSize += initialSize;
totalFinalSize += finalSize;
printf("link %p: orig %u, compact %u (delta %u, %.2f%%)\n",
code, static_cast<unsigned>(initialSize), static_cast<unsigned>(finalSize),
static_cast<unsigned>(initialSize - finalSize),
100.0 * (initialSize - finalSize) / initialSize);
printf("\ttotal %u: orig %u, compact %u (delta %u, %.2f%%)\n",
linkCount, totalInitialSize, totalFinalSize, totalInitialSize - totalFinalSize,
100.0 * (totalInitialSize - totalFinalSize) / totalInitialSize);
}
#endif
#if DUMP_CODE
static void dumpCode(void* code, size_t size)
{
#if CPU(ARM_THUMB2)
// Dump the generated code in an asm file format that can be assembled and then disassembled
// for debugging purposes. For example, save this output as jit.s:
// gcc -arch armv7 -c jit.s
// otool -tv jit.o
static unsigned codeCount = 0;
unsigned short* tcode = static_cast<unsigned short*>(code);
size_t tsize = size / sizeof(short);
char nameBuf[128];
snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++);
printf("\t.syntax unified\n"
"\t.section\t__TEXT,__text,regular,pure_instructions\n"
"\t.globl\t%s\n"
"\t.align 2\n"
"\t.code 16\n"
"\t.thumb_func\t%s\n"
"# %p\n"
"%s:\n", nameBuf, nameBuf, code, nameBuf);
for (unsigned i = 0; i < tsize; i++)
printf("\t.short\t0x%x\n", tcode[i]);
#endif
}
#endif
RefPtr<ExecutablePool> m_executablePool;
size_t m_size;
void* m_code;
MacroAssembler* m_assembler;
#ifndef NDEBUG
bool m_completed;
#endif
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)
#endif // LinkBuffer_h