/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#if USE(JSVALUE32_64)
#include "JIT.h"
#include "JITInlineMethods.h"
#include "JITStubCall.h"
#include "JSArray.h"
#include "JSCell.h"
#include "JSFunction.h"
#include "JSPropertyNameIterator.h"
#include "LinkBuffer.h"
namespace JSC {
void JIT::privateCompileCTIMachineTrampolines(RefPtr<ExecutablePool>* executablePool, JSGlobalData* globalData, TrampolineStructure *trampolines)
{
#if ENABLE(JIT_USE_SOFT_MODULO)
Label softModBegin = align();
softModulo();
#endif
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
// (1) This function provides fast property access for string length
Label stringLengthBegin = align();
// regT0 holds payload, regT1 holds tag
Jump string_failureCases1 = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr));
// Checks out okay! - get the length from the Ustring.
load32(Address(regT0, OBJECT_OFFSETOF(JSString, m_length)), regT2);
Jump string_failureCases3 = branch32(Above, regT2, TrustedImm32(INT_MAX));
move(regT2, regT0);
move(TrustedImm32(JSValue::Int32Tag), regT1);
ret();
#endif
JumpList callLinkFailures;
// (2) Trampolines for the slow cases of op_call / op_call_eval / op_construct.
#if ENABLE(JIT_OPTIMIZE_CALL)
// VirtualCallLink Trampoline
// regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable.
Label virtualCallLinkBegin = align();
compileOpCallInitializeCallFrame();
preserveReturnAddressAfterCall(regT3);
emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC);
restoreArgumentReference();
Call callLazyLinkCall = call();
callLinkFailures.append(branchTestPtr(Zero, regT0));
restoreReturnAddressBeforeReturn(regT3);
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1);
jump(regT0);
// VirtualConstructLink Trampoline
// regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable.
Label virtualConstructLinkBegin = align();
compileOpCallInitializeCallFrame();
preserveReturnAddressAfterCall(regT3);
emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC);
restoreArgumentReference();
Call callLazyLinkConstruct = call();
restoreReturnAddressBeforeReturn(regT3);
callLinkFailures.append(branchTestPtr(Zero, regT0));
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1);
jump(regT0);
#endif // ENABLE(JIT_OPTIMIZE_CALL)
// VirtualCall Trampoline
// regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable.
Label virtualCallBegin = align();
compileOpCallInitializeCallFrame();
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
Jump hasCodeBlock3 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForCall)), TrustedImm32(0));
preserveReturnAddressAfterCall(regT3);
restoreArgumentReference();
Call callCompileCall = call();
callLinkFailures.append(branchTestPtr(Zero, regT0));
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1);
restoreReturnAddressBeforeReturn(regT3);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
hasCodeBlock3.link(this);
loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForCallWithArityCheck)), regT0);
jump(regT0);
// VirtualConstruct Trampoline
// regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable.
Label virtualConstructBegin = align();
compileOpCallInitializeCallFrame();
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
Jump hasCodeBlock4 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForConstruct)), TrustedImm32(0));
preserveReturnAddressAfterCall(regT3);
restoreArgumentReference();
Call callCompileCconstruct = call();
callLinkFailures.append(branchTestPtr(Zero, regT0));
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1);
restoreReturnAddressBeforeReturn(regT3);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
hasCodeBlock4.link(this);
loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForConstructWithArityCheck)), regT0);
jump(regT0);
// If the parser fails we want to be able to be able to keep going,
// So we handle this as a parse failure.
callLinkFailures.link(this);
emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1);
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister);
restoreReturnAddressBeforeReturn(regT1);
move(TrustedImmPtr(&globalData->exceptionLocation), regT2);
storePtr(regT1, regT2);
poke(callFrameRegister, 1 + OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
poke(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()));
ret();
// NativeCall Trampoline
Label nativeCallThunk = privateCompileCTINativeCall(globalData);
Label nativeConstructThunk = privateCompileCTINativeCall(globalData, true);
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1);
Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2);
Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3);
#endif
// All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object.
LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()), 0);
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail));
#endif
#if ENABLE(JIT_OPTIMIZE_CALL)
patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall));
patchBuffer.link(callLazyLinkConstruct, FunctionPtr(cti_vm_lazyLinkConstruct));
#endif
patchBuffer.link(callCompileCall, FunctionPtr(cti_op_call_jitCompile));
patchBuffer.link(callCompileCconstruct, FunctionPtr(cti_op_construct_jitCompile));
CodeRef finalCode = patchBuffer.finalizeCode();
*executablePool = finalCode.m_executablePool;
trampolines->ctiVirtualCall = patchBuffer.trampolineAt(virtualCallBegin);
trampolines->ctiVirtualConstruct = patchBuffer.trampolineAt(virtualConstructBegin);
trampolines->ctiNativeCall = patchBuffer.trampolineAt(nativeCallThunk);
trampolines->ctiNativeConstruct = patchBuffer.trampolineAt(nativeConstructThunk);
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
trampolines->ctiStringLengthTrampoline = patchBuffer.trampolineAt(stringLengthBegin);
#endif
#if ENABLE(JIT_OPTIMIZE_CALL)
trampolines->ctiVirtualCallLink = patchBuffer.trampolineAt(virtualCallLinkBegin);
trampolines->ctiVirtualConstructLink = patchBuffer.trampolineAt(virtualConstructLinkBegin);
#endif
#if ENABLE(JIT_USE_SOFT_MODULO)
trampolines->ctiSoftModulo = patchBuffer.trampolineAt(softModBegin);
#endif
}
JIT::Label JIT::privateCompileCTINativeCall(JSGlobalData* globalData, bool isConstruct)
{
int executableOffsetToFunction = isConstruct ? OBJECT_OFFSETOF(NativeExecutable, m_constructor) : OBJECT_OFFSETOF(NativeExecutable, m_function);
Label nativeCallThunk = align();
emitPutImmediateToCallFrameHeader(0, RegisterFile::CodeBlock);
#if CPU(X86)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0);
emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain);
peek(regT1);
emitPutToCallFrameHeader(regT1, RegisterFile::ReturnPC);
// Calling convention: f(ecx, edx, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, X86Registers::ecx);
subPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); // Align stack after call.
// call the function
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT1);
loadPtr(Address(regT1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT1);
move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
call(Address(regT1, executableOffsetToFunction));
addPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister);
#elif CPU(ARM)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2);
emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain);
preserveReturnAddressAfterCall(regT3); // Callee preserved
emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC);
// Calling convention: f(r0 == regT0, r1 == regT1, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, ARMRegisters::r0);
// call the function
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, ARMRegisters::r1);
move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
loadPtr(Address(ARMRegisters::r1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
call(Address(regT2, executableOffsetToFunction));
restoreReturnAddressBeforeReturn(regT3);
#elif CPU(SH4)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2);
emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain);
preserveReturnAddressAfterCall(regT3); // Callee preserved
emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC);
// Calling convention: f(r0 == regT4, r1 == regT5, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, regT4);
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT5);
move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
loadPtr(Address(regT5, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
call(Address(regT2, executableOffsetToFunction), regT0);
restoreReturnAddressBeforeReturn(regT3);
#elif CPU(MIPS)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0);
emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain);
preserveReturnAddressAfterCall(regT3); // Callee preserved
emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC);
// Calling convention: f(a0, a1, a2, a3);
// Host function signature: f(ExecState*);
// Allocate stack space for 16 bytes (8-byte aligned)
// 16 bytes (unused) for 4 arguments
subPtr(TrustedImm32(16), stackPointerRegister);
// Setup arg0
move(callFrameRegister, MIPSRegisters::a0);
// Call
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, MIPSRegisters::a2);
loadPtr(Address(MIPSRegisters::a2, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
call(Address(regT2, executableOffsetToFunction));
// Restore stack space
addPtr(TrustedImm32(16), stackPointerRegister);
restoreReturnAddressBeforeReturn(regT3);
#elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL)
#error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform."
#else
UNUSED_PARAM(executableOffsetToFunction);
breakpoint();
#endif // CPU(X86)
// Check for an exception
Jump sawException = branch32(NotEqual, AbsoluteAddress(reinterpret_cast<char*>(&globalData->exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), TrustedImm32(JSValue::EmptyValueTag));
// Return.
ret();
// Handle an exception
sawException.link(this);
// Grab the return address.
preserveReturnAddressAfterCall(regT1);
move(TrustedImmPtr(&globalData->exceptionLocation), regT2);
storePtr(regT1, regT2);
poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
// Set the return address.
move(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), regT1);
restoreReturnAddressBeforeReturn(regT1);
ret();
return nativeCallThunk;
}
JIT::CodePtr JIT::privateCompileCTINativeCall(PassRefPtr<ExecutablePool> executablePool, JSGlobalData* globalData, NativeFunction func)
{
Call nativeCall;
Label nativeCallThunk = align();
emitPutImmediateToCallFrameHeader(0, RegisterFile::CodeBlock);
#if CPU(X86)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0);
emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain);
peek(regT1);
emitPutToCallFrameHeader(regT1, RegisterFile::ReturnPC);
// Calling convention: f(ecx, edx, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, X86Registers::ecx);
subPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); // Align stack after call.
move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
// call the function
nativeCall = call();
addPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister);
#elif CPU(ARM)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2);
emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain);
preserveReturnAddressAfterCall(regT3); // Callee preserved
emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC);
// Calling convention: f(r0 == regT0, r1 == regT1, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, ARMRegisters::r0);
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, ARMRegisters::r1);
move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
loadPtr(Address(ARMRegisters::r1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
// call the function
nativeCall = call();
restoreReturnAddressBeforeReturn(regT3);
#elif CPU(MIPS)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0);
emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain);
preserveReturnAddressAfterCall(regT3); // Callee preserved
emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC);
// Calling convention: f(a0, a1, a2, a3);
// Host function signature: f(ExecState*);
// Allocate stack space for 16 bytes (8-byte aligned)
// 16 bytes (unused) for 4 arguments
subPtr(TrustedImm32(16), stackPointerRegister);
// Setup arg0
move(callFrameRegister, MIPSRegisters::a0);
// Call
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, MIPSRegisters::a2);
loadPtr(Address(MIPSRegisters::a2, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
// call the function
nativeCall = call();
// Restore stack space
addPtr(TrustedImm32(16), stackPointerRegister);
restoreReturnAddressBeforeReturn(regT3);
#elif CPU(SH4)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2);
emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain);
preserveReturnAddressAfterCall(regT3); // Callee preserved
emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC);
// Calling convention: f(r0 == regT4, r1 == regT5, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, regT4);
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT5);
move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
loadPtr(Address(regT5, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
// call the function
nativeCall = call();
restoreReturnAddressBeforeReturn(regT3);
#elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL)
#error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform."
#else
breakpoint();
#endif // CPU(X86)
// Check for an exception
Jump sawException = branch32(NotEqual, AbsoluteAddress(reinterpret_cast<char*>(&globalData->exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), TrustedImm32(JSValue::EmptyValueTag));
// Return.
ret();
// Handle an exception
sawException.link(this);
// Grab the return address.
preserveReturnAddressAfterCall(regT1);
move(TrustedImmPtr(&globalData->exceptionLocation), regT2);
storePtr(regT1, regT2);
poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
// Set the return address.
move(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), regT1);
restoreReturnAddressBeforeReturn(regT1);
ret();
// All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object.
LinkBuffer patchBuffer(this, executablePool, 0);
patchBuffer.link(nativeCall, FunctionPtr(func));
patchBuffer.finalizeCode();
return patchBuffer.trampolineAt(nativeCallThunk);
}
void JIT::emit_op_mov(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
if (m_codeBlock->isConstantRegisterIndex(src))
emitStore(dst, getConstantOperand(src));
else {
emitLoad(src, regT1, regT0);
emitStore(dst, regT1, regT0);
map(m_bytecodeOffset + OPCODE_LENGTH(op_mov), dst, regT1, regT0);
}
}
void JIT::emit_op_end(Instruction* currentInstruction)
{
ASSERT(returnValueRegister != callFrameRegister);
emitLoad(currentInstruction[1].u.operand, regT1, regT0);
restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast<int>(sizeof(Register))));
ret();
}
void JIT::emit_op_jmp(Instruction* currentInstruction)
{
unsigned target = currentInstruction[1].u.operand;
addJump(jump(), target);
}
void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emitTimeoutCheck();
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op1).asInt32())), target);
return;
}
if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(LessThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(LessThanOrEqual, regT0, regT2), target);
}
void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_loop_if_lesseq);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
}
void JIT::emit_op_new_object(Instruction* currentInstruction)
{
JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand);
}
void JIT::emit_op_check_has_instance(Instruction* currentInstruction)
{
unsigned baseVal = currentInstruction[1].u.operand;
emitLoadPayload(baseVal, regT0);
// Check that baseVal is a cell.
emitJumpSlowCaseIfNotJSCell(baseVal);
// Check that baseVal 'ImplementsHasInstance'.
loadPtr(Address(regT0, JSCell::structureOffset()), regT0);
addSlowCase(branchTest8(Zero, Address(regT0, Structure::typeInfoFlagsOffset()), TrustedImm32(ImplementsHasInstance)));
}
void JIT::emit_op_instanceof(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
unsigned baseVal = currentInstruction[3].u.operand;
unsigned proto = currentInstruction[4].u.operand;
// Load the operands into registers.
// We use regT0 for baseVal since we will be done with this first, and we can then use it for the result.
emitLoadPayload(value, regT2);
emitLoadPayload(baseVal, regT0);
emitLoadPayload(proto, regT1);
// Check that proto are cells. baseVal must be a cell - this is checked by op_check_has_instance.
emitJumpSlowCaseIfNotJSCell(value);
emitJumpSlowCaseIfNotJSCell(proto);
// Check that prototype is an object
loadPtr(Address(regT1, JSCell::structureOffset()), regT3);
addSlowCase(branch8(NotEqual, Address(regT3, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType)));
// Fixme: this check is only needed because the JSC API allows HasInstance to be overridden; we should deprecate this.
// Check that baseVal 'ImplementsDefaultHasInstance'.
loadPtr(Address(regT0, JSCell::structureOffset()), regT0);
addSlowCase(branchTest8(Zero, Address(regT0, Structure::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance)));
// Optimistically load the result true, and start looping.
// Initially, regT1 still contains proto and regT2 still contains value.
// As we loop regT2 will be updated with its prototype, recursively walking the prototype chain.
move(TrustedImm32(1), regT0);
Label loop(this);
// Load the prototype of the cell in regT2. If this is equal to regT1 - WIN!
// Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again.
loadPtr(Address(regT2, JSCell::structureOffset()), regT2);
load32(Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2);
Jump isInstance = branchPtr(Equal, regT2, regT1);
branchTest32(NonZero, regT2).linkTo(loop, this);
// We get here either by dropping out of the loop, or if value was not an Object. Result is false.
move(TrustedImm32(0), regT0);
// isInstance jumps right down to here, to skip setting the result to false (it has already set true).
isInstance.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_check_has_instance(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned baseVal = currentInstruction[1].u.operand;
linkSlowCaseIfNotJSCell(iter, baseVal);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_check_has_instance);
stubCall.addArgument(baseVal);
stubCall.call();
}
void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
unsigned baseVal = currentInstruction[3].u.operand;
unsigned proto = currentInstruction[4].u.operand;
linkSlowCaseIfNotJSCell(iter, value);
linkSlowCaseIfNotJSCell(iter, proto);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_instanceof);
stubCall.addArgument(value);
stubCall.addArgument(baseVal);
stubCall.addArgument(proto);
stubCall.call(dst);
}
void JIT::emit_op_get_global_var(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
JSGlobalObject* globalObject = m_codeBlock->globalObject();
ASSERT(globalObject->isGlobalObject());
int index = currentInstruction[2].u.operand;
loadPtr(&globalObject->m_registers, regT2);
emitLoad(index, regT1, regT0, regT2);
emitStore(dst, regT1, regT0);
map(m_bytecodeOffset + OPCODE_LENGTH(op_get_global_var), dst, regT1, regT0);
}
void JIT::emit_op_put_global_var(Instruction* currentInstruction)
{
JSGlobalObject* globalObject = m_codeBlock->globalObject();
ASSERT(globalObject->isGlobalObject());
int index = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitLoad(value, regT1, regT0);
loadPtr(&globalObject->m_registers, regT2);
emitStore(index, regT1, regT0, regT2);
map(m_bytecodeOffset + OPCODE_LENGTH(op_put_global_var), value, regT1, regT0);
}
void JIT::emit_op_get_scoped_var(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int index = currentInstruction[2].u.operand;
int skip = currentInstruction[3].u.operand;
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2);
bool checkTopLevel = m_codeBlock->codeType() == FunctionCode && m_codeBlock->needsFullScopeChain();
ASSERT(skip || !checkTopLevel);
if (checkTopLevel && skip--) {
Jump activationNotCreated;
if (checkTopLevel)
activationNotCreated = branch32(Equal, tagFor(m_codeBlock->activationRegister()), TrustedImm32(JSValue::EmptyValueTag));
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2);
activationNotCreated.link(this);
}
while (skip--)
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, m_registers)), regT2);
emitLoad(index, regT1, regT0, regT2);
emitStore(dst, regT1, regT0);
map(m_bytecodeOffset + OPCODE_LENGTH(op_get_scoped_var), dst, regT1, regT0);
}
void JIT::emit_op_put_scoped_var(Instruction* currentInstruction)
{
int index = currentInstruction[1].u.operand;
int skip = currentInstruction[2].u.operand;
int value = currentInstruction[3].u.operand;
emitLoad(value, regT1, regT0);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2);
bool checkTopLevel = m_codeBlock->codeType() == FunctionCode && m_codeBlock->needsFullScopeChain();
ASSERT(skip || !checkTopLevel);
if (checkTopLevel && skip--) {
Jump activationNotCreated;
if (checkTopLevel)
activationNotCreated = branch32(Equal, tagFor(m_codeBlock->activationRegister()), TrustedImm32(JSValue::EmptyValueTag));
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2);
activationNotCreated.link(this);
}
while (skip--)
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, m_registers)), regT2);
emitStore(index, regT1, regT0, regT2);
map(m_bytecodeOffset + OPCODE_LENGTH(op_put_scoped_var), value, regT1, regT0);
}
void JIT::emit_op_tear_off_activation(Instruction* currentInstruction)
{
unsigned activation = currentInstruction[1].u.operand;
unsigned arguments = currentInstruction[2].u.operand;
Jump activationCreated = branch32(NotEqual, tagFor(activation), TrustedImm32(JSValue::EmptyValueTag));
Jump argumentsNotCreated = branch32(Equal, tagFor(arguments), TrustedImm32(JSValue::EmptyValueTag));
activationCreated.link(this);
JITStubCall stubCall(this, cti_op_tear_off_activation);
stubCall.addArgument(currentInstruction[1].u.operand);
stubCall.addArgument(unmodifiedArgumentsRegister(currentInstruction[2].u.operand));
stubCall.call();
argumentsNotCreated.link(this);
}
void JIT::emit_op_tear_off_arguments(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
Jump argsNotCreated = branch32(Equal, tagFor(unmodifiedArgumentsRegister(dst)), TrustedImm32(JSValue::EmptyValueTag));
JITStubCall stubCall(this, cti_op_tear_off_arguments);
stubCall.addArgument(unmodifiedArgumentsRegister(dst));
stubCall.call();
argsNotCreated.link(this);
}
void JIT::emit_op_new_array(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_array);
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_to_primitive(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImm = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
addSlowCase(branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr)));
isImm.link(this);
if (dst != src)
emitStore(dst, regT1, regT0);
map(m_bytecodeOffset + OPCODE_LENGTH(op_to_primitive), dst, regT1, regT0);
}
void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_to_primitive);
stubCall.addArgument(regT1, regT0);
stubCall.call(dst);
}
void JIT::emit_op_strcat(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_strcat);
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_base(Instruction* currentInstruction)
{
JITStubCall stubCall(this, currentInstruction[3].u.operand ? cti_op_resolve_base_strict_put : cti_op_resolve_base);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_ensure_property_exists(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_ensure_property_exists);
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_skip(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve_skip);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_global(Instruction* currentInstruction, bool dynamic)
{
// FIXME: Optimize to use patching instead of so many memory accesses.
unsigned dst = currentInstruction[1].u.operand;
void* globalObject = m_codeBlock->globalObject();
unsigned currentIndex = m_globalResolveInfoIndex++;
void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure);
void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset);
// Verify structure.
move(TrustedImmPtr(globalObject), regT0);
loadPtr(structureAddress, regT1);
addSlowCase(branchPtr(NotEqual, regT1, Address(regT0, JSCell::structureOffset())));
// Load property.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_propertyStorage)), regT2);
load32(offsetAddr, regT3);
load32(BaseIndex(regT2, regT3, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0); // payload
load32(BaseIndex(regT2, regT3, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1); // tag
emitStore(dst, regT1, regT0);
map(m_bytecodeOffset + dynamic ? OPCODE_LENGTH(op_resolve_global_dynamic) : OPCODE_LENGTH(op_resolve_global), dst, regT1, regT0);
}
void JIT::emitSlow_op_resolve_global(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
Identifier* ident = &m_codeBlock->identifier(currentInstruction[2].u.operand);
unsigned currentIndex = m_globalResolveInfoIndex++;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_resolve_global);
stubCall.addArgument(TrustedImmPtr(ident));
stubCall.addArgument(Imm32(currentIndex));
stubCall.call(dst);
}
void JIT::emit_op_not(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoadTag(src, regT0);
emitLoad(src, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::BooleanTag)));
xor32(TrustedImm32(1), regT0);
emitStoreBool(dst, regT0, (dst == src));
}
void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_not);
stubCall.addArgument(src);
stubCall.call(dst);
}
void JIT::emit_op_jfalse(Instruction* currentInstruction)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(cond, regT1, regT0);
ASSERT((JSValue::BooleanTag + 1 == JSValue::Int32Tag) && !(JSValue::Int32Tag + 1));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::BooleanTag)));
addJump(branchTest32(Zero, regT0), target);
}
void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
linkSlowCase(iter);
if (supportsFloatingPoint()) {
// regT1 contains the tag from the hot path.
Jump notNumber = branch32(Above, regT1, Imm32(JSValue::LowestTag));
emitLoadDouble(cond, fpRegT0);
emitJumpSlowToHot(branchDoubleZeroOrNaN(fpRegT0, fpRegT1), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jfalse));
notNumber.link(this);
}
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(cond);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target); // Inverted.
}
void JIT::emit_op_jtrue(Instruction* currentInstruction)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(cond, regT1, regT0);
ASSERT((JSValue::BooleanTag + 1 == JSValue::Int32Tag) && !(JSValue::Int32Tag + 1));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::BooleanTag)));
addJump(branchTest32(NonZero, regT0), target);
}
void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
linkSlowCase(iter);
if (supportsFloatingPoint()) {
// regT1 contains the tag from the hot path.
Jump notNumber = branch32(Above, regT1, Imm32(JSValue::LowestTag));
emitLoadDouble(cond, fpRegT0);
emitJumpSlowToHot(branchDoubleNonZero(fpRegT0, fpRegT1), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jtrue));
notNumber.link(this);
}
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(cond);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
}
void JIT::emit_op_jeq_null(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
addJump(branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
ASSERT((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1));
or32(TrustedImm32(1), regT1);
addJump(branch32(Equal, regT1, TrustedImm32(JSValue::NullTag)), target);
wasNotImmediate.link(this);
}
void JIT::emit_op_jneq_null(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
addJump(branchTest8(Zero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
ASSERT((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1));
or32(TrustedImm32(1), regT1);
addJump(branch32(NotEqual, regT1, TrustedImm32(JSValue::NullTag)), target);
wasNotImmediate.link(this);
}
void JIT::emit_op_jneq_ptr(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
JSCell* ptr = currentInstruction[2].u.jsCell.get();
unsigned target = currentInstruction[3].u.operand;
emitLoad(src, regT1, regT0);
addJump(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)), target);
addJump(branchPtr(NotEqual, regT0, TrustedImmPtr(ptr)), target);
}
void JIT::emit_op_jsr(Instruction* currentInstruction)
{
int retAddrDst = currentInstruction[1].u.operand;
int target = currentInstruction[2].u.operand;
DataLabelPtr storeLocation = storePtrWithPatch(TrustedImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst));
addJump(jump(), target);
m_jsrSites.append(JSRInfo(storeLocation, label()));
}
void JIT::emit_op_sret(Instruction* currentInstruction)
{
jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand));
}
void JIT::emit_op_eq(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Equal, regT1, TrustedImm32(JSValue::CellTag)));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
set32Compare32(Equal, regT0, regT2, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
JumpList storeResult;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr)));
genericCase.append(branchPtr(NotEqual, Address(regT2), TrustedImmPtr(m_globalData->jsStringVPtr)));
// String case.
JITStubCall stubCallEqStrings(this, cti_op_eq_strings);
stubCallEqStrings.addArgument(regT0);
stubCallEqStrings.addArgument(regT2);
stubCallEqStrings.call();
storeResult.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
JITStubCall stubCallEq(this, cti_op_eq);
stubCallEq.addArgument(op1);
stubCallEq.addArgument(op2);
stubCallEq.call(regT0);
storeResult.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_neq(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Equal, regT1, TrustedImm32(JSValue::CellTag)));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
set32Compare32(NotEqual, regT0, regT2, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
JumpList storeResult;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr)));
genericCase.append(branchPtr(NotEqual, Address(regT2), TrustedImmPtr(m_globalData->jsStringVPtr)));
// String case.
JITStubCall stubCallEqStrings(this, cti_op_eq_strings);
stubCallEqStrings.addArgument(regT0);
stubCallEqStrings.addArgument(regT2);
stubCallEqStrings.call(regT0);
storeResult.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
JITStubCall stubCallEq(this, cti_op_eq);
stubCallEq.addArgument(regT1, regT0);
stubCallEq.addArgument(regT3, regT2);
stubCallEq.call(regT0);
storeResult.link(this);
xor32(TrustedImm32(0x1), regT0);
emitStoreBool(dst, regT0);
}
void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitLoadTag(src1, regT0);
emitLoadTag(src2, regT1);
// Jump to a slow case if either operand is double, or if both operands are
// cells and/or Int32s.
move(regT0, regT2);
and32(regT1, regT2);
addSlowCase(branch32(Below, regT2, TrustedImm32(JSValue::LowestTag)));
addSlowCase(branch32(AboveOrEqual, regT2, TrustedImm32(JSValue::CellTag)));
if (type == OpStrictEq)
set32Compare32(Equal, regT0, regT1, regT0);
else
set32Compare32(NotEqual, regT0, regT1, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_stricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpStrictEq);
}
void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_stricteq);
stubCall.addArgument(src1);
stubCall.addArgument(src2);
stubCall.call(dst);
}
void JIT::emit_op_nstricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpNStrictEq);
}
void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_nstricteq);
stubCall.addArgument(src1);
stubCall.addArgument(src2);
stubCall.call(dst);
}
void JIT::emit_op_eq_null(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
loadPtr(Address(regT0, JSCell::structureOffset()), regT1);
set32Test8(NonZero, Address(regT1, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined), regT1);
Jump wasNotImmediate = jump();
isImmediate.link(this);
set32Compare32(Equal, regT1, TrustedImm32(JSValue::NullTag), regT2);
set32Compare32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag), regT1);
or32(regT2, regT1);
wasNotImmediate.link(this);
emitStoreBool(dst, regT1);
}
void JIT::emit_op_neq_null(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
loadPtr(Address(regT0, JSCell::structureOffset()), regT1);
set32Test8(Zero, Address(regT1, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined), regT1);
Jump wasNotImmediate = jump();
isImmediate.link(this);
set32Compare32(NotEqual, regT1, TrustedImm32(JSValue::NullTag), regT2);
set32Compare32(NotEqual, regT1, TrustedImm32(JSValue::UndefinedTag), regT1);
and32(regT2, regT1);
wasNotImmediate.link(this);
emitStoreBool(dst, regT1);
}
void JIT::emit_op_resolve_with_base(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_resolve_with_base);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand)));
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.call(currentInstruction[2].u.operand);
}
void JIT::emit_op_new_func_exp(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_func_exp);
stubCall.addArgument(TrustedImmPtr(m_codeBlock->functionExpr(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_throw(Instruction* currentInstruction)
{
unsigned exception = currentInstruction[1].u.operand;
JITStubCall stubCall(this, cti_op_throw);
stubCall.addArgument(exception);
stubCall.call();
#ifndef NDEBUG
// cti_op_throw always changes it's return address,
// this point in the code should never be reached.
breakpoint();
#endif
}
void JIT::emit_op_get_pnames(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int i = currentInstruction[3].u.operand;
int size = currentInstruction[4].u.operand;
int breakTarget = currentInstruction[5].u.operand;
JumpList isNotObject;
emitLoad(base, regT1, regT0);
if (!m_codeBlock->isKnownNotImmediate(base))
isNotObject.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
if (base != m_codeBlock->thisRegister() || m_codeBlock->isStrictMode()) {
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
isNotObject.append(branch8(NotEqual, Address(regT2, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType)));
}
// We could inline the case where you have a valid cache, but
// this call doesn't seem to be hot.
Label isObject(this);
JITStubCall getPnamesStubCall(this, cti_op_get_pnames);
getPnamesStubCall.addArgument(regT0);
getPnamesStubCall.call(dst);
load32(Address(regT0, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStringsSize)), regT3);
store32(TrustedImm32(Int32Tag), intTagFor(i));
store32(TrustedImm32(0), intPayloadFor(i));
store32(TrustedImm32(Int32Tag), intTagFor(size));
store32(regT3, payloadFor(size));
Jump end = jump();
isNotObject.link(this);
addJump(branch32(Equal, regT1, TrustedImm32(JSValue::NullTag)), breakTarget);
addJump(branch32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag)), breakTarget);
JITStubCall toObjectStubCall(this, cti_to_object);
toObjectStubCall.addArgument(regT1, regT0);
toObjectStubCall.call(base);
jump().linkTo(isObject, this);
end.link(this);
}
void JIT::emit_op_next_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int i = currentInstruction[3].u.operand;
int size = currentInstruction[4].u.operand;
int it = currentInstruction[5].u.operand;
int target = currentInstruction[6].u.operand;
JumpList callHasProperty;
Label begin(this);
load32(intPayloadFor(i), regT0);
Jump end = branch32(Equal, regT0, intPayloadFor(size));
// Grab key @ i
loadPtr(payloadFor(it), regT1);
loadPtr(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStrings)), regT2);
load32(BaseIndex(regT2, regT0, TimesEight), regT2);
store32(TrustedImm32(JSValue::CellTag), tagFor(dst));
store32(regT2, payloadFor(dst));
// Increment i
add32(TrustedImm32(1), regT0);
store32(regT0, intPayloadFor(i));
// Verify that i is valid:
loadPtr(payloadFor(base), regT0);
// Test base's structure
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
callHasProperty.append(branchPtr(NotEqual, regT2, Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedStructure)))));
// Test base's prototype chain
loadPtr(Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedPrototypeChain))), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(StructureChain, m_vector)), regT3);
addJump(branchTestPtr(Zero, Address(regT3)), target);
Label checkPrototype(this);
callHasProperty.append(branch32(Equal, Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), TrustedImm32(JSValue::NullTag)));
loadPtr(Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2);
loadPtr(Address(regT2, JSCell::structureOffset()), regT2);
callHasProperty.append(branchPtr(NotEqual, regT2, Address(regT3)));
addPtr(TrustedImm32(sizeof(Structure*)), regT3);
branchTestPtr(NonZero, Address(regT3)).linkTo(checkPrototype, this);
// Continue loop.
addJump(jump(), target);
// Slow case: Ask the object if i is valid.
callHasProperty.link(this);
loadPtr(addressFor(dst), regT1);
JITStubCall stubCall(this, cti_has_property);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
// Test for valid key.
addJump(branchTest32(NonZero, regT0), target);
jump().linkTo(begin, this);
// End of loop.
end.link(this);
}
void JIT::emit_op_push_scope(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_push_scope);
stubCall.addArgument(currentInstruction[1].u.operand);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_pop_scope(Instruction*)
{
JITStubCall(this, cti_op_pop_scope).call();
}
void JIT::emit_op_to_jsnumber(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isInt32 = branch32(Equal, regT1, TrustedImm32(JSValue::Int32Tag));
addSlowCase(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::EmptyValueTag)));
isInt32.link(this);
if (src != dst)
emitStore(dst, regT1, regT0);
map(m_bytecodeOffset + OPCODE_LENGTH(op_to_jsnumber), dst, regT1, regT0);
}
void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_to_jsnumber);
stubCall.addArgument(regT1, regT0);
stubCall.call(dst);
}
void JIT::emit_op_push_new_scope(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_push_new_scope);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.addArgument(currentInstruction[3].u.operand);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_catch(Instruction* currentInstruction)
{
// cti_op_throw returns the callFrame for the handler.
move(regT0, callFrameRegister);
// Now store the exception returned by cti_op_throw.
loadPtr(Address(stackPointerRegister, OBJECT_OFFSETOF(struct JITStackFrame, globalData)), regT3);
load32(Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
load32(Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
store32(TrustedImm32(JSValue().payload()), Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)));
store32(TrustedImm32(JSValue().tag()), Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)));
unsigned exception = currentInstruction[1].u.operand;
emitStore(exception, regT1, regT0);
map(m_bytecodeOffset + OPCODE_LENGTH(op_catch), exception, regT1, regT0);
}
void JIT::emit_op_jmp_scopes(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_jmp_scopes);
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.call();
addJump(jump(), currentInstruction[2].u.operand);
}
void JIT::emit_op_switch_imm(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate));
jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size());
JITStubCall stubCall(this, cti_op_switch_imm);
stubCall.addArgument(scrutinee);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_switch_char(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character));
jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size());
JITStubCall stubCall(this, cti_op_switch_char);
stubCall.addArgument(scrutinee);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_switch_string(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset));
JITStubCall stubCall(this, cti_op_switch_string);
stubCall.addArgument(scrutinee);
stubCall.addArgument(Imm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_throw_reference_error(Instruction* currentInstruction)
{
unsigned message = currentInstruction[1].u.operand;
JITStubCall stubCall(this, cti_op_throw_reference_error);
stubCall.addArgument(m_codeBlock->getConstant(message));
stubCall.call();
}
void JIT::emit_op_debug(Instruction* currentInstruction)
{
#if ENABLE(DEBUG_WITH_BREAKPOINT)
UNUSED_PARAM(currentInstruction);
breakpoint();
#else
JITStubCall stubCall(this, cti_op_debug);
stubCall.addArgument(Imm32(currentInstruction[1].u.operand));
stubCall.addArgument(Imm32(currentInstruction[2].u.operand));
stubCall.addArgument(Imm32(currentInstruction[3].u.operand));
stubCall.call();
#endif
}
void JIT::emit_op_enter(Instruction*)
{
// Even though JIT code doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
for (int i = 0; i < m_codeBlock->m_numVars; ++i)
emitStore(i, jsUndefined());
}
void JIT::emit_op_create_activation(Instruction* currentInstruction)
{
unsigned activation = currentInstruction[1].u.operand;
Jump activationCreated = branch32(NotEqual, tagFor(activation), TrustedImm32(JSValue::EmptyValueTag));
JITStubCall(this, cti_op_push_activation).call(activation);
activationCreated.link(this);
}
void JIT::emit_op_create_arguments(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
Jump argsCreated = branch32(NotEqual, tagFor(dst), TrustedImm32(JSValue::EmptyValueTag));
if (m_codeBlock->m_numParameters == 1)
JITStubCall(this, cti_op_create_arguments_no_params).call();
else
JITStubCall(this, cti_op_create_arguments).call();
emitStore(dst, regT1, regT0);
emitStore(unmodifiedArgumentsRegister(dst), regT1, regT0);
argsCreated.link(this);
}
void JIT::emit_op_init_lazy_reg(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
emitStore(dst, JSValue());
}
void JIT::emit_op_get_callee(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT0);
emitStoreCell(dst, regT0);
}
void JIT::emit_op_create_this(Instruction* currentInstruction)
{
unsigned protoRegister = currentInstruction[2].u.operand;
emitLoad(protoRegister, regT1, regT0);
JITStubCall stubCall(this, cti_op_create_this);
stubCall.addArgument(regT1, regT0);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_convert_this(Instruction* currentInstruction)
{
unsigned thisRegister = currentInstruction[1].u.operand;
emitLoad(thisRegister, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
addSlowCase(branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(NeedsThisConversion)));
map(m_bytecodeOffset + OPCODE_LENGTH(op_convert_this), thisRegister, regT1, regT0);
}
void JIT::emit_op_convert_this_strict(Instruction* currentInstruction)
{
unsigned thisRegister = currentInstruction[1].u.operand;
emitLoad(thisRegister, regT1, regT0);
Jump notNull = branch32(NotEqual, regT1, TrustedImm32(JSValue::EmptyValueTag));
emitStore(thisRegister, jsNull());
Jump setThis = jump();
notNull.link(this);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
Jump notAnObject = branch8(NotEqual, Address(regT2, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType));
addSlowCase(branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(NeedsThisConversion)));
isImmediate.link(this);
notAnObject.link(this);
setThis.link(this);
map(m_bytecodeOffset + OPCODE_LENGTH(op_convert_this_strict), thisRegister, regT1, regT0);
}
void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned thisRegister = currentInstruction[1].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_convert_this);
stubCall.addArgument(regT1, regT0);
stubCall.call(thisRegister);
}
void JIT::emitSlow_op_convert_this_strict(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned thisRegister = currentInstruction[1].u.operand;
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_convert_this_strict);
stubCall.addArgument(regT1, regT0);
stubCall.call(thisRegister);
}
void JIT::emit_op_profile_will_call(Instruction* currentInstruction)
{
peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof(void*));
Jump noProfiler = branchTestPtr(Zero, Address(regT2));
JITStubCall stubCall(this, cti_op_profile_will_call);
stubCall.addArgument(currentInstruction[1].u.operand);
stubCall.call();
noProfiler.link(this);
}
void JIT::emit_op_profile_did_call(Instruction* currentInstruction)
{
peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof(void*));
Jump noProfiler = branchTestPtr(Zero, Address(regT2));
JITStubCall stubCall(this, cti_op_profile_did_call);
stubCall.addArgument(currentInstruction[1].u.operand);
stubCall.call();
noProfiler.link(this);
}
void JIT::emit_op_get_arguments_length(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int argumentsRegister = currentInstruction[2].u.operand;
addSlowCase(branch32(NotEqual, tagFor(argumentsRegister), TrustedImm32(JSValue::EmptyValueTag)));
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0);
sub32(TrustedImm32(1), regT0);
emitStoreInt32(dst, regT0);
}
void JIT::emitSlow_op_get_arguments_length(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int ident = currentInstruction[3].u.operand;
JITStubCall stubCall(this, cti_op_get_by_id_generic);
stubCall.addArgument(base);
stubCall.addArgument(TrustedImmPtr(&(m_codeBlock->identifier(ident))));
stubCall.call(dst);
}
void JIT::emit_op_get_argument_by_val(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int argumentsRegister = currentInstruction[2].u.operand;
int property = currentInstruction[3].u.operand;
addSlowCase(branch32(NotEqual, tagFor(argumentsRegister), TrustedImm32(JSValue::EmptyValueTag)));
emitLoad(property, regT1, regT2);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
add32(TrustedImm32(1), regT2);
// regT2 now contains the integer index of the argument we want, including this
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT3);
addSlowCase(branch32(AboveOrEqual, regT2, regT3));
Jump skipOutofLineParams;
int numArgs = m_codeBlock->m_numParameters;
if (numArgs) {
Jump notInInPlaceArgs = branch32(AboveOrEqual, regT2, Imm32(numArgs));
addPtr(Imm32(static_cast<unsigned>(-(RegisterFile::CallFrameHeaderSize + numArgs) * sizeof(Register))), callFrameRegister, regT1);
loadPtr(BaseIndex(regT1, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
loadPtr(BaseIndex(regT1, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
skipOutofLineParams = jump();
notInInPlaceArgs.link(this);
}
addPtr(Imm32(static_cast<unsigned>(-(RegisterFile::CallFrameHeaderSize + numArgs) * sizeof(Register))), callFrameRegister, regT1);
mul32(TrustedImm32(sizeof(Register)), regT3, regT3);
subPtr(regT3, regT1);
loadPtr(BaseIndex(regT1, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
loadPtr(BaseIndex(regT1, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
if (numArgs)
skipOutofLineParams.link(this);
emitStore(dst, regT1, regT0);
}
void JIT::emitSlow_op_get_argument_by_val(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned arguments = currentInstruction[2].u.operand;
unsigned property = currentInstruction[3].u.operand;
linkSlowCase(iter);
Jump skipArgumentsCreation = jump();
linkSlowCase(iter);
linkSlowCase(iter);
if (m_codeBlock->m_numParameters == 1)
JITStubCall(this, cti_op_create_arguments_no_params).call();
else
JITStubCall(this, cti_op_create_arguments).call();
emitStore(arguments, regT1, regT0);
emitStore(unmodifiedArgumentsRegister(arguments), regT1, regT0);
skipArgumentsCreation.link(this);
JITStubCall stubCall(this, cti_op_get_by_val);
stubCall.addArgument(arguments);
stubCall.addArgument(property);
stubCall.call(dst);
}
#if ENABLE(JIT_USE_SOFT_MODULO)
void JIT::softModulo()
{
push(regT1);
push(regT3);
move(regT2, regT3);
move(regT0, regT2);
move(TrustedImm32(0), regT1);
// Check for negative result reminder
Jump positiveRegT3 = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
neg32(regT3);
xor32(TrustedImm32(1), regT1);
positiveRegT3.link(this);
Jump positiveRegT2 = branch32(GreaterThanOrEqual, regT2, TrustedImm32(0));
neg32(regT2);
xor32(TrustedImm32(2), regT1);
positiveRegT2.link(this);
// Save the condition for negative reminder
push(regT1);
Jump exitBranch = branch32(LessThan, regT2, regT3);
// Power of two fast case
move(regT3, regT0);
sub32(TrustedImm32(1), regT0);
Jump powerOfTwo = branchTest32(NotEqual, regT0, regT3);
and32(regT0, regT2);
powerOfTwo.link(this);
and32(regT3, regT0);
Jump exitBranch2 = branchTest32(Zero, regT0);
countLeadingZeros32(regT2, regT0);
countLeadingZeros32(regT3, regT1);
sub32(regT0, regT1);
Jump useFullTable = branch32(Equal, regT1, TrustedImm32(31));
neg32(regT1);
add32(TrustedImm32(31), regT1);
int elementSizeByShift = -1;
#if CPU(ARM)
elementSizeByShift = 3;
#else
#error "JIT_OPTIMIZE_MOD not yet supported on this platform."
#endif
relativeTableJump(regT1, elementSizeByShift);
useFullTable.link(this);
// Modulo table
for (int i = 31; i > 0; --i) {
#if CPU(ARM_TRADITIONAL)
m_assembler.cmp_r(regT2, m_assembler.lsl(regT3, i));
m_assembler.sub_r(regT2, regT2, m_assembler.lsl(regT3, i), ARMAssembler::CS);
#elif CPU(ARM_THUMB2)
ShiftTypeAndAmount shift(SRType_LSL, i);
m_assembler.sub_S(regT1, regT2, regT3, shift);
m_assembler.it(ARMv7Assembler::ConditionCS);
m_assembler.mov(regT2, regT1);
#else
#error "JIT_OPTIMIZE_MOD not yet supported on this platform."
#endif
}
Jump lower = branch32(Below, regT2, regT3);
sub32(regT3, regT2);
lower.link(this);
exitBranch.link(this);
exitBranch2.link(this);
// Check for negative reminder
pop(regT1);
Jump positiveResult = branch32(Equal, regT1, TrustedImm32(0));
neg32(regT2);
positiveResult.link(this);
move(regT2, regT0);
pop(regT3);
pop(regT1);
ret();
}
#endif // ENABLE(JIT_USE_SOFT_MODULO)
} // namespace JSC
#endif // USE(JSVALUE32_64)
#endif // ENABLE(JIT)