/*
* Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CodeBlock_h
#define CodeBlock_h
#include "EvalCodeCache.h"
#include "Instruction.h"
#include "JITCode.h"
#include "JSGlobalObject.h"
#include "JumpTable.h"
#include "Nodes.h"
#include "RegExp.h"
#include "UString.h"
#include <wtf/FastAllocBase.h>
#include <wtf/PassOwnPtr.h>
#include <wtf/RefPtr.h>
#include <wtf/Vector.h>
#if ENABLE(JIT)
#include "StructureStubInfo.h"
#endif
// Register numbers used in bytecode operations have different meaning according to their ranges:
// 0x80000000-0xFFFFFFFF Negative indices from the CallFrame pointer are entries in the call frame, see RegisterFile.h.
// 0x00000000-0x3FFFFFFF Forwards indices from the CallFrame pointer are local vars and temporaries with the function's callframe.
// 0x40000000-0x7FFFFFFF Positive indices from 0x40000000 specify entries in the constant pool on the CodeBlock.
static const int FirstConstantRegisterIndex = 0x40000000;
namespace JSC {
enum HasSeenShouldRepatch {
hasSeenShouldRepatch
};
class ExecState;
enum CodeType { GlobalCode, EvalCode, FunctionCode };
inline int unmodifiedArgumentsRegister(int argumentsRegister) { return argumentsRegister - 1; }
static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); }
struct HandlerInfo {
uint32_t start;
uint32_t end;
uint32_t target;
uint32_t scopeDepth;
#if ENABLE(JIT)
CodeLocationLabel nativeCode;
#endif
};
struct ExpressionRangeInfo {
enum {
MaxOffset = (1 << 7) - 1,
MaxDivot = (1 << 25) - 1
};
uint32_t instructionOffset : 25;
uint32_t divotPoint : 25;
uint32_t startOffset : 7;
uint32_t endOffset : 7;
};
struct LineInfo {
uint32_t instructionOffset;
int32_t lineNumber;
};
#if ENABLE(JIT)
struct CallLinkInfo {
CallLinkInfo()
: hasSeenShouldRepatch(false)
{
}
CodeLocationNearCall callReturnLocation;
CodeLocationDataLabelPtr hotPathBegin;
CodeLocationNearCall hotPathOther;
WriteBarrier<JSFunction> callee;
bool hasSeenShouldRepatch;
void setUnlinked() { callee.clear(); }
bool isLinked() { return callee; }
bool seenOnce()
{
return hasSeenShouldRepatch;
}
void setSeen()
{
hasSeenShouldRepatch = true;
}
};
struct MethodCallLinkInfo {
MethodCallLinkInfo()
{
}
bool seenOnce()
{
ASSERT(!cachedStructure);
return cachedPrototypeStructure;
}
void setSeen()
{
ASSERT(!cachedStructure && !cachedPrototypeStructure);
// We use the values of cachedStructure & cachedPrototypeStructure to indicate the
// current state.
// - In the initial state, both are null.
// - Once this transition has been taken once, cachedStructure is
// null and cachedPrototypeStructure is set to a nun-null value.
// - Once the call is linked both structures are set to non-null values.
cachedPrototypeStructure.setWithoutWriteBarrier((Structure*)1);
}
CodeLocationCall callReturnLocation;
CodeLocationDataLabelPtr structureLabel;
WriteBarrier<Structure> cachedStructure;
WriteBarrier<Structure> cachedPrototypeStructure;
};
struct GlobalResolveInfo {
GlobalResolveInfo(unsigned bytecodeOffset)
: offset(0)
, bytecodeOffset(bytecodeOffset)
{
}
WriteBarrier<Structure> structure;
unsigned offset;
unsigned bytecodeOffset;
};
// This structure is used to map from a call return location
// (given as an offset in bytes into the JIT code) back to
// the bytecode index of the corresponding bytecode operation.
// This is then used to look up the corresponding handler.
struct CallReturnOffsetToBytecodeOffset {
CallReturnOffsetToBytecodeOffset(unsigned callReturnOffset, unsigned bytecodeOffset)
: callReturnOffset(callReturnOffset)
, bytecodeOffset(bytecodeOffset)
{
}
unsigned callReturnOffset;
unsigned bytecodeOffset;
};
// valueAtPosition helpers for the binarySearch algorithm.
inline void* getStructureStubInfoReturnLocation(StructureStubInfo* structureStubInfo)
{
return structureStubInfo->callReturnLocation.executableAddress();
}
inline void* getCallLinkInfoReturnLocation(CallLinkInfo* callLinkInfo)
{
return callLinkInfo->callReturnLocation.executableAddress();
}
inline void* getMethodCallLinkInfoReturnLocation(MethodCallLinkInfo* methodCallLinkInfo)
{
return methodCallLinkInfo->callReturnLocation.executableAddress();
}
inline unsigned getCallReturnOffset(CallReturnOffsetToBytecodeOffset* pc)
{
return pc->callReturnOffset;
}
#endif
class CodeBlock {
WTF_MAKE_FAST_ALLOCATED;
friend class JIT;
protected:
CodeBlock(ScriptExecutable* ownerExecutable, CodeType, JSGlobalObject*, PassRefPtr<SourceProvider>, unsigned sourceOffset, SymbolTable* symbolTable, bool isConstructor);
WriteBarrier<JSGlobalObject> m_globalObject;
Heap* m_heap;
public:
virtual ~CodeBlock();
void markAggregate(MarkStack&);
static void dumpStatistics();
#if !defined(NDEBUG) || ENABLE_OPCODE_SAMPLING
void dump(ExecState*) const;
void printStructures(const Instruction*) const;
void printStructure(const char* name, const Instruction*, int operand) const;
#endif
bool isStrictMode() const { return m_isStrictMode; }
inline bool isKnownNotImmediate(int index)
{
if (index == m_thisRegister && !m_isStrictMode)
return true;
if (isConstantRegisterIndex(index))
return getConstant(index).isCell();
return false;
}
ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
{
return index >= m_numVars;
}
HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset);
int lineNumberForBytecodeOffset(unsigned bytecodeOffset);
void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset);
#if ENABLE(JIT)
StructureStubInfo& getStubInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<StructureStubInfo, void*, getStructureStubInfoReturnLocation>(m_structureStubInfos.begin(), m_structureStubInfos.size(), returnAddress.value()));
}
CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<CallLinkInfo, void*, getCallLinkInfoReturnLocation>(m_callLinkInfos.begin(), m_callLinkInfos.size(), returnAddress.value()));
}
MethodCallLinkInfo& getMethodCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<MethodCallLinkInfo, void*, getMethodCallLinkInfoReturnLocation>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), returnAddress.value()));
}
unsigned bytecodeOffset(ReturnAddressPtr returnAddress)
{
if (!m_rareData)
return 1;
Vector<CallReturnOffsetToBytecodeOffset>& callIndices = m_rareData->m_callReturnIndexVector;
if (!callIndices.size())
return 1;
return binarySearch<CallReturnOffsetToBytecodeOffset, unsigned, getCallReturnOffset>(callIndices.begin(), callIndices.size(), getJITCode().offsetOf(returnAddress.value()))->bytecodeOffset;
}
#endif
#if ENABLE(INTERPRETER)
unsigned bytecodeOffset(Instruction* returnAddress)
{
return static_cast<Instruction*>(returnAddress) - instructions().begin();
}
#endif
void setIsNumericCompareFunction(bool isNumericCompareFunction) { m_isNumericCompareFunction = isNumericCompareFunction; }
bool isNumericCompareFunction() { return m_isNumericCompareFunction; }
Vector<Instruction>& instructions() { return m_instructions; }
void discardBytecode() { m_instructions.clear(); }
#ifndef NDEBUG
unsigned instructionCount() { return m_instructionCount; }
void setInstructionCount(unsigned instructionCount) { m_instructionCount = instructionCount; }
#endif
#if ENABLE(JIT)
JITCode& getJITCode() { return m_isConstructor ? ownerExecutable()->generatedJITCodeForConstruct() : ownerExecutable()->generatedJITCodeForCall(); }
ExecutablePool* executablePool() { return getJITCode().getExecutablePool(); }
#endif
ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); }
void setGlobalData(JSGlobalData* globalData) { m_globalData = globalData; }
void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; }
int thisRegister() const { return m_thisRegister; }
void setNeedsFullScopeChain(bool needsFullScopeChain) { m_needsFullScopeChain = needsFullScopeChain; }
bool needsFullScopeChain() const { return m_needsFullScopeChain; }
void setUsesEval(bool usesEval) { m_usesEval = usesEval; }
bool usesEval() const { return m_usesEval; }
void setArgumentsRegister(int argumentsRegister)
{
ASSERT(argumentsRegister != -1);
m_argumentsRegister = argumentsRegister;
ASSERT(usesArguments());
}
int argumentsRegister()
{
ASSERT(usesArguments());
return m_argumentsRegister;
}
void setActivationRegister(int activationRegister)
{
m_activationRegister = activationRegister;
}
int activationRegister()
{
ASSERT(needsFullScopeChain());
return m_activationRegister;
}
bool usesArguments() const { return m_argumentsRegister != -1; }
CodeType codeType() const { return m_codeType; }
SourceProvider* source() const { return m_source.get(); }
unsigned sourceOffset() const { return m_sourceOffset; }
size_t numberOfJumpTargets() const { return m_jumpTargets.size(); }
void addJumpTarget(unsigned jumpTarget) { m_jumpTargets.append(jumpTarget); }
unsigned jumpTarget(int index) const { return m_jumpTargets[index]; }
unsigned lastJumpTarget() const { return m_jumpTargets.last(); }
void createActivation(CallFrame*);
#if ENABLE(INTERPRETER)
void addPropertyAccessInstruction(unsigned propertyAccessInstruction) { m_propertyAccessInstructions.append(propertyAccessInstruction); }
void addGlobalResolveInstruction(unsigned globalResolveInstruction) { m_globalResolveInstructions.append(globalResolveInstruction); }
bool hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset);
#endif
#if ENABLE(JIT)
size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); }
void addStructureStubInfo(const StructureStubInfo& stubInfo) { m_structureStubInfos.append(stubInfo); }
StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; }
void addGlobalResolveInfo(unsigned globalResolveInstruction) { m_globalResolveInfos.append(GlobalResolveInfo(globalResolveInstruction)); }
GlobalResolveInfo& globalResolveInfo(int index) { return m_globalResolveInfos[index]; }
bool hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset);
size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); }
void addCallLinkInfo() { m_callLinkInfos.append(CallLinkInfo()); }
CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; }
void addMethodCallLinkInfos(unsigned n) { m_methodCallLinkInfos.grow(n); }
MethodCallLinkInfo& methodCallLinkInfo(int index) { return m_methodCallLinkInfos[index]; }
#endif
// Exception handling support
size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
void addExceptionHandler(const HandlerInfo& hanler) { createRareDataIfNecessary(); return m_rareData->m_exceptionHandlers.append(hanler); }
HandlerInfo& exceptionHandler(int index) { ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }
void addExpressionInfo(const ExpressionRangeInfo& expressionInfo)
{
createRareDataIfNecessary();
m_rareData->m_expressionInfo.append(expressionInfo);
}
void addLineInfo(unsigned bytecodeOffset, int lineNo)
{
createRareDataIfNecessary();
Vector<LineInfo>& lineInfo = m_rareData->m_lineInfo;
if (!lineInfo.size() || lineInfo.last().lineNumber != lineNo) {
LineInfo info = { bytecodeOffset, lineNo };
lineInfo.append(info);
}
}
bool hasExpressionInfo() { return m_rareData && m_rareData->m_expressionInfo.size(); }
bool hasLineInfo() { return m_rareData && m_rareData->m_lineInfo.size(); }
// We only generate exception handling info if the user is debugging
// (and may want line number info), or if the function contains exception handler.
bool needsCallReturnIndices()
{
return m_rareData &&
(m_rareData->m_expressionInfo.size() || m_rareData->m_lineInfo.size() || m_rareData->m_exceptionHandlers.size());
}
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeOffset>& callReturnIndexVector()
{
createRareDataIfNecessary();
return m_rareData->m_callReturnIndexVector;
}
#endif
// Constant Pool
size_t numberOfIdentifiers() const { return m_identifiers.size(); }
void addIdentifier(const Identifier& i) { return m_identifiers.append(i); }
Identifier& identifier(int index) { return m_identifiers[index]; }
size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); }
void addConstant(JSValue v)
{
m_constantRegisters.append(WriteBarrier<Unknown>());
m_constantRegisters.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), v);
}
WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }
unsigned addFunctionDecl(FunctionExecutable* n)
{
unsigned size = m_functionDecls.size();
m_functionDecls.append(WriteBarrier<FunctionExecutable>());
m_functionDecls.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), n);
return size;
}
FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
int numberOfFunctionDecls() { return m_functionDecls.size(); }
unsigned addFunctionExpr(FunctionExecutable* n)
{
unsigned size = m_functionExprs.size();
m_functionExprs.append(WriteBarrier<FunctionExecutable>());
m_functionExprs.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), n);
return size;
}
FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }
unsigned addRegExp(PassRefPtr<RegExp> r) { createRareDataIfNecessary(); unsigned size = m_rareData->m_regexps.size(); m_rareData->m_regexps.append(r); return size; }
RegExp* regexp(int index) const { ASSERT(m_rareData); return m_rareData->m_regexps[index].get(); }
JSGlobalObject* globalObject() { return m_globalObject.get(); }
// Jump Tables
size_t numberOfImmediateSwitchJumpTables() const { return m_rareData ? m_rareData->m_immediateSwitchJumpTables.size() : 0; }
SimpleJumpTable& addImmediateSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_immediateSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_immediateSwitchJumpTables.last(); }
SimpleJumpTable& immediateSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_immediateSwitchJumpTables[tableIndex]; }
size_t numberOfCharacterSwitchJumpTables() const { return m_rareData ? m_rareData->m_characterSwitchJumpTables.size() : 0; }
SimpleJumpTable& addCharacterSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_characterSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_characterSwitchJumpTables.last(); }
SimpleJumpTable& characterSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_characterSwitchJumpTables[tableIndex]; }
size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
StringJumpTable& stringSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }
SymbolTable* symbolTable() { return m_symbolTable; }
SharedSymbolTable* sharedSymbolTable() { ASSERT(m_codeType == FunctionCode); return static_cast<SharedSymbolTable*>(m_symbolTable); }
EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }
void shrinkToFit();
// FIXME: Make these remaining members private.
int m_numCalleeRegisters;
int m_numVars;
int m_numCapturedVars;
int m_numParameters;
bool m_isConstructor;
private:
#if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING)
void dump(ExecState*, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator&) const;
CString registerName(ExecState*, int r) const;
void printUnaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printBinaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printConditionalJump(ExecState*, const Vector<Instruction>::const_iterator&, Vector<Instruction>::const_iterator&, int location, const char* op) const;
void printGetByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printPutByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
#endif
void markStructures(MarkStack&, Instruction* vPC) const;
void createRareDataIfNecessary()
{
if (!m_rareData)
m_rareData = adoptPtr(new RareData);
}
WriteBarrier<ScriptExecutable> m_ownerExecutable;
JSGlobalData* m_globalData;
Vector<Instruction> m_instructions;
#ifndef NDEBUG
unsigned m_instructionCount;
#endif
int m_thisRegister;
int m_argumentsRegister;
int m_activationRegister;
bool m_needsFullScopeChain;
bool m_usesEval;
bool m_isNumericCompareFunction;
bool m_isStrictMode;
CodeType m_codeType;
RefPtr<SourceProvider> m_source;
unsigned m_sourceOffset;
#if ENABLE(INTERPRETER)
Vector<unsigned> m_propertyAccessInstructions;
Vector<unsigned> m_globalResolveInstructions;
#endif
#if ENABLE(JIT)
Vector<StructureStubInfo> m_structureStubInfos;
Vector<GlobalResolveInfo> m_globalResolveInfos;
Vector<CallLinkInfo> m_callLinkInfos;
Vector<MethodCallLinkInfo> m_methodCallLinkInfos;
#endif
Vector<unsigned> m_jumpTargets;
// Constant Pool
Vector<Identifier> m_identifiers;
COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown);
Vector<WriteBarrier<Unknown> > m_constantRegisters;
Vector<WriteBarrier<FunctionExecutable> > m_functionDecls;
Vector<WriteBarrier<FunctionExecutable> > m_functionExprs;
SymbolTable* m_symbolTable;
struct RareData {
WTF_MAKE_FAST_ALLOCATED;
public:
Vector<HandlerInfo> m_exceptionHandlers;
// Rare Constants
Vector<RefPtr<RegExp> > m_regexps;
// Jump Tables
Vector<SimpleJumpTable> m_immediateSwitchJumpTables;
Vector<SimpleJumpTable> m_characterSwitchJumpTables;
Vector<StringJumpTable> m_stringSwitchJumpTables;
EvalCodeCache m_evalCodeCache;
// Expression info - present if debugging.
Vector<ExpressionRangeInfo> m_expressionInfo;
// Line info - present if profiling or debugging.
Vector<LineInfo> m_lineInfo;
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeOffset> m_callReturnIndexVector;
#endif
};
#if COMPILER(MSVC)
friend void WTF::deleteOwnedPtr<RareData>(RareData*);
#endif
OwnPtr<RareData> m_rareData;
};
// Program code is not marked by any function, so we make the global object
// responsible for marking it.
class GlobalCodeBlock : public CodeBlock {
public:
GlobalCodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset)
: CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, &m_unsharedSymbolTable, false)
{
}
private:
SymbolTable m_unsharedSymbolTable;
};
class ProgramCodeBlock : public GlobalCodeBlock {
public:
ProgramCodeBlock(ProgramExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider)
: GlobalCodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, 0)
{
}
};
class EvalCodeBlock : public GlobalCodeBlock {
public:
EvalCodeBlock(EvalExecutable* ownerExecutable, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, int baseScopeDepth)
: GlobalCodeBlock(ownerExecutable, EvalCode, globalObject, sourceProvider, 0)
, m_baseScopeDepth(baseScopeDepth)
{
}
int baseScopeDepth() const { return m_baseScopeDepth; }
const Identifier& variable(unsigned index) { return m_variables[index]; }
unsigned numVariables() { return m_variables.size(); }
void adoptVariables(Vector<Identifier>& variables)
{
ASSERT(m_variables.isEmpty());
m_variables.swap(variables);
}
private:
int m_baseScopeDepth;
Vector<Identifier> m_variables;
};
class FunctionCodeBlock : public CodeBlock {
public:
// Rather than using the usual RefCounted::create idiom for SharedSymbolTable we just use new
// as we need to initialise the CodeBlock before we could initialise any RefPtr to hold the shared
// symbol table, so we just pass as a raw pointer with a ref count of 1. We then manually deref
// in the destructor.
FunctionCodeBlock(FunctionExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, bool isConstructor)
: CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, SharedSymbolTable::create().leakRef(), isConstructor)
{
}
~FunctionCodeBlock()
{
sharedSymbolTable()->deref();
}
};
inline Register& ExecState::r(int index)
{
CodeBlock* codeBlock = this->codeBlock();
if (codeBlock->isConstantRegisterIndex(index))
return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index));
return this[index];
}
inline Register& ExecState::uncheckedR(int index)
{
ASSERT(index < FirstConstantRegisterIndex);
return this[index];
}
} // namespace JSC
#endif // CodeBlock_h