//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/OutputGLSL.h"
#include "compiler/debug.h"
namespace
{
TString getTypeName(const TType& type)
{
TInfoSinkBase out;
if (type.isMatrix())
{
out << "mat";
out << type.getNominalSize();
}
else if (type.isVector())
{
switch (type.getBasicType())
{
case EbtFloat: out << "vec"; break;
case EbtInt: out << "ivec"; break;
case EbtBool: out << "bvec"; break;
default: UNREACHABLE(); break;
}
out << type.getNominalSize();
}
else
{
if (type.getBasicType() == EbtStruct)
out << type.getTypeName();
else
out << type.getBasicString();
}
return TString(out.c_str());
}
TString arrayBrackets(const TType& type)
{
ASSERT(type.isArray());
TInfoSinkBase out;
out << "[" << type.getArraySize() << "]";
return TString(out.c_str());
}
bool isSingleStatement(TIntermNode* node) {
if (const TIntermAggregate* aggregate = node->getAsAggregate())
{
return (aggregate->getOp() != EOpFunction) &&
(aggregate->getOp() != EOpSequence);
}
else if (const TIntermSelection* selection = node->getAsSelectionNode())
{
// Ternary operators are usually part of an assignment operator.
// This handles those rare cases in which they are all by themselves.
return selection->usesTernaryOperator();
}
else if (node->getAsLoopNode())
{
return false;
}
return true;
}
} // namespace
TOutputGLSL::TOutputGLSL(TInfoSinkBase& objSink)
: TIntermTraverser(true, true, true),
mObjSink(objSink),
mDeclaringVariables(false)
{
}
void TOutputGLSL::writeTriplet(Visit visit, const char* preStr, const char* inStr, const char* postStr)
{
TInfoSinkBase& out = objSink();
if (visit == PreVisit && preStr)
{
out << preStr;
}
else if (visit == InVisit && inStr)
{
out << inStr;
}
else if (visit == PostVisit && postStr)
{
out << postStr;
}
}
void TOutputGLSL::writeVariableType(const TType& type)
{
TInfoSinkBase& out = objSink();
TQualifier qualifier = type.getQualifier();
// TODO(alokp): Validate qualifier for variable declarations.
if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal))
out << type.getQualifierString() << " ";
// Declare the struct if we have not done so already.
if ((type.getBasicType() == EbtStruct) &&
(mDeclaredStructs.find(type.getTypeName()) == mDeclaredStructs.end()))
{
out << "struct " << type.getTypeName() << "{\n";
const TTypeList* structure = type.getStruct();
ASSERT(structure != NULL);
for (size_t i = 0; i < structure->size(); ++i)
{
const TType* fieldType = (*structure)[i].type;
ASSERT(fieldType != NULL);
out << getTypeName(*fieldType) << " " << fieldType->getFieldName();
if (fieldType->isArray())
out << arrayBrackets(*fieldType);
out << ";\n";
}
out << "}";
mDeclaredStructs.insert(type.getTypeName());
}
else
{
out << getTypeName(type);
}
}
void TOutputGLSL::writeFunctionParameters(const TIntermSequence& args)
{
TInfoSinkBase& out = objSink();
for (TIntermSequence::const_iterator iter = args.begin();
iter != args.end(); ++iter)
{
const TIntermSymbol* arg = (*iter)->getAsSymbolNode();
ASSERT(arg != NULL);
const TType& type = arg->getType();
TQualifier qualifier = type.getQualifier();
// TODO(alokp): Validate qualifier for function arguments.
if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal))
out << type.getQualifierString() << " ";
out << getTypeName(type);
const TString& name = arg->getSymbol();
if (!name.empty())
out << " " << name;
if (type.isArray())
out << arrayBrackets(type);
// Put a comma if this is not the last argument.
if (iter != args.end() - 1)
out << ", ";
}
}
const ConstantUnion* TOutputGLSL::writeConstantUnion(const TType& type,
const ConstantUnion* pConstUnion)
{
TInfoSinkBase& out = objSink();
if (type.getBasicType() == EbtStruct)
{
out << type.getTypeName() << "(";
const TTypeList* structure = type.getStruct();
ASSERT(structure != NULL);
for (size_t i = 0; i < structure->size(); ++i)
{
const TType* fieldType = (*structure)[i].type;
ASSERT(fieldType != NULL);
pConstUnion = writeConstantUnion(*fieldType, pConstUnion);
if (i != structure->size() - 1) out << ", ";
}
out << ")";
}
else
{
int size = type.getObjectSize();
bool writeType = size > 1;
if (writeType) out << getTypeName(type) << "(";
for (int i = 0; i < size; ++i, ++pConstUnion)
{
switch (pConstUnion->getType())
{
case EbtFloat: out << pConstUnion->getFConst(); break;
case EbtInt: out << pConstUnion->getIConst(); break;
case EbtBool: out << pConstUnion->getBConst(); break;
default: UNREACHABLE();
}
if (i != size - 1) out << ", ";
}
if (writeType) out << ")";
}
return pConstUnion;
}
void TOutputGLSL::visitSymbol(TIntermSymbol* node)
{
TInfoSinkBase& out = objSink();
out << node->getSymbol();
if (mDeclaringVariables && node->getType().isArray())
out << arrayBrackets(node->getType());
}
void TOutputGLSL::visitConstantUnion(TIntermConstantUnion* node)
{
writeConstantUnion(node->getType(), node->getUnionArrayPointer());
}
bool TOutputGLSL::visitBinary(Visit visit, TIntermBinary* node)
{
bool visitChildren = true;
TInfoSinkBase& out = objSink();
switch (node->getOp())
{
case EOpInitialize:
if (visit == InVisit)
{
out << " = ";
// RHS of initialize is not being declared.
mDeclaringVariables = false;
}
break;
case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break;
case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break;
case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break;
case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break;
// Notice the fall-through.
case EOpMulAssign:
case EOpVectorTimesMatrixAssign:
case EOpVectorTimesScalarAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign:
writeTriplet(visit, "(", " *= ", ")");
break;
case EOpIndexDirect:
case EOpIndexIndirect:
writeTriplet(visit, NULL, "[", "]");
break;
case EOpIndexDirectStruct:
if (visit == InVisit)
{
out << ".";
// TODO(alokp): ASSERT
out << node->getType().getFieldName();
visitChildren = false;
}
break;
case EOpVectorSwizzle:
if (visit == InVisit)
{
out << ".";
TIntermAggregate* rightChild = node->getRight()->getAsAggregate();
TIntermSequence& sequence = rightChild->getSequence();
for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); ++sit)
{
TIntermConstantUnion* element = (*sit)->getAsConstantUnion();
ASSERT(element->getBasicType() == EbtInt);
ASSERT(element->getNominalSize() == 1);
const ConstantUnion& data = element->getUnionArrayPointer()[0];
ASSERT(data.getType() == EbtInt);
switch (data.getIConst())
{
case 0: out << "x"; break;
case 1: out << "y"; break;
case 2: out << "z"; break;
case 3: out << "w"; break;
default: UNREACHABLE(); break;
}
}
visitChildren = false;
}
break;
case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break;
case EOpSub: writeTriplet(visit, "(", " - ", ")"); break;
case EOpMul: writeTriplet(visit, "(", " * ", ")"); break;
case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break;
case EOpMod: UNIMPLEMENTED(); break;
case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break;
case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break;
case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break;
// Notice the fall-through.
case EOpVectorTimesScalar:
case EOpVectorTimesMatrix:
case EOpMatrixTimesVector:
case EOpMatrixTimesScalar:
case EOpMatrixTimesMatrix:
writeTriplet(visit, "(", " * ", ")");
break;
case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break;
case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break;
case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break;
default: UNREACHABLE(); break;
}
return visitChildren;
}
bool TOutputGLSL::visitUnary(Visit visit, TIntermUnary* node)
{
switch (node->getOp())
{
case EOpNegative: writeTriplet(visit, "(-", NULL, ")"); break;
case EOpVectorLogicalNot: writeTriplet(visit, "not(", NULL, ")"); break;
case EOpLogicalNot: writeTriplet(visit, "(!", NULL, ")"); break;
case EOpPostIncrement: writeTriplet(visit, "(", NULL, "++)"); break;
case EOpPostDecrement: writeTriplet(visit, "(", NULL, "--)"); break;
case EOpPreIncrement: writeTriplet(visit, "(++", NULL, ")"); break;
case EOpPreDecrement: writeTriplet(visit, "(--", NULL, ")"); break;
case EOpConvIntToBool:
case EOpConvFloatToBool:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: writeTriplet(visit, "bool(", NULL, ")"); break;
case 2: writeTriplet(visit, "bvec2(", NULL, ")"); break;
case 3: writeTriplet(visit, "bvec3(", NULL, ")"); break;
case 4: writeTriplet(visit, "bvec4(", NULL, ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvBoolToFloat:
case EOpConvIntToFloat:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: writeTriplet(visit, "float(", NULL, ")"); break;
case 2: writeTriplet(visit, "vec2(", NULL, ")"); break;
case 3: writeTriplet(visit, "vec3(", NULL, ")"); break;
case 4: writeTriplet(visit, "vec4(", NULL, ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvFloatToInt:
case EOpConvBoolToInt:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: writeTriplet(visit, "int(", NULL, ")"); break;
case 2: writeTriplet(visit, "ivec2(", NULL, ")"); break;
case 3: writeTriplet(visit, "ivec3(", NULL, ")"); break;
case 4: writeTriplet(visit, "ivec4(", NULL, ")"); break;
default: UNREACHABLE();
}
break;
case EOpRadians: writeTriplet(visit, "radians(", NULL, ")"); break;
case EOpDegrees: writeTriplet(visit, "degrees(", NULL, ")"); break;
case EOpSin: writeTriplet(visit, "sin(", NULL, ")"); break;
case EOpCos: writeTriplet(visit, "cos(", NULL, ")"); break;
case EOpTan: writeTriplet(visit, "tan(", NULL, ")"); break;
case EOpAsin: writeTriplet(visit, "asin(", NULL, ")"); break;
case EOpAcos: writeTriplet(visit, "acos(", NULL, ")"); break;
case EOpAtan: writeTriplet(visit, "atan(", NULL, ")"); break;
case EOpExp: writeTriplet(visit, "exp(", NULL, ")"); break;
case EOpLog: writeTriplet(visit, "log(", NULL, ")"); break;
case EOpExp2: writeTriplet(visit, "exp2(", NULL, ")"); break;
case EOpLog2: writeTriplet(visit, "log2(", NULL, ")"); break;
case EOpSqrt: writeTriplet(visit, "sqrt(", NULL, ")"); break;
case EOpInverseSqrt: writeTriplet(visit, "inversesqrt(", NULL, ")"); break;
case EOpAbs: writeTriplet(visit, "abs(", NULL, ")"); break;
case EOpSign: writeTriplet(visit, "sign(", NULL, ")"); break;
case EOpFloor: writeTriplet(visit, "floor(", NULL, ")"); break;
case EOpCeil: writeTriplet(visit, "ceil(", NULL, ")"); break;
case EOpFract: writeTriplet(visit, "fract(", NULL, ")"); break;
case EOpLength: writeTriplet(visit, "length(", NULL, ")"); break;
case EOpNormalize: writeTriplet(visit, "normalize(", NULL, ")"); break;
case EOpDFdx: writeTriplet(visit, "dFdx(", NULL, ")"); break;
case EOpDFdy: writeTriplet(visit, "dFdy(", NULL, ")"); break;
case EOpFwidth: writeTriplet(visit, "fwidth(", NULL, ")"); break;
case EOpAny: writeTriplet(visit, "any(", NULL, ")"); break;
case EOpAll: writeTriplet(visit, "all(", NULL, ")"); break;
default: UNREACHABLE(); break;
}
return true;
}
bool TOutputGLSL::visitSelection(Visit visit, TIntermSelection* node)
{
TInfoSinkBase& out = objSink();
if (node->usesTernaryOperator())
{
// Notice two brackets at the beginning and end. The outer ones
// encapsulate the whole ternary expression. This preserves the
// order of precedence when ternary expressions are used in a
// compound expression, i.e., c = 2 * (a < b ? 1 : 2).
out << "((";
node->getCondition()->traverse(this);
out << ") ? (";
node->getTrueBlock()->traverse(this);
out << ") : (";
node->getFalseBlock()->traverse(this);
out << "))";
}
else
{
out << "if (";
node->getCondition()->traverse(this);
out << ")\n";
incrementDepth();
visitCodeBlock(node->getTrueBlock());
if (node->getFalseBlock())
{
out << "else\n";
visitCodeBlock(node->getFalseBlock());
}
decrementDepth();
}
return false;
}
bool TOutputGLSL::visitAggregate(Visit visit, TIntermAggregate* node)
{
bool visitChildren = true;
TInfoSinkBase& out = objSink();
switch (node->getOp())
{
case EOpSequence: {
// Scope the sequences except when at the global scope.
if (depth > 0) out << "{\n";
incrementDepth();
const TIntermSequence& sequence = node->getSequence();
for (TIntermSequence::const_iterator iter = sequence.begin();
iter != sequence.end(); ++iter)
{
TIntermNode* node = *iter;
ASSERT(node != NULL);
node->traverse(this);
if (isSingleStatement(node))
out << ";\n";
}
decrementDepth();
// Scope the sequences except when at the global scope.
if (depth > 0) out << "}\n";
visitChildren = false;
break;
}
case EOpPrototype: {
// Function declaration.
ASSERT(visit == PreVisit);
TString returnType = getTypeName(node->getType());
out << returnType << " " << node->getName();
out << "(";
writeFunctionParameters(node->getSequence());
out << ")";
visitChildren = false;
break;
}
case EOpFunction: {
// Function definition.
ASSERT(visit == PreVisit);
TString returnType = getTypeName(node->getType());
TString functionName = TFunction::unmangleName(node->getName());
out << returnType << " " << functionName;
incrementDepth();
// Function definition node contains one or two children nodes
// representing function parameters and function body. The latter
// is not present in case of empty function bodies.
const TIntermSequence& sequence = node->getSequence();
ASSERT((sequence.size() == 1) || (sequence.size() == 2));
TIntermSequence::const_iterator seqIter = sequence.begin();
// Traverse function parameters.
TIntermAggregate* params = (*seqIter)->getAsAggregate();
ASSERT(params != NULL);
ASSERT(params->getOp() == EOpParameters);
params->traverse(this);
// Traverse function body.
TIntermAggregate* body = ++seqIter != sequence.end() ?
(*seqIter)->getAsAggregate() : NULL;
visitCodeBlock(body);
decrementDepth();
// Fully processed; no need to visit children.
visitChildren = false;
break;
}
case EOpFunctionCall:
// Function call.
if (visit == PreVisit)
{
TString functionName = TFunction::unmangleName(node->getName());
out << functionName << "(";
}
else if (visit == InVisit)
{
out << ", ";
}
else
{
out << ")";
}
break;
case EOpParameters: {
// Function parameters.
ASSERT(visit == PreVisit);
out << "(";
writeFunctionParameters(node->getSequence());
out << ")";
visitChildren = false;
break;
}
case EOpDeclaration: {
// Variable declaration.
if (visit == PreVisit)
{
const TIntermSequence& sequence = node->getSequence();
const TIntermTyped* variable = sequence.front()->getAsTyped();
writeVariableType(variable->getType());
out << " ";
mDeclaringVariables = true;
}
else if (visit == InVisit)
{
out << ", ";
mDeclaringVariables = true;
}
else
{
mDeclaringVariables = false;
}
break;
}
case EOpConstructFloat: writeTriplet(visit, "float(", NULL, ")"); break;
case EOpConstructVec2: writeTriplet(visit, "vec2(", ", ", ")"); break;
case EOpConstructVec3: writeTriplet(visit, "vec3(", ", ", ")"); break;
case EOpConstructVec4: writeTriplet(visit, "vec4(", ", ", ")"); break;
case EOpConstructBool: writeTriplet(visit, "bool(", NULL, ")"); break;
case EOpConstructBVec2: writeTriplet(visit, "bvec2(", ", ", ")"); break;
case EOpConstructBVec3: writeTriplet(visit, "bvec3(", ", ", ")"); break;
case EOpConstructBVec4: writeTriplet(visit, "bvec4(", ", ", ")"); break;
case EOpConstructInt: writeTriplet(visit, "int(", NULL, ")"); break;
case EOpConstructIVec2: writeTriplet(visit, "ivec2(", ", ", ")"); break;
case EOpConstructIVec3: writeTriplet(visit, "ivec3(", ", ", ")"); break;
case EOpConstructIVec4: writeTriplet(visit, "ivec4(", ", ", ")"); break;
case EOpConstructMat2: writeTriplet(visit, "mat2(", ", ", ")"); break;
case EOpConstructMat3: writeTriplet(visit, "mat3(", ", ", ")"); break;
case EOpConstructMat4: writeTriplet(visit, "mat4(", ", ", ")"); break;
case EOpConstructStruct:
if (visit == PreVisit)
{
const TType& type = node->getType();
ASSERT(type.getBasicType() == EbtStruct);
out << type.getTypeName() << "(";
}
else if (visit == InVisit)
{
out << ", ";
}
else
{
out << ")";
}
break;
case EOpLessThan: writeTriplet(visit, "lessThan(", ", ", ")"); break;
case EOpGreaterThan: writeTriplet(visit, "greaterThan(", ", ", ")"); break;
case EOpLessThanEqual: writeTriplet(visit, "lessThanEqual(", ", ", ")"); break;
case EOpGreaterThanEqual: writeTriplet(visit, "greaterThanEqual(", ", ", ")"); break;
case EOpVectorEqual: writeTriplet(visit, "equal(", ", ", ")"); break;
case EOpVectorNotEqual: writeTriplet(visit, "notEqual(", ", ", ")"); break;
case EOpComma: writeTriplet(visit, NULL, ", ", NULL); break;
case EOpMod: writeTriplet(visit, "mod(", ", ", ")"); break;
case EOpPow: writeTriplet(visit, "pow(", ", ", ")"); break;
case EOpAtan: writeTriplet(visit, "atan(", ", ", ")"); break;
case EOpMin: writeTriplet(visit, "min(", ", ", ")"); break;
case EOpMax: writeTriplet(visit, "max(", ", ", ")"); break;
case EOpClamp: writeTriplet(visit, "clamp(", ", ", ")"); break;
case EOpMix: writeTriplet(visit, "mix(", ", ", ")"); break;
case EOpStep: writeTriplet(visit, "step(", ", ", ")"); break;
case EOpSmoothStep: writeTriplet(visit, "smoothstep(", ", ", ")"); break;
case EOpDistance: writeTriplet(visit, "distance(", ", ", ")"); break;
case EOpDot: writeTriplet(visit, "dot(", ", ", ")"); break;
case EOpCross: writeTriplet(visit, "cross(", ", ", ")"); break;
case EOpFaceForward: writeTriplet(visit, "faceforward(", ", ", ")"); break;
case EOpReflect: writeTriplet(visit, "reflect(", ", ", ")"); break;
case EOpRefract: writeTriplet(visit, "refract(", ", ", ")"); break;
case EOpMul: writeTriplet(visit, "matrixCompMult(", ", ", ")"); break;
default: UNREACHABLE(); break;
}
return visitChildren;
}
bool TOutputGLSL::visitLoop(Visit visit, TIntermLoop* node)
{
TInfoSinkBase& out = objSink();
incrementDepth();
// Loop header.
TLoopType loopType = node->getType();
if (loopType == ELoopFor) // for loop
{
out << "for (";
if (node->getInit())
node->getInit()->traverse(this);
out << "; ";
if (node->getCondition())
node->getCondition()->traverse(this);
out << "; ";
if (node->getExpression())
node->getExpression()->traverse(this);
out << ")\n";
}
else if (loopType == ELoopWhile) // while loop
{
out << "while (";
ASSERT(node->getCondition() != NULL);
node->getCondition()->traverse(this);
out << ")\n";
}
else // do-while loop
{
ASSERT(loopType == ELoopDoWhile);
out << "do\n";
}
// Loop body.
visitCodeBlock(node->getBody());
// Loop footer.
if (loopType == ELoopDoWhile) // do-while loop
{
out << "while (";
ASSERT(node->getCondition() != NULL);
node->getCondition()->traverse(this);
out << ");\n";
}
decrementDepth();
// No need to visit children. They have been already processed in
// this function.
return false;
}
bool TOutputGLSL::visitBranch(Visit visit, TIntermBranch* node)
{
switch (node->getFlowOp())
{
case EOpKill: writeTriplet(visit, "discard", NULL, NULL); break;
case EOpBreak: writeTriplet(visit, "break", NULL, NULL); break;
case EOpContinue: writeTriplet(visit, "continue", NULL, NULL); break;
case EOpReturn: writeTriplet(visit, "return ", NULL, NULL); break;
default: UNREACHABLE(); break;
}
return true;
}
void TOutputGLSL::visitCodeBlock(TIntermNode* node) {
TInfoSinkBase &out = objSink();
if (node != NULL)
{
node->traverse(this);
// Single statements not part of a sequence need to be terminated
// with semi-colon.
if (isSingleStatement(node))
out << ";\n";
}
else
{
out << "{\n}\n"; // Empty code block.
}
}