//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Context.cpp: Implements the gl::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "libGLESv2/Context.h"
#include <algorithm>
#include "libEGL/Display.h"
#include "libGLESv2/main.h"
#include "libGLESv2/mathutil.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/Blit.h"
#include "libGLESv2/ResourceManager.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Fence.h"
#include "libGLESv2/FrameBuffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/RenderBuffer.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/Texture.h"
#include "libGLESv2/geometry/VertexDataManager.h"
#include "libGLESv2/geometry/IndexDataManager.h"
#undef near
#undef far
namespace gl
{
Context::Context(const egl::Config *config, const gl::Context *shareContext)
: mConfig(config)
{
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mState.depthClearValue = 1.0f;
mState.stencilClearValue = 0;
mState.cullFace = false;
mState.cullMode = GL_BACK;
mState.frontFace = GL_CCW;
mState.depthTest = false;
mState.depthFunc = GL_LESS;
mState.blend = false;
mState.sourceBlendRGB = GL_ONE;
mState.sourceBlendAlpha = GL_ONE;
mState.destBlendRGB = GL_ZERO;
mState.destBlendAlpha = GL_ZERO;
mState.blendEquationRGB = GL_FUNC_ADD;
mState.blendEquationAlpha = GL_FUNC_ADD;
mState.blendColor.red = 0;
mState.blendColor.green = 0;
mState.blendColor.blue = 0;
mState.blendColor.alpha = 0;
mState.stencilTest = false;
mState.stencilFunc = GL_ALWAYS;
mState.stencilRef = 0;
mState.stencilMask = -1;
mState.stencilWritemask = -1;
mState.stencilBackFunc = GL_ALWAYS;
mState.stencilBackRef = 0;
mState.stencilBackMask = - 1;
mState.stencilBackWritemask = -1;
mState.stencilFail = GL_KEEP;
mState.stencilPassDepthFail = GL_KEEP;
mState.stencilPassDepthPass = GL_KEEP;
mState.stencilBackFail = GL_KEEP;
mState.stencilBackPassDepthFail = GL_KEEP;
mState.stencilBackPassDepthPass = GL_KEEP;
mState.polygonOffsetFill = false;
mState.polygonOffsetFactor = 0.0f;
mState.polygonOffsetUnits = 0.0f;
mState.sampleAlphaToCoverage = false;
mState.sampleCoverage = false;
mState.sampleCoverageValue = 1.0f;
mState.sampleCoverageInvert = false;
mState.scissorTest = false;
mState.dither = true;
mState.generateMipmapHint = GL_DONT_CARE;
mState.fragmentShaderDerivativeHint = GL_DONT_CARE;
mState.lineWidth = 1.0f;
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = config->mDisplayMode.Width;
mState.viewportHeight = config->mDisplayMode.Height;
mState.zNear = 0.0f;
mState.zFar = 1.0f;
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = config->mDisplayMode.Width;
mState.scissorHeight = config->mDisplayMode.Height;
mState.colorMaskRed = true;
mState.colorMaskGreen = true;
mState.colorMaskBlue = true;
mState.colorMaskAlpha = true;
mState.depthMask = true;
if (shareContext != NULL)
{
mResourceManager = shareContext->mResourceManager;
mResourceManager->addRef();
}
else
{
mResourceManager = new ResourceManager();
}
// [OpenGL ES 2.0.24] section 3.7 page 83:
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
mTexture2DZero.set(new Texture2D(0));
mTextureCubeMapZero.set(new TextureCubeMap(0));
mState.activeSampler = 0;
bindArrayBuffer(0);
bindElementArrayBuffer(0);
bindTextureCubeMap(0);
bindTexture2D(0);
bindReadFramebuffer(0);
bindDrawFramebuffer(0);
bindRenderbuffer(0);
mState.currentProgram = 0;
mState.packAlignment = 4;
mState.unpackAlignment = 4;
mVertexDataManager = NULL;
mIndexDataManager = NULL;
mBlit = NULL;
mInvalidEnum = false;
mInvalidValue = false;
mInvalidOperation = false;
mOutOfMemory = false;
mInvalidFramebufferOperation = false;
mHasBeenCurrent = false;
mSupportsCompressedTextures = false;
mSupportsEventQueries = false;
mMaxSupportedSamples = 0;
mMaskedClearSavedState = NULL;
markAllStateDirty();
}
Context::~Context()
{
if (mState.currentProgram != 0)
{
Program *programObject = mResourceManager->getProgram(mState.currentProgram);
if (programObject)
{
programObject->release();
}
mState.currentProgram = 0;
}
while (!mFramebufferMap.empty())
{
deleteFramebuffer(mFramebufferMap.begin()->first);
}
while (!mFenceMap.empty())
{
deleteFence(mFenceMap.begin()->first);
}
while (!mMultiSampleSupport.empty())
{
delete [] mMultiSampleSupport.begin()->second;
mMultiSampleSupport.erase(mMultiSampleSupport.begin());
}
for (int type = 0; type < SAMPLER_TYPE_COUNT; type++)
{
for (int sampler = 0; sampler < MAX_TEXTURE_IMAGE_UNITS; sampler++)
{
mState.samplerTexture[type][sampler].set(NULL);
}
}
for (int type = 0; type < SAMPLER_TYPE_COUNT; type++)
{
mIncompleteTextures[type].set(NULL);
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mState.vertexAttribute[i].mBoundBuffer.set(NULL);
}
mState.arrayBuffer.set(NULL);
mState.elementArrayBuffer.set(NULL);
mState.renderbuffer.set(NULL);
mTexture2DZero.set(NULL);
mTextureCubeMapZero.set(NULL);
delete mVertexDataManager;
delete mIndexDataManager;
delete mBlit;
if (mMaskedClearSavedState)
{
mMaskedClearSavedState->Release();
}
mResourceManager->release();
}
void Context::makeCurrent(egl::Display *display, egl::Surface *surface)
{
IDirect3DDevice9 *device = display->getDevice();
if (!mHasBeenCurrent)
{
mDeviceCaps = display->getDeviceCaps();
mVertexDataManager = new VertexDataManager(this, device);
mIndexDataManager = new IndexDataManager(this, device);
mBlit = new Blit(this);
mSupportsShaderModel3 = mDeviceCaps.PixelShaderVersion == D3DPS_VERSION(3, 0);
mMaxTextureDimension = std::min(std::min((int)mDeviceCaps.MaxTextureWidth, (int)mDeviceCaps.MaxTextureHeight),
(int)gl::IMPLEMENTATION_MAX_TEXTURE_SIZE);
mMaxCubeTextureDimension = std::min(mMaxTextureDimension, (int)gl::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE);
mMaxRenderbufferDimension = mMaxTextureDimension;
mMaxTextureLevel = log2(mMaxTextureDimension) + 1;
TRACE("MaxTextureDimension=%d, MaxCubeTextureDimension=%d, MaxRenderbufferDimension=%d, MaxTextureLevel=%d",
mMaxTextureDimension, mMaxCubeTextureDimension, mMaxRenderbufferDimension, mMaxTextureLevel);
const D3DFORMAT renderBufferFormats[] =
{
D3DFMT_A8R8G8B8,
D3DFMT_X8R8G8B8,
D3DFMT_R5G6B5,
D3DFMT_D24S8
};
int max = 0;
for (int i = 0; i < sizeof(renderBufferFormats) / sizeof(D3DFORMAT); ++i)
{
bool *multisampleArray = new bool[D3DMULTISAMPLE_16_SAMPLES + 1];
display->getMultiSampleSupport(renderBufferFormats[i], multisampleArray);
mMultiSampleSupport[renderBufferFormats[i]] = multisampleArray;
for (int j = D3DMULTISAMPLE_16_SAMPLES; j >= 0; --j)
{
if (multisampleArray[j] && j != D3DMULTISAMPLE_NONMASKABLE && j > max)
{
max = j;
}
}
}
mMaxSupportedSamples = max;
mSupportsEventQueries = display->getEventQuerySupport();
mSupportsCompressedTextures = display->getCompressedTextureSupport();
mSupportsFloatTextures = display->getFloatTextureSupport(&mSupportsFloatLinearFilter, &mSupportsFloatRenderableTextures);
mSupportsHalfFloatTextures = display->getHalfFloatTextureSupport(&mSupportsHalfFloatLinearFilter, &mSupportsHalfFloatRenderableTextures);
mSupportsLuminanceTextures = display->getLuminanceTextureSupport();
mSupportsLuminanceAlphaTextures = display->getLuminanceAlphaTextureSupport();
mSupports32bitIndices = mDeviceCaps.MaxVertexIndex >= (1 << 16);
initExtensionString();
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = surface->getWidth();
mState.viewportHeight = surface->getHeight();
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = surface->getWidth();
mState.scissorHeight = surface->getHeight();
mHasBeenCurrent = true;
}
// Wrap the existing Direct3D 9 resources into GL objects and assign them to the '0' names
IDirect3DSurface9 *defaultRenderTarget = surface->getRenderTarget();
IDirect3DSurface9 *depthStencil = surface->getDepthStencil();
Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil);
Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero);
setFramebufferZero(framebufferZero);
if (defaultRenderTarget)
{
defaultRenderTarget->Release();
}
if (depthStencil)
{
depthStencil->Release();
}
markAllStateDirty();
}
// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
void Context::markAllStateDirty()
{
mAppliedRenderTargetSerial = 0;
mAppliedDepthbufferSerial = 0;
mAppliedStencilbufferSerial = 0;
mDepthStencilInitialized = false;
mAppliedProgram = 0;
mClearStateDirty = true;
mCullStateDirty = true;
mDepthStateDirty = true;
mMaskStateDirty = true;
mBlendStateDirty = true;
mStencilStateDirty = true;
mPolygonOffsetStateDirty = true;
mScissorStateDirty = true;
mSampleStateDirty = true;
mDitherStateDirty = true;
mFrontFaceDirty = true;
}
void Context::setClearColor(float red, float green, float blue, float alpha)
{
mState.colorClearValue.red = red;
mState.colorClearValue.green = green;
mState.colorClearValue.blue = blue;
mState.colorClearValue.alpha = alpha;
}
void Context::setClearDepth(float depth)
{
mState.depthClearValue = depth;
}
void Context::setClearStencil(int stencil)
{
mState.stencilClearValue = stencil;
}
void Context::setCullFace(bool enabled)
{
if (mState.cullFace != enabled)
{
mState.cullFace = enabled;
mCullStateDirty = true;
}
}
bool Context::isCullFaceEnabled() const
{
return mState.cullFace;
}
void Context::setCullMode(GLenum mode)
{
if (mState.cullMode != mode)
{
mState.cullMode = mode;
mCullStateDirty = true;
}
}
void Context::setFrontFace(GLenum front)
{
if (mState.frontFace != front)
{
mState.frontFace = front;
mFrontFaceDirty = true;
}
}
void Context::setDepthTest(bool enabled)
{
if (mState.depthTest != enabled)
{
mState.depthTest = enabled;
mDepthStateDirty = true;
}
}
bool Context::isDepthTestEnabled() const
{
return mState.depthTest;
}
void Context::setDepthFunc(GLenum depthFunc)
{
if (mState.depthFunc != depthFunc)
{
mState.depthFunc = depthFunc;
mDepthStateDirty = true;
}
}
void Context::setDepthRange(float zNear, float zFar)
{
mState.zNear = zNear;
mState.zFar = zFar;
}
void Context::setBlend(bool enabled)
{
if (mState.blend != enabled)
{
mState.blend = enabled;
mBlendStateDirty = true;
}
}
bool Context::isBlendEnabled() const
{
return mState.blend;
}
void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
if (mState.sourceBlendRGB != sourceRGB ||
mState.sourceBlendAlpha != sourceAlpha ||
mState.destBlendRGB != destRGB ||
mState.destBlendAlpha != destAlpha)
{
mState.sourceBlendRGB = sourceRGB;
mState.destBlendRGB = destRGB;
mState.sourceBlendAlpha = sourceAlpha;
mState.destBlendAlpha = destAlpha;
mBlendStateDirty = true;
}
}
void Context::setBlendColor(float red, float green, float blue, float alpha)
{
if (mState.blendColor.red != red ||
mState.blendColor.green != green ||
mState.blendColor.blue != blue ||
mState.blendColor.alpha != alpha)
{
mState.blendColor.red = red;
mState.blendColor.green = green;
mState.blendColor.blue = blue;
mState.blendColor.alpha = alpha;
mBlendStateDirty = true;
}
}
void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
if (mState.blendEquationRGB != rgbEquation ||
mState.blendEquationAlpha != alphaEquation)
{
mState.blendEquationRGB = rgbEquation;
mState.blendEquationAlpha = alphaEquation;
mBlendStateDirty = true;
}
}
void Context::setStencilTest(bool enabled)
{
if (mState.stencilTest != enabled)
{
mState.stencilTest = enabled;
mStencilStateDirty = true;
}
}
bool Context::isStencilTestEnabled() const
{
return mState.stencilTest;
}
void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
if (mState.stencilFunc != stencilFunc ||
mState.stencilRef != stencilRef ||
mState.stencilMask != stencilMask)
{
mState.stencilFunc = stencilFunc;
mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
mState.stencilMask = stencilMask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask)
{
if (mState.stencilBackFunc != stencilBackFunc ||
mState.stencilBackRef != stencilBackRef ||
mState.stencilBackMask != stencilBackMask)
{
mState.stencilBackFunc = stencilBackFunc;
mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
mState.stencilBackMask = stencilBackMask;
mStencilStateDirty = true;
}
}
void Context::setStencilWritemask(GLuint stencilWritemask)
{
if (mState.stencilWritemask != stencilWritemask)
{
mState.stencilWritemask = stencilWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackWritemask(GLuint stencilBackWritemask)
{
if (mState.stencilBackWritemask != stencilBackWritemask)
{
mState.stencilBackWritemask = stencilBackWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
if (mState.stencilFail != stencilFail ||
mState.stencilPassDepthFail != stencilPassDepthFail ||
mState.stencilPassDepthPass != stencilPassDepthPass)
{
mState.stencilFail = stencilFail;
mState.stencilPassDepthFail = stencilPassDepthFail;
mState.stencilPassDepthPass = stencilPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass)
{
if (mState.stencilBackFail != stencilBackFail ||
mState.stencilBackPassDepthFail != stencilBackPassDepthFail ||
mState.stencilBackPassDepthPass != stencilBackPassDepthPass)
{
mState.stencilBackFail = stencilBackFail;
mState.stencilBackPassDepthFail = stencilBackPassDepthFail;
mState.stencilBackPassDepthPass = stencilBackPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setPolygonOffsetFill(bool enabled)
{
if (mState.polygonOffsetFill != enabled)
{
mState.polygonOffsetFill = enabled;
mPolygonOffsetStateDirty = true;
}
}
bool Context::isPolygonOffsetFillEnabled() const
{
return mState.polygonOffsetFill;
}
void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
if (mState.polygonOffsetFactor != factor ||
mState.polygonOffsetUnits != units)
{
mState.polygonOffsetFactor = factor;
mState.polygonOffsetUnits = units;
mPolygonOffsetStateDirty = true;
}
}
void Context::setSampleAlphaToCoverage(bool enabled)
{
if (mState.sampleAlphaToCoverage != enabled)
{
mState.sampleAlphaToCoverage = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleAlphaToCoverageEnabled() const
{
return mState.sampleAlphaToCoverage;
}
void Context::setSampleCoverage(bool enabled)
{
if (mState.sampleCoverage != enabled)
{
mState.sampleCoverage = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleCoverageEnabled() const
{
return mState.sampleCoverage;
}
void Context::setSampleCoverageParams(GLclampf value, bool invert)
{
if (mState.sampleCoverageValue != value ||
mState.sampleCoverageInvert != invert)
{
mState.sampleCoverageValue = value;
mState.sampleCoverageInvert = invert;
mSampleStateDirty = true;
}
}
void Context::setScissorTest(bool enabled)
{
if (mState.scissorTest != enabled)
{
mState.scissorTest = enabled;
mScissorStateDirty = true;
}
}
bool Context::isScissorTestEnabled() const
{
return mState.scissorTest;
}
void Context::setDither(bool enabled)
{
if (mState.dither != enabled)
{
mState.dither = enabled;
mDitherStateDirty = true;
}
}
bool Context::isDitherEnabled() const
{
return mState.dither;
}
void Context::setLineWidth(GLfloat width)
{
mState.lineWidth = width;
}
void Context::setGenerateMipmapHint(GLenum hint)
{
mState.generateMipmapHint = hint;
}
void Context::setFragmentShaderDerivativeHint(GLenum hint)
{
mState.fragmentShaderDerivativeHint = hint;
// TODO: Propagate the hint to shader translator so we can write
// ddx, ddx_coarse, or ddx_fine depending on the hint.
// Ignore for now. It is valid for implementations to ignore hint.
}
void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.viewportX = x;
mState.viewportY = y;
mState.viewportWidth = width;
mState.viewportHeight = height;
}
void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
if (mState.scissorX != x || mState.scissorY != y ||
mState.scissorWidth != width || mState.scissorHeight != height)
{
mState.scissorX = x;
mState.scissorY = y;
mState.scissorWidth = width;
mState.scissorHeight = height;
mScissorStateDirty = true;
}
}
void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
{
if (mState.colorMaskRed != red || mState.colorMaskGreen != green ||
mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
{
mState.colorMaskRed = red;
mState.colorMaskGreen = green;
mState.colorMaskBlue = blue;
mState.colorMaskAlpha = alpha;
mMaskStateDirty = true;
}
}
void Context::setDepthMask(bool mask)
{
if (mState.depthMask != mask)
{
mState.depthMask = mask;
mMaskStateDirty = true;
}
}
void Context::setActiveSampler(int active)
{
mState.activeSampler = active;
}
GLuint Context::getReadFramebufferHandle() const
{
return mState.readFramebuffer;
}
GLuint Context::getDrawFramebufferHandle() const
{
return mState.drawFramebuffer;
}
GLuint Context::getRenderbufferHandle() const
{
return mState.renderbuffer.id();
}
GLuint Context::getArrayBufferHandle() const
{
return mState.arrayBuffer.id();
}
void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled)
{
mState.vertexAttribute[attribNum].mArrayEnabled = enabled;
}
const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum)
{
return mState.vertexAttribute[attribNum];
}
void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
GLsizei stride, const void *pointer)
{
mState.vertexAttribute[attribNum].mBoundBuffer.set(boundBuffer);
mState.vertexAttribute[attribNum].mSize = size;
mState.vertexAttribute[attribNum].mType = type;
mState.vertexAttribute[attribNum].mNormalized = normalized;
mState.vertexAttribute[attribNum].mStride = stride;
mState.vertexAttribute[attribNum].mPointer = pointer;
}
const void *Context::getVertexAttribPointer(unsigned int attribNum) const
{
return mState.vertexAttribute[attribNum].mPointer;
}
const VertexAttributeArray &Context::getVertexAttributes()
{
return mState.vertexAttribute;
}
void Context::setPackAlignment(GLint alignment)
{
mState.packAlignment = alignment;
}
GLint Context::getPackAlignment() const
{
return mState.packAlignment;
}
void Context::setUnpackAlignment(GLint alignment)
{
mState.unpackAlignment = alignment;
}
GLint Context::getUnpackAlignment() const
{
return mState.unpackAlignment;
}
GLuint Context::createBuffer()
{
return mResourceManager->createBuffer();
}
GLuint Context::createProgram()
{
return mResourceManager->createProgram();
}
GLuint Context::createShader(GLenum type)
{
return mResourceManager->createShader(type);
}
GLuint Context::createTexture()
{
return mResourceManager->createTexture();
}
GLuint Context::createRenderbuffer()
{
return mResourceManager->createRenderbuffer();
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
unsigned int handle = 1;
while (mFramebufferMap.find(handle) != mFramebufferMap.end())
{
handle++;
}
mFramebufferMap[handle] = NULL;
return handle;
}
GLuint Context::createFence()
{
unsigned int handle = 0;
while (mFenceMap.find(handle) != mFenceMap.end())
{
handle++;
}
mFenceMap[handle] = new Fence;
return handle;
}
void Context::deleteBuffer(GLuint buffer)
{
if (mResourceManager->getBuffer(buffer))
{
detachBuffer(buffer);
}
mResourceManager->deleteBuffer(buffer);
}
void Context::deleteShader(GLuint shader)
{
mResourceManager->deleteShader(shader);
}
void Context::deleteProgram(GLuint program)
{
mResourceManager->deleteProgram(program);
}
void Context::deleteTexture(GLuint texture)
{
if (mResourceManager->getTexture(texture))
{
detachTexture(texture);
}
mResourceManager->deleteTexture(texture);
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
if (mResourceManager->getRenderbuffer(renderbuffer))
{
detachRenderbuffer(renderbuffer);
}
mResourceManager->deleteRenderbuffer(renderbuffer);
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer);
if (framebufferObject != mFramebufferMap.end())
{
detachFramebuffer(framebuffer);
delete framebufferObject->second;
mFramebufferMap.erase(framebufferObject);
}
}
void Context::deleteFence(GLuint fence)
{
FenceMap::iterator fenceObject = mFenceMap.find(fence);
if (fenceObject != mFenceMap.end())
{
delete fenceObject->second;
mFenceMap.erase(fenceObject);
}
}
Buffer *Context::getBuffer(GLuint handle)
{
return mResourceManager->getBuffer(handle);
}
Shader *Context::getShader(GLuint handle)
{
return mResourceManager->getShader(handle);
}
Program *Context::getProgram(GLuint handle)
{
return mResourceManager->getProgram(handle);
}
Texture *Context::getTexture(GLuint handle)
{
return mResourceManager->getTexture(handle);
}
Renderbuffer *Context::getRenderbuffer(GLuint handle)
{
return mResourceManager->getRenderbuffer(handle);
}
Framebuffer *Context::getReadFramebuffer()
{
return getFramebuffer(mState.readFramebuffer);
}
Framebuffer *Context::getDrawFramebuffer()
{
return getFramebuffer(mState.drawFramebuffer);
}
void Context::bindArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.arrayBuffer.set(getBuffer(buffer));
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.elementArrayBuffer.set(getBuffer(buffer));
}
void Context::bindTexture2D(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, SAMPLER_2D);
mState.samplerTexture[SAMPLER_2D][mState.activeSampler].set(getTexture(texture));
}
void Context::bindTextureCubeMap(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, SAMPLER_CUBE);
mState.samplerTexture[SAMPLER_CUBE][mState.activeSampler].set(getTexture(texture));
}
void Context::bindReadFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer();
}
mState.readFramebuffer = framebuffer;
}
void Context::bindDrawFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer();
}
mState.drawFramebuffer = framebuffer;
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
mResourceManager->checkRenderbufferAllocation(renderbuffer);
mState.renderbuffer.set(getRenderbuffer(renderbuffer));
}
void Context::useProgram(GLuint program)
{
GLuint priorProgram = mState.currentProgram;
mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged.
if (priorProgram != program)
{
Program *newProgram = mResourceManager->getProgram(program);
Program *oldProgram = mResourceManager->getProgram(priorProgram);
if (newProgram)
{
newProgram->addRef();
}
if (oldProgram)
{
oldProgram->release();
}
}
}
void Context::setFramebufferZero(Framebuffer *buffer)
{
delete mFramebufferMap[0];
mFramebufferMap[0] = buffer;
}
void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer)
{
Renderbuffer *renderbufferObject = mState.renderbuffer.get();
renderbufferObject->setStorage(renderbuffer);
}
Framebuffer *Context::getFramebuffer(unsigned int handle)
{
FramebufferMap::iterator framebuffer = mFramebufferMap.find(handle);
if (framebuffer == mFramebufferMap.end())
{
return NULL;
}
else
{
return framebuffer->second;
}
}
Fence *Context::getFence(unsigned int handle)
{
FenceMap::iterator fence = mFenceMap.find(handle);
if (fence == mFenceMap.end())
{
return NULL;
}
else
{
return fence->second;
}
}
Buffer *Context::getArrayBuffer()
{
return mState.arrayBuffer.get();
}
Buffer *Context::getElementArrayBuffer()
{
return mState.elementArrayBuffer.get();
}
Program *Context::getCurrentProgram()
{
return mResourceManager->getProgram(mState.currentProgram);
}
Texture2D *Context::getTexture2D()
{
return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, SAMPLER_2D));
}
TextureCubeMap *Context::getTextureCubeMap()
{
return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, SAMPLER_CUBE));
}
Texture *Context::getSamplerTexture(unsigned int sampler, SamplerType type)
{
GLuint texid = mState.samplerTexture[type][sampler].id();
if (texid == 0) // Special case: 0 refers to different initial textures based on the target
{
switch (type)
{
default: UNREACHABLE();
case SAMPLER_2D: return mTexture2DZero.get();
case SAMPLER_CUBE: return mTextureCubeMapZero.get();
}
}
return mState.samplerTexture[type][sampler].get();
}
bool Context::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SHADER_COMPILER: *params = GL_TRUE; break;
case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break;
case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break;
case GL_COLOR_WRITEMASK:
params[0] = mState.colorMaskRed;
params[1] = mState.colorMaskGreen;
params[2] = mState.colorMaskBlue;
params[3] = mState.colorMaskAlpha;
break;
case GL_CULL_FACE: *params = mState.cullFace; break;
case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFill; break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverage; break;
case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break;
case GL_SCISSOR_TEST: *params = mState.scissorTest; break;
case GL_STENCIL_TEST: *params = mState.stencilTest; break;
case GL_DEPTH_TEST: *params = mState.depthTest; break;
case GL_BLEND: *params = mState.blend; break;
case GL_DITHER: *params = mState.dither; break;
default:
return false;
}
return true;
}
bool Context::getFloatv(GLenum pname, GLfloat *params)
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch (pname)
{
case GL_LINE_WIDTH: *params = mState.lineWidth; break;
case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break;
case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break;
case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break;
case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break;
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = gl::ALIASED_LINE_WIDTH_RANGE_MIN;
params[1] = gl::ALIASED_LINE_WIDTH_RANGE_MAX;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = gl::ALIASED_POINT_SIZE_RANGE_MIN;
params[1] = supportsShaderModel3() ? gl::ALIASED_POINT_SIZE_RANGE_MAX_SM3 : gl::ALIASED_POINT_SIZE_RANGE_MAX_SM2;
break;
case GL_DEPTH_RANGE:
params[0] = mState.zNear;
params[1] = mState.zFar;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = mState.colorClearValue.red;
params[1] = mState.colorClearValue.green;
params[2] = mState.colorClearValue.blue;
params[3] = mState.colorClearValue.alpha;
break;
case GL_BLEND_COLOR:
params[0] = mState.blendColor.red;
params[1] = mState.blendColor.green;
params[2] = mState.blendColor.blue;
params[3] = mState.blendColor.alpha;
break;
default:
return false;
}
return true;
}
bool Context::getIntegerv(GLenum pname, GLint *params)
{
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// Context::getFloatv.
switch (pname)
{
case GL_MAX_VERTEX_ATTRIBS: *params = gl::MAX_VERTEX_ATTRIBS; break;
case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = gl::MAX_VERTEX_UNIFORM_VECTORS; break;
case GL_MAX_VARYING_VECTORS: *params = getMaximumVaryingVectors(); break;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = gl::MAX_COMBINED_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_VERTEX_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = getMaximumFragmentUniformVectors(); break;
case GL_MAX_RENDERBUFFER_SIZE: *params = getMaximumRenderbufferDimension(); break;
case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break;
case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break;
case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.id(); break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.id(); break;
//case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: *params = mState.drawFramebuffer; break;
case GL_READ_FRAMEBUFFER_BINDING_ANGLE: *params = mState.readFramebuffer; break;
case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.id(); break;
case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break;
case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break;
case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break;
case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; break;
case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break;
case GL_STENCIL_FUNC: *params = mState.stencilFunc; break;
case GL_STENCIL_REF: *params = mState.stencilRef; break;
case GL_STENCIL_VALUE_MASK: *params = mState.stencilMask; break;
case GL_STENCIL_BACK_FUNC: *params = mState.stencilBackFunc; break;
case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break;
case GL_STENCIL_BACK_VALUE_MASK: *params = mState.stencilBackMask; break;
case GL_STENCIL_FAIL: *params = mState.stencilFail; break;
case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; break;
case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; break;
case GL_STENCIL_BACK_FAIL: *params = mState.stencilBackFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.stencilBackPassDepthFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.stencilBackPassDepthPass; break;
case GL_DEPTH_FUNC: *params = mState.depthFunc; break;
case GL_BLEND_SRC_RGB: *params = mState.sourceBlendRGB; break;
case GL_BLEND_SRC_ALPHA: *params = mState.sourceBlendAlpha; break;
case GL_BLEND_DST_RGB: *params = mState.destBlendRGB; break;
case GL_BLEND_DST_ALPHA: *params = mState.destBlendAlpha; break;
case GL_BLEND_EQUATION_RGB: *params = mState.blendEquationRGB; break;
case GL_BLEND_EQUATION_ALPHA: *params = mState.blendEquationAlpha; break;
case GL_STENCIL_WRITEMASK: *params = mState.stencilWritemask; break;
case GL_STENCIL_BACK_WRITEMASK: *params = mState.stencilBackWritemask; break;
case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break;
case GL_SUBPIXEL_BITS: *params = 4; break;
case GL_MAX_TEXTURE_SIZE: *params = getMaximumTextureDimension(); break;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = getMaximumCubeTextureDimension(); break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
{
if (supportsCompressedTextures())
{
// at current, only GL_COMPRESSED_RGB_S3TC_DXT1_EXT and
// GL_COMPRESSED_RGBA_S3TC_DXT1_EXT are supported
*params = 2;
}
else
{
*params = 0;
}
}
break;
case GL_MAX_SAMPLES_ANGLE:
{
GLsizei maxSamples = getMaxSupportedSamples();
if (maxSamples != 0)
{
*params = maxSamples;
}
else
{
return false;
}
break;
}
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
if (framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE)
{
switch (pname)
{
case GL_SAMPLE_BUFFERS:
if (framebuffer->getSamples() != 0)
{
*params = 1;
}
else
{
*params = 0;
}
break;
case GL_SAMPLES:
*params = framebuffer->getSamples();
break;
}
}
else
{
*params = 0;
}
}
break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE: *params = gl::IMPLEMENTATION_COLOR_READ_TYPE; break;
case GL_IMPLEMENTATION_COLOR_READ_FORMAT: *params = gl::IMPLEMENTATION_COLOR_READ_FORMAT; break;
case GL_MAX_VIEWPORT_DIMS:
{
int maxDimension = std::max(getMaximumRenderbufferDimension(), getMaximumTextureDimension());
params[0] = maxDimension;
params[1] = maxDimension;
}
break;
case GL_COMPRESSED_TEXTURE_FORMATS:
{
if (supportsCompressedTextures())
{
params[0] = GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
params[1] = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
}
}
break;
case GL_VIEWPORT:
params[0] = mState.viewportX;
params[1] = mState.viewportY;
params[2] = mState.viewportWidth;
params[3] = mState.viewportHeight;
break;
case GL_SCISSOR_BOX:
params[0] = mState.scissorX;
params[1] = mState.scissorY;
params[2] = mState.scissorWidth;
params[3] = mState.scissorHeight;
break;
case GL_CULL_FACE_MODE: *params = mState.cullMode; break;
case GL_FRONT_FACE: *params = mState.frontFace; break;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::Colorbuffer *colorbuffer = framebuffer->getColorbuffer();
if (colorbuffer)
{
switch (pname)
{
case GL_RED_BITS: *params = colorbuffer->getRedSize(); break;
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break;
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break;
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break;
}
}
else
{
*params = 0;
}
}
break;
case GL_DEPTH_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::DepthStencilbuffer *depthbuffer = framebuffer->getDepthbuffer();
if (depthbuffer)
{
*params = depthbuffer->getDepthSize();
}
else
{
*params = 0;
}
}
break;
case GL_STENCIL_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::DepthStencilbuffer *stencilbuffer = framebuffer->getStencilbuffer();
if (stencilbuffer)
{
*params = stencilbuffer->getStencilSize();
}
else
{
*params = 0;
}
}
break;
case GL_TEXTURE_BINDING_2D:
{
if (mState.activeSampler < 0 || mState.activeSampler > gl::MAX_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[SAMPLER_2D][mState.activeSampler].id();
}
break;
case GL_TEXTURE_BINDING_CUBE_MAP:
{
if (mState.activeSampler < 0 || mState.activeSampler > gl::MAX_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[SAMPLER_CUBE][mState.activeSampler].id();
}
break;
default:
return false;
}
return true;
}
bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams)
{
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch (pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS: /* no compressed texture formats are supported */
case GL_SHADER_BINARY_FORMATS:
{
*type = GL_INT;
*numParams = 0;
}
break;
case GL_MAX_VERTEX_ATTRIBS:
case GL_MAX_VERTEX_UNIFORM_VECTORS:
case GL_MAX_VARYING_VECTORS:
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
case GL_MAX_RENDERBUFFER_SIZE:
case GL_NUM_SHADER_BINARY_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
case GL_FRAMEBUFFER_BINDING:
case GL_RENDERBUFFER_BINDING:
case GL_CURRENT_PROGRAM:
case GL_PACK_ALIGNMENT:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_STENCIL_BACK_FUNC:
case GL_STENCIL_BACK_VALUE_MASK:
case GL_STENCIL_BACK_REF:
case GL_STENCIL_BACK_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB:
case GL_BLEND_SRC_ALPHA:
case GL_BLEND_DST_RGB:
case GL_BLEND_DST_ALPHA:
case GL_BLEND_EQUATION_RGB:
case GL_BLEND_EQUATION_ALPHA:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_BACK_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
{
*type = GL_INT;
*numParams = 1;
}
break;
case GL_MAX_SAMPLES_ANGLE:
{
if (getMaxSupportedSamples() != 0)
{
*type = GL_INT;
*numParams = 1;
}
else
{
return false;
}
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
*type = GL_INT;
*numParams = 2;
}
break;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
{
*type = GL_INT;
*numParams = 4;
}
break;
case GL_SHADER_COMPILER:
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
{
*type = GL_BOOL;
*numParams = 1;
}
break;
case GL_COLOR_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 4;
}
break;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
{
*type = GL_FLOAT;
*numParams = 1;
}
break;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
{
*type = GL_FLOAT;
*numParams = 2;
}
break;
case GL_COLOR_CLEAR_VALUE:
case GL_BLEND_COLOR:
{
*type = GL_FLOAT;
*numParams = 4;
}
break;
default:
return false;
}
return true;
}
// Applies the render target surface, depth stencil surface, viewport rectangle and
// scissor rectangle to the Direct3D 9 device
bool Context::applyRenderTarget(bool ignoreViewport)
{
IDirect3DDevice9 *device = getDevice();
Framebuffer *framebufferObject = getDrawFramebuffer();
if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
error(GL_INVALID_FRAMEBUFFER_OPERATION);
return false;
}
IDirect3DSurface9 *renderTarget = framebufferObject->getRenderTarget();
if (!renderTarget)
{
return false; // Context must be lost
}
IDirect3DSurface9 *depthStencil = NULL;
unsigned int renderTargetSerial = framebufferObject->getRenderTargetSerial();
if (renderTargetSerial != mAppliedRenderTargetSerial)
{
device->SetRenderTarget(0, renderTarget);
mAppliedRenderTargetSerial = renderTargetSerial;
mScissorStateDirty = true; // Scissor area must be clamped to render target's size-- this is different for different render targets.
}
unsigned int depthbufferSerial = 0;
unsigned int stencilbufferSerial = 0;
if (framebufferObject->getDepthbufferType() != GL_NONE)
{
depthStencil = framebufferObject->getDepthbuffer()->getDepthStencil();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
depthbufferSerial = framebufferObject->getDepthbuffer()->getSerial();
}
else if (framebufferObject->getStencilbufferType() != GL_NONE)
{
depthStencil = framebufferObject->getStencilbuffer()->getDepthStencil();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
stencilbufferSerial = framebufferObject->getStencilbuffer()->getSerial();
}
if (depthbufferSerial != mAppliedDepthbufferSerial ||
stencilbufferSerial != mAppliedStencilbufferSerial ||
!mDepthStencilInitialized)
{
device->SetDepthStencilSurface(depthStencil);
mAppliedDepthbufferSerial = depthbufferSerial;
mAppliedStencilbufferSerial = stencilbufferSerial;
mDepthStencilInitialized = true;
}
D3DVIEWPORT9 viewport;
D3DSURFACE_DESC desc;
renderTarget->GetDesc(&desc);
float zNear = clamp01(mState.zNear);
float zFar = clamp01(mState.zFar);
if (ignoreViewport)
{
viewport.X = 0;
viewport.Y = 0;
viewport.Width = desc.Width;
viewport.Height = desc.Height;
viewport.MinZ = 0.0f;
viewport.MaxZ = 1.0f;
}
else
{
viewport.X = std::max(mState.viewportX, 0);
viewport.Y = std::max(mState.viewportY, 0);
viewport.Width = std::min(mState.viewportWidth, (int)desc.Width - (int)viewport.X);
viewport.Height = std::min(mState.viewportHeight, (int)desc.Height - (int)viewport.Y);
viewport.MinZ = zNear;
viewport.MaxZ = zFar;
}
if (viewport.Width <= 0 || viewport.Height <= 0)
{
return false; // Nothing to render
}
device->SetViewport(&viewport);
if (mScissorStateDirty)
{
if (mState.scissorTest)
{
RECT rect = {mState.scissorX,
mState.scissorY,
mState.scissorX + mState.scissorWidth,
mState.scissorY + mState.scissorHeight};
rect.right = std::min(static_cast<UINT>(rect.right), desc.Width);
rect.bottom = std::min(static_cast<UINT>(rect.bottom), desc.Height);
device->SetScissorRect(&rect);
device->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE);
}
else
{
device->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE);
}
mScissorStateDirty = false;
}
if (mState.currentProgram)
{
Program *programObject = getCurrentProgram();
GLint halfPixelSize = programObject->getDxHalfPixelSizeLocation();
GLfloat xy[2] = {1.0f / viewport.Width, 1.0f / viewport.Height};
programObject->setUniform2fv(halfPixelSize, 1, xy);
GLint viewport = programObject->getDxViewportLocation();
GLfloat whxy[4] = {mState.viewportWidth / 2.0f, mState.viewportHeight / 2.0f,
(float)mState.viewportX + mState.viewportWidth / 2.0f,
(float)mState.viewportY + mState.viewportHeight / 2.0f};
programObject->setUniform4fv(viewport, 1, whxy);
GLint depth = programObject->getDxDepthLocation();
GLfloat dz[2] = {(zFar - zNear) / 2.0f, (zNear + zFar) / 2.0f};
programObject->setUniform2fv(depth, 1, dz);
GLint depthRange = programObject->getDxDepthRangeLocation();
GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear};
programObject->setUniform3fv(depthRange, 1, nearFarDiff);
}
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device
void Context::applyState(GLenum drawMode)
{
IDirect3DDevice9 *device = getDevice();
Program *programObject = getCurrentProgram();
GLint frontCCW = programObject->getDxFrontCCWLocation();
GLint ccw = (mState.frontFace == GL_CCW);
programObject->setUniform1iv(frontCCW, 1, &ccw);
GLint pointsOrLines = programObject->getDxPointsOrLinesLocation();
GLint alwaysFront = !isTriangleMode(drawMode);
programObject->setUniform1iv(pointsOrLines, 1, &alwaysFront);
Framebuffer *framebufferObject = getDrawFramebuffer();
if (mCullStateDirty || mFrontFaceDirty)
{
if (mState.cullFace)
{
device->SetRenderState(D3DRS_CULLMODE, es2dx::ConvertCullMode(mState.cullMode, mState.frontFace));
}
else
{
device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
}
mCullStateDirty = false;
}
if (mDepthStateDirty)
{
if (mState.depthTest && framebufferObject->getDepthbufferType() != GL_NONE)
{
device->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);
device->SetRenderState(D3DRS_ZFUNC, es2dx::ConvertComparison(mState.depthFunc));
}
else
{
device->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
}
mDepthStateDirty = false;
}
if (mBlendStateDirty)
{
if (mState.blend)
{
device->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
if (mState.sourceBlendRGB != GL_CONSTANT_ALPHA && mState.sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA &&
mState.destBlendRGB != GL_CONSTANT_ALPHA && mState.destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA)
{
device->SetRenderState(D3DRS_BLENDFACTOR, es2dx::ConvertColor(mState.blendColor));
}
else
{
device->SetRenderState(D3DRS_BLENDFACTOR, D3DCOLOR_RGBA(unorm<8>(mState.blendColor.alpha),
unorm<8>(mState.blendColor.alpha),
unorm<8>(mState.blendColor.alpha),
unorm<8>(mState.blendColor.alpha)));
}
device->SetRenderState(D3DRS_SRCBLEND, es2dx::ConvertBlendFunc(mState.sourceBlendRGB));
device->SetRenderState(D3DRS_DESTBLEND, es2dx::ConvertBlendFunc(mState.destBlendRGB));
device->SetRenderState(D3DRS_BLENDOP, es2dx::ConvertBlendOp(mState.blendEquationRGB));
if (mState.sourceBlendRGB != mState.sourceBlendAlpha ||
mState.destBlendRGB != mState.destBlendAlpha ||
mState.blendEquationRGB != mState.blendEquationAlpha)
{
device->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
device->SetRenderState(D3DRS_SRCBLENDALPHA, es2dx::ConvertBlendFunc(mState.sourceBlendAlpha));
device->SetRenderState(D3DRS_DESTBLENDALPHA, es2dx::ConvertBlendFunc(mState.destBlendAlpha));
device->SetRenderState(D3DRS_BLENDOPALPHA, es2dx::ConvertBlendOp(mState.blendEquationAlpha));
}
else
{
device->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE);
}
}
else
{
device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
mBlendStateDirty = false;
}
if (mStencilStateDirty || mFrontFaceDirty)
{
if (mState.stencilTest && framebufferObject->hasStencil())
{
device->SetRenderState(D3DRS_STENCILENABLE, TRUE);
device->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE);
// FIXME: Unsupported by D3D9
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILREF = D3DRS_STENCILREF;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILMASK = D3DRS_STENCILMASK;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILWRITEMASK = D3DRS_STENCILWRITEMASK;
if (mState.stencilWritemask != mState.stencilBackWritemask ||
mState.stencilRef != mState.stencilBackRef ||
mState.stencilMask != mState.stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are invalid under WebGL.");
return error(GL_INVALID_OPERATION);
}
// get the maximum size of the stencil ref
gl::DepthStencilbuffer *stencilbuffer = framebufferObject->getStencilbuffer();
GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1;
device->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK, mState.stencilWritemask);
device->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC,
es2dx::ConvertComparison(mState.stencilFunc));
device->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF, (mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK, mState.stencilMask);
device->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL,
es2dx::ConvertStencilOp(mState.stencilFail));
device->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL,
es2dx::ConvertStencilOp(mState.stencilPassDepthFail));
device->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS,
es2dx::ConvertStencilOp(mState.stencilPassDepthPass));
device->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK, mState.stencilBackWritemask);
device->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC,
es2dx::ConvertComparison(mState.stencilBackFunc));
device->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF, (mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
device->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK, mState.stencilBackMask);
device->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL,
es2dx::ConvertStencilOp(mState.stencilBackFail));
device->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL,
es2dx::ConvertStencilOp(mState.stencilBackPassDepthFail));
device->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS,
es2dx::ConvertStencilOp(mState.stencilBackPassDepthPass));
}
else
{
device->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
mStencilStateDirty = false;
}
if (mMaskStateDirty)
{
device->SetRenderState(D3DRS_COLORWRITEENABLE, es2dx::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen,
mState.colorMaskBlue, mState.colorMaskAlpha));
device->SetRenderState(D3DRS_ZWRITEENABLE, mState.depthMask ? TRUE : FALSE);
mMaskStateDirty = false;
}
if (mPolygonOffsetStateDirty)
{
if (mState.polygonOffsetFill)
{
gl::DepthStencilbuffer *depthbuffer = framebufferObject->getDepthbuffer();
if (depthbuffer)
{
device->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, *((DWORD*)&mState.polygonOffsetFactor));
float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize()));
device->SetRenderState(D3DRS_DEPTHBIAS, *((DWORD*)&depthBias));
}
}
else
{
device->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, 0);
device->SetRenderState(D3DRS_DEPTHBIAS, 0);
}
mPolygonOffsetStateDirty = false;
}
if (mSampleStateDirty)
{
if (framebufferObject->isMultisample())
{
if (mState.sampleAlphaToCoverage)
{
FIXME("Sample alpha to coverage is unimplemented.");
}
device->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, TRUE);
if (mState.sampleCoverage)
{
unsigned int mask = 0;
if (mState.sampleCoverageValue != 0)
{
float threshold = 0.5f;
for (int i = 0; i < framebufferObject->getSamples(); ++i)
{
mask <<= 1;
if ((i + 1) * mState.sampleCoverageValue >= threshold)
{
threshold += 1.0f;
mask |= 1;
}
}
}
if (mState.sampleCoverageInvert)
{
mask = ~mask;
}
device->SetRenderState(D3DRS_MULTISAMPLEMASK, mask);
}
else
{
device->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
}
}
else
{
device->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, FALSE);
}
mSampleStateDirty = false;
}
if (mDitherStateDirty)
{
device->SetRenderState(D3DRS_DITHERENABLE, mState.dither ? TRUE : FALSE);
mDitherStateDirty = false;
}
mFrontFaceDirty = false;
}
// Fill in the semanticIndex field of the array of TranslatedAttributes based on the active GLSL program.
void Context::lookupAttributeMapping(TranslatedAttribute *attributes)
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if (attributes[i].active)
{
attributes[i].semanticIndex = getCurrentProgram()->getSemanticIndex(i);
}
}
}
GLenum Context::applyVertexBuffer(GLint first, GLsizei count)
{
TranslatedAttribute translated[MAX_VERTEX_ATTRIBS];
GLenum err = mVertexDataManager->prepareVertexData(first, count, translated);
if (err != GL_NO_ERROR)
{
return err;
}
lookupAttributeMapping(translated);
mVertexDataManager->setupAttributes(translated);
return GL_NO_ERROR;
}
// Applies the indices and element array bindings to the Direct3D 9 device
GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
IDirect3DDevice9 *device = getDevice();
GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer.get(), indices, indexInfo);
if (err == GL_NO_ERROR)
{
device->SetIndices(indexInfo->indexBuffer);
}
return err;
}
// Applies the shaders and shader constants to the Direct3D 9 device
void Context::applyShaders()
{
IDirect3DDevice9 *device = getDevice();
Program *programObject = getCurrentProgram();
IDirect3DVertexShader9 *vertexShader = programObject->getVertexShader();
IDirect3DPixelShader9 *pixelShader = programObject->getPixelShader();
device->SetVertexShader(vertexShader);
device->SetPixelShader(pixelShader);
if (programObject->getSerial() != mAppliedProgram)
{
programObject->dirtyAllUniforms();
programObject->dirtyAllSamplers();
mAppliedProgram = programObject->getSerial();
}
programObject->applyUniforms();
}
// Applies the textures and sampler states to the Direct3D 9 device
void Context::applyTextures()
{
IDirect3DDevice9 *device = getDevice();
Program *programObject = getCurrentProgram();
for (int sampler = 0; sampler < MAX_TEXTURE_IMAGE_UNITS; sampler++)
{
int textureUnit = programObject->getSamplerMapping(sampler);
if (textureUnit != -1)
{
SamplerType textureType = programObject->getSamplerType(sampler);
Texture *texture = getSamplerTexture(textureUnit, textureType);
if (programObject->isSamplerDirty(sampler) || texture->isDirty())
{
if (texture->isComplete())
{
GLenum wrapS = texture->getWrapS();
GLenum wrapT = texture->getWrapT();
GLenum minFilter = texture->getMinFilter();
GLenum magFilter = texture->getMagFilter();
device->SetSamplerState(sampler, D3DSAMP_ADDRESSU, es2dx::ConvertTextureWrap(wrapS));
device->SetSamplerState(sampler, D3DSAMP_ADDRESSV, es2dx::ConvertTextureWrap(wrapT));
device->SetSamplerState(sampler, D3DSAMP_MAGFILTER, es2dx::ConvertMagFilter(magFilter));
D3DTEXTUREFILTERTYPE d3dMinFilter, d3dMipFilter;
es2dx::ConvertMinFilter(minFilter, &d3dMinFilter, &d3dMipFilter);
device->SetSamplerState(sampler, D3DSAMP_MINFILTER, d3dMinFilter);
device->SetSamplerState(sampler, D3DSAMP_MIPFILTER, d3dMipFilter);
device->SetTexture(sampler, texture->getTexture());
}
else
{
device->SetTexture(sampler, getIncompleteTexture(textureType)->getTexture());
}
}
programObject->setSamplerDirty(sampler, false);
}
else
{
if (programObject->isSamplerDirty(sampler))
{
device->SetTexture(sampler, NULL);
programObject->setSamplerDirty(sampler, false);
}
}
}
}
void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, void* pixels)
{
Framebuffer *framebuffer = getReadFramebuffer();
if (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if (getReadFramebufferHandle() != 0 && framebuffer->getSamples() != 0)
{
return error(GL_INVALID_OPERATION);
}
IDirect3DSurface9 *renderTarget = framebuffer->getRenderTarget();
if (!renderTarget)
{
return; // Context must be lost, return silently
}
IDirect3DDevice9 *device = getDevice();
D3DSURFACE_DESC desc;
renderTarget->GetDesc(&desc);
IDirect3DSurface9 *systemSurface;
HRESULT result = device->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &systemSurface, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(result));
if (desc.MultiSampleType != D3DMULTISAMPLE_NONE)
{
UNIMPLEMENTED(); // FIXME: Requires resolve using StretchRect into non-multisampled render target
}
result = device->GetRenderTargetData(renderTarget, systemSurface);
if (FAILED(result))
{
systemSurface->Release();
switch (result)
{
case D3DERR_DRIVERINTERNALERROR:
case D3DERR_DEVICELOST:
return error(GL_OUT_OF_MEMORY);
default:
UNREACHABLE();
return; // No sensible error to generate
}
}
D3DLOCKED_RECT lock;
RECT rect = {std::max(x, 0),
std::max(y, 0),
std::min(x + width, (int)desc.Width),
std::min(y + height, (int)desc.Height)};
result = systemSurface->LockRect(&lock, &rect, D3DLOCK_READONLY);
if (FAILED(result))
{
UNREACHABLE();
systemSurface->Release();
return; // No sensible error to generate
}
unsigned char *source = (unsigned char*)lock.pBits;
unsigned char *dest = (unsigned char*)pixels;
unsigned short *dest16 = (unsigned short*)pixels;
GLsizei outputPitch = ComputePitch(width, format, type, mState.packAlignment);
for (int j = 0; j < rect.bottom - rect.top; j++)
{
if (desc.Format == D3DFMT_A8R8G8B8 &&
format == GL_BGRA_EXT &&
type == GL_UNSIGNED_BYTE)
{
// Fast path for EXT_read_format_bgra, given
// an RGBA source buffer. Note that buffers with no
// alpha go through the slow path below.
memcpy(dest + j * outputPitch,
source + j * lock.Pitch,
(rect.right - rect.left) * 4);
continue;
}
for (int i = 0; i < rect.right - rect.left; i++)
{
float r;
float g;
float b;
float a;
switch (desc.Format)
{
case D3DFMT_R5G6B5:
{
unsigned short rgb = *(unsigned short*)(source + 2 * i + j * lock.Pitch);
a = 1.0f;
b = (rgb & 0x001F) * (1.0f / 0x001F);
g = (rgb & 0x07E0) * (1.0f / 0x07E0);
r = (rgb & 0xF800) * (1.0f / 0xF800);
}
break;
case D3DFMT_A1R5G5B5:
{
unsigned short argb = *(unsigned short*)(source + 2 * i + j * lock.Pitch);
a = (argb & 0x8000) ? 1.0f : 0.0f;
b = (argb & 0x001F) * (1.0f / 0x001F);
g = (argb & 0x03E0) * (1.0f / 0x03E0);
r = (argb & 0x7C00) * (1.0f / 0x7C00);
}
break;
case D3DFMT_A8R8G8B8:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * lock.Pitch);
a = (argb & 0xFF000000) * (1.0f / 0xFF000000);
b = (argb & 0x000000FF) * (1.0f / 0x000000FF);
g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case D3DFMT_X8R8G8B8:
{
unsigned int xrgb = *(unsigned int*)(source + 4 * i + j * lock.Pitch);
a = 1.0f;
b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF);
g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case D3DFMT_A2R10G10B10:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * lock.Pitch);
a = (argb & 0xC0000000) * (1.0f / 0xC0000000);
b = (argb & 0x000003FF) * (1.0f / 0x000003FF);
g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00);
r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000);
}
break;
case D3DFMT_A32B32G32R32F:
{
// float formats in D3D are stored rgba, rather than the other way round
r = *((float*)(source + 16 * i + j * lock.Pitch) + 0);
g = *((float*)(source + 16 * i + j * lock.Pitch) + 1);
b = *((float*)(source + 16 * i + j * lock.Pitch) + 2);
a = *((float*)(source + 16 * i + j * lock.Pitch) + 3);
}
break;
case D3DFMT_A16B16G16R16F:
{
// float formats in D3D are stored rgba, rather than the other way round
float abgr[4];
D3DXFloat16To32Array(abgr, (D3DXFLOAT16*)(source + 8 * i + j * lock.Pitch), 4);
a = abgr[3];
b = abgr[2];
g = abgr[1];
r = abgr[0];
}
break;
default:
UNIMPLEMENTED(); // FIXME
UNREACHABLE();
}
switch (format)
{
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f);
break;
default: UNREACHABLE();
}
break;
case GL_BGRA_EXT:
switch (type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(15 * a + 0.5f) << 12)|
((unsigned short)(15 * r + 0.5f) << 8) |
((unsigned short)(15 * g + 0.5f) << 4) |
((unsigned short)(15 * b + 0.5f) << 0);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)( a + 0.5f) << 15) |
((unsigned short)(31 * r + 0.5f) << 10) |
((unsigned short)(31 * g + 0.5f) << 5) |
((unsigned short)(31 * b + 0.5f) << 0);
break;
default: UNREACHABLE();
}
break;
case GL_RGB: // IMPLEMENTATION_COLOR_READ_FORMAT
switch (type)
{
case GL_UNSIGNED_SHORT_5_6_5: // IMPLEMENTATION_COLOR_READ_TYPE
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(31 * b + 0.5f) << 0) |
((unsigned short)(63 * g + 0.5f) << 5) |
((unsigned short)(31 * r + 0.5f) << 11);
break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
}
systemSurface->UnlockRect();
systemSurface->Release();
}
void Context::clear(GLbitfield mask)
{
Framebuffer *framebufferObject = getDrawFramebuffer();
if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
error(GL_INVALID_FRAMEBUFFER_OPERATION);
return;
}
egl::Display *display = getDisplay();
IDirect3DDevice9 *device = getDevice();
DWORD flags = 0;
if (mask & GL_COLOR_BUFFER_BIT)
{
mask &= ~GL_COLOR_BUFFER_BIT;
if (framebufferObject->getColorbufferType() != GL_NONE)
{
flags |= D3DCLEAR_TARGET;
}
}
if (mask & GL_DEPTH_BUFFER_BIT)
{
mask &= ~GL_DEPTH_BUFFER_BIT;
if (mState.depthMask && framebufferObject->getDepthbufferType() != GL_NONE)
{
flags |= D3DCLEAR_ZBUFFER;
}
}
GLuint stencilUnmasked = 0x0;
if (mask & GL_STENCIL_BUFFER_BIT)
{
mask &= ~GL_STENCIL_BUFFER_BIT;
if (framebufferObject->getStencilbufferType() != GL_NONE)
{
IDirect3DSurface9 *depthStencil = framebufferObject->getStencilbuffer()->getDepthStencil();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return;
}
D3DSURFACE_DESC desc;
depthStencil->GetDesc(&desc);
unsigned int stencilSize = es2dx::GetStencilSize(desc.Format);
stencilUnmasked = (0x1 << stencilSize) - 1;
if (stencilUnmasked != 0x0)
{
flags |= D3DCLEAR_STENCIL;
}
}
}
if (mask != 0)
{
return error(GL_INVALID_VALUE);
}
if (!applyRenderTarget(true)) // Clips the clear to the scissor rectangle but not the viewport
{
return;
}
D3DCOLOR color = D3DCOLOR_ARGB(unorm<8>(mState.colorClearValue.alpha),
unorm<8>(mState.colorClearValue.red),
unorm<8>(mState.colorClearValue.green),
unorm<8>(mState.colorClearValue.blue));
float depth = clamp01(mState.depthClearValue);
int stencil = mState.stencilClearValue & 0x000000FF;
IDirect3DSurface9 *renderTarget = framebufferObject->getRenderTarget();
if (!renderTarget)
{
return; // Context must be lost, return silently
}
D3DSURFACE_DESC desc;
renderTarget->GetDesc(&desc);
bool alphaUnmasked = (es2dx::GetAlphaSize(desc.Format) == 0) || mState.colorMaskAlpha;
const bool needMaskedStencilClear = (flags & D3DCLEAR_STENCIL) &&
(mState.stencilWritemask & stencilUnmasked) != stencilUnmasked;
const bool needMaskedColorClear = (flags & D3DCLEAR_TARGET) &&
!(mState.colorMaskRed && mState.colorMaskGreen &&
mState.colorMaskBlue && alphaUnmasked);
if (needMaskedColorClear || needMaskedStencilClear)
{
// State which is altered in all paths from this point to the clear call is saved.
// State which is altered in only some paths will be flagged dirty in the case that
// that path is taken.
HRESULT hr;
if (mMaskedClearSavedState == NULL)
{
hr = device->BeginStateBlock();
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
device->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
device->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
device->SetRenderState(D3DRS_ZENABLE, FALSE);
device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
device->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
device->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
device->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
device->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
device->SetRenderState(D3DRS_STENCILENABLE, FALSE);
device->SetPixelShader(NULL);
device->SetVertexShader(NULL);
device->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE);
device->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_DISABLE);
hr = device->EndStateBlock(&mMaskedClearSavedState);
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
}
ASSERT(mMaskedClearSavedState != NULL);
if (mMaskedClearSavedState != NULL)
{
hr = mMaskedClearSavedState->Capture();
ASSERT(SUCCEEDED(hr));
}
device->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
device->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
device->SetRenderState(D3DRS_ZENABLE, FALSE);
device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
device->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
device->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
device->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
if (flags & D3DCLEAR_TARGET)
{
device->SetRenderState(D3DRS_COLORWRITEENABLE, (mState.colorMaskRed ? D3DCOLORWRITEENABLE_RED : 0) |
(mState.colorMaskGreen ? D3DCOLORWRITEENABLE_GREEN : 0) |
(mState.colorMaskBlue ? D3DCOLORWRITEENABLE_BLUE : 0) |
(mState.colorMaskAlpha ? D3DCOLORWRITEENABLE_ALPHA : 0));
}
else
{
device->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
}
if (stencilUnmasked != 0x0 && (flags & D3DCLEAR_STENCIL))
{
device->SetRenderState(D3DRS_STENCILENABLE, TRUE);
device->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, FALSE);
device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
device->SetRenderState(D3DRS_STENCILREF, stencil);
device->SetRenderState(D3DRS_STENCILWRITEMASK, mState.stencilWritemask);
device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE);
device->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE);
device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);
mStencilStateDirty = true;
}
else
{
device->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
device->SetPixelShader(NULL);
device->SetVertexShader(NULL);
device->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE);
device->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_DISABLE);
struct Vertex
{
float x, y, z, w;
D3DCOLOR diffuse;
};
Vertex quad[4];
quad[0].x = 0.0f;
quad[0].y = (float)desc.Height;
quad[0].z = 0.0f;
quad[0].w = 1.0f;
quad[0].diffuse = color;
quad[1].x = (float)desc.Width;
quad[1].y = (float)desc.Height;
quad[1].z = 0.0f;
quad[1].w = 1.0f;
quad[1].diffuse = color;
quad[2].x = 0.0f;
quad[2].y = 0.0f;
quad[2].z = 0.0f;
quad[2].w = 1.0f;
quad[2].diffuse = color;
quad[3].x = (float)desc.Width;
quad[3].y = 0.0f;
quad[3].z = 0.0f;
quad[3].w = 1.0f;
quad[3].diffuse = color;
display->startScene();
device->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, quad, sizeof(Vertex));
if (flags & D3DCLEAR_ZBUFFER)
{
device->SetRenderState(D3DRS_ZENABLE, TRUE);
device->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
device->Clear(0, NULL, D3DCLEAR_ZBUFFER, color, depth, stencil);
}
if (mMaskedClearSavedState != NULL)
{
mMaskedClearSavedState->Apply();
}
}
else if (flags)
{
device->Clear(0, NULL, flags, color, depth, stencil);
}
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count)
{
if (!mState.currentProgram)
{
return error(GL_INVALID_OPERATION);
}
egl::Display *display = getDisplay();
IDirect3DDevice9 *device = getDevice();
D3DPRIMITIVETYPE primitiveType;
int primitiveCount;
if(!es2dx::ConvertPrimitiveType(mode, count, &primitiveType, &primitiveCount))
return error(GL_INVALID_ENUM);
if (primitiveCount <= 0)
{
return;
}
if (!applyRenderTarget(false))
{
return;
}
applyState(mode);
GLenum err = applyVertexBuffer(first, count);
if (err != GL_NO_ERROR)
{
return error(err);
}
applyShaders();
applyTextures();
if (!getCurrentProgram()->validateSamplers())
{
return error(GL_INVALID_OPERATION);
}
if (!cullSkipsDraw(mode))
{
display->startScene();
device->DrawPrimitive(primitiveType, 0, primitiveCount);
if (mode == GL_LINE_LOOP) // Draw the last segment separately
{
drawClosingLine(first, first + count - 1);
}
}
}
void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices)
{
if (!mState.currentProgram)
{
return error(GL_INVALID_OPERATION);
}
if (!indices && !mState.elementArrayBuffer)
{
return error(GL_INVALID_OPERATION);
}
egl::Display *display = getDisplay();
IDirect3DDevice9 *device = getDevice();
D3DPRIMITIVETYPE primitiveType;
int primitiveCount;
if(!es2dx::ConvertPrimitiveType(mode, count, &primitiveType, &primitiveCount))
return error(GL_INVALID_ENUM);
if (primitiveCount <= 0)
{
return;
}
if (!applyRenderTarget(false))
{
return;
}
applyState(mode);
TranslatedIndexData indexInfo;
GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo);
if (err != GL_NO_ERROR)
{
return error(err);
}
GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
err = applyVertexBuffer(indexInfo.minIndex, vertexCount);
if (err != GL_NO_ERROR)
{
return error(err);
}
applyShaders();
applyTextures();
if (!getCurrentProgram()->validateSamplers())
{
return error(GL_INVALID_OPERATION);
}
if (!cullSkipsDraw(mode))
{
display->startScene();
device->DrawIndexedPrimitive(primitiveType, -(INT)indexInfo.minIndex, indexInfo.minIndex, vertexCount, indexInfo.startIndex, primitiveCount);
if (mode == GL_LINE_LOOP) // Draw the last segment separately
{
drawClosingLine(count, type, indices);
}
}
}
void Context::finish()
{
egl::Display *display = getDisplay();
IDirect3DDevice9 *device = getDevice();
IDirect3DQuery9 *occlusionQuery = NULL;
HRESULT result = device->CreateQuery(D3DQUERYTYPE_OCCLUSION, &occlusionQuery);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(result));
if (occlusionQuery)
{
IDirect3DStateBlock9 *savedState = NULL;
device->CreateStateBlock(D3DSBT_ALL, &savedState);
HRESULT result = occlusionQuery->Issue(D3DISSUE_BEGIN);
ASSERT(SUCCEEDED(result));
// Render something outside the render target
device->SetPixelShader(NULL);
device->SetVertexShader(NULL);
device->SetFVF(D3DFVF_XYZRHW);
float data[4] = {-1.0f, -1.0f, -1.0f, 1.0f};
display->startScene();
device->DrawPrimitiveUP(D3DPT_POINTLIST, 1, data, sizeof(data));
result = occlusionQuery->Issue(D3DISSUE_END);
ASSERT(SUCCEEDED(result));
while (occlusionQuery->GetData(NULL, 0, D3DGETDATA_FLUSH) == S_FALSE)
{
// Keep polling, but allow other threads to do something useful first
Sleep(0);
}
occlusionQuery->Release();
if (savedState)
{
savedState->Apply();
savedState->Release();
}
}
}
void Context::flush()
{
IDirect3DDevice9 *device = getDevice();
IDirect3DQuery9 *eventQuery = NULL;
HRESULT result = device->CreateQuery(D3DQUERYTYPE_EVENT, &eventQuery);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(result));
if (eventQuery)
{
HRESULT result = eventQuery->Issue(D3DISSUE_END);
ASSERT(SUCCEEDED(result));
result = eventQuery->GetData(NULL, 0, D3DGETDATA_FLUSH);
eventQuery->Release();
if (result == D3DERR_DEVICELOST)
{
error(GL_OUT_OF_MEMORY);
}
}
}
void Context::drawClosingLine(unsigned int first, unsigned int last)
{
IDirect3DDevice9 *device = getDevice();
IDirect3DIndexBuffer9 *indexBuffer = NULL;
HRESULT result = D3DERR_INVALIDCALL;
if (supports32bitIndices())
{
result = device->CreateIndexBuffer(8, D3DUSAGE_WRITEONLY, D3DFMT_INDEX32, D3DPOOL_DEFAULT, &indexBuffer, 0);
if (SUCCEEDED(result))
{
unsigned int *data;
result = indexBuffer->Lock(0, 0, (void**)&data, 0);
if (SUCCEEDED(result))
{
data[0] = last;
data[1] = first;
}
}
}
else
{
result = device->CreateIndexBuffer(4, D3DUSAGE_WRITEONLY, D3DFMT_INDEX16, D3DPOOL_DEFAULT, &indexBuffer, 0);
if (SUCCEEDED(result))
{
unsigned short *data;
result = indexBuffer->Lock(0, 0, (void**)&data, 0);
if (SUCCEEDED(result))
{
data[0] = last;
data[1] = first;
}
}
}
if (SUCCEEDED(result))
{
indexBuffer->Unlock();
device->SetIndices(indexBuffer);
device->DrawIndexedPrimitive(D3DPT_LINELIST, 0, 0, 2, 0, 1);
indexBuffer->Release();
}
else
{
ERR("Could not create an index buffer for closing a line loop.");
error(GL_OUT_OF_MEMORY);
}
}
void Context::drawClosingLine(GLsizei count, GLenum type, const void *indices)
{
unsigned int first = 0;
unsigned int last = 0;
if (mState.elementArrayBuffer.get())
{
Buffer *indexBuffer = mState.elementArrayBuffer.get();
intptr_t offset = reinterpret_cast<intptr_t>(indices);
indices = static_cast<const GLubyte*>(indexBuffer->data()) + offset;
}
switch (type)
{
case GL_UNSIGNED_BYTE:
first = static_cast<const GLubyte*>(indices)[0];
last = static_cast<const GLubyte*>(indices)[count - 1];
break;
case GL_UNSIGNED_SHORT:
first = static_cast<const GLushort*>(indices)[0];
last = static_cast<const GLushort*>(indices)[count - 1];
break;
case GL_UNSIGNED_INT:
first = static_cast<const GLuint*>(indices)[0];
last = static_cast<const GLuint*>(indices)[count - 1];
break;
default: UNREACHABLE();
}
drawClosingLine(first, last);
}
void Context::recordInvalidEnum()
{
mInvalidEnum = true;
}
void Context::recordInvalidValue()
{
mInvalidValue = true;
}
void Context::recordInvalidOperation()
{
mInvalidOperation = true;
}
void Context::recordOutOfMemory()
{
mOutOfMemory = true;
}
void Context::recordInvalidFramebufferOperation()
{
mInvalidFramebufferOperation = true;
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if (mInvalidEnum)
{
mInvalidEnum = false;
return GL_INVALID_ENUM;
}
if (mInvalidValue)
{
mInvalidValue = false;
return GL_INVALID_VALUE;
}
if (mInvalidOperation)
{
mInvalidOperation = false;
return GL_INVALID_OPERATION;
}
if (mOutOfMemory)
{
mOutOfMemory = false;
return GL_OUT_OF_MEMORY;
}
if (mInvalidFramebufferOperation)
{
mInvalidFramebufferOperation = false;
return GL_INVALID_FRAMEBUFFER_OPERATION;
}
return GL_NO_ERROR;
}
bool Context::supportsShaderModel3() const
{
return mSupportsShaderModel3;
}
int Context::getMaximumVaryingVectors() const
{
return mSupportsShaderModel3 ? MAX_VARYING_VECTORS_SM3 : MAX_VARYING_VECTORS_SM2;
}
int Context::getMaximumFragmentUniformVectors() const
{
return mSupportsShaderModel3 ? MAX_FRAGMENT_UNIFORM_VECTORS_SM3 : MAX_FRAGMENT_UNIFORM_VECTORS_SM2;
}
int Context::getMaxSupportedSamples() const
{
return mMaxSupportedSamples;
}
int Context::getNearestSupportedSamples(D3DFORMAT format, int requested) const
{
if (requested == 0)
{
return requested;
}
std::map<D3DFORMAT, bool *>::const_iterator itr = mMultiSampleSupport.find(format);
if (itr == mMultiSampleSupport.end())
{
return -1;
}
for (int i = requested; i <= D3DMULTISAMPLE_16_SAMPLES; ++i)
{
if (itr->second[i] && i != D3DMULTISAMPLE_NONMASKABLE)
{
return i;
}
}
return -1;
}
bool Context::supportsEventQueries() const
{
return mSupportsEventQueries;
}
bool Context::supportsCompressedTextures() const
{
return mSupportsCompressedTextures;
}
bool Context::supportsFloatTextures() const
{
return mSupportsFloatTextures;
}
bool Context::supportsFloatLinearFilter() const
{
return mSupportsFloatLinearFilter;
}
bool Context::supportsFloatRenderableTextures() const
{
return mSupportsFloatRenderableTextures;
}
bool Context::supportsHalfFloatTextures() const
{
return mSupportsHalfFloatTextures;
}
bool Context::supportsHalfFloatLinearFilter() const
{
return mSupportsHalfFloatLinearFilter;
}
bool Context::supportsHalfFloatRenderableTextures() const
{
return mSupportsHalfFloatRenderableTextures;
}
int Context::getMaximumRenderbufferDimension() const
{
return mMaxRenderbufferDimension;
}
int Context::getMaximumTextureDimension() const
{
return mMaxTextureDimension;
}
int Context::getMaximumCubeTextureDimension() const
{
return mMaxCubeTextureDimension;
}
int Context::getMaximumTextureLevel() const
{
return mMaxTextureLevel;
}
bool Context::supportsLuminanceTextures() const
{
return mSupportsLuminanceTextures;
}
bool Context::supportsLuminanceAlphaTextures() const
{
return mSupportsLuminanceAlphaTextures;
}
bool Context::supports32bitIndices() const
{
return mSupports32bitIndices;
}
void Context::detachBuffer(GLuint buffer)
{
// [OpenGL ES 2.0.24] section 2.9 page 22:
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
if (mState.arrayBuffer.id() == buffer)
{
mState.arrayBuffer.set(NULL);
}
if (mState.elementArrayBuffer.id() == buffer)
{
mState.elementArrayBuffer.set(NULL);
}
for (int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if (mState.vertexAttribute[attribute].mBoundBuffer.id() == buffer)
{
mState.vertexAttribute[attribute].mBoundBuffer.set(NULL);
}
}
}
void Context::detachTexture(GLuint texture)
{
// [OpenGL ES 2.0.24] section 3.8 page 84:
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
// rebound to texture object zero
for (int type = 0; type < SAMPLER_TYPE_COUNT; type++)
{
for (int sampler = 0; sampler < MAX_TEXTURE_IMAGE_UNITS; sampler++)
{
if (mState.samplerTexture[type][sampler].id() == texture)
{
mState.samplerTexture[type][sampler].set(NULL);
}
}
}
// [OpenGL ES 2.0.24] section 4.4 page 112:
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
// image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if (readFramebuffer)
{
readFramebuffer->detachTexture(texture);
}
if (drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachTexture(texture);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 107:
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if (mState.readFramebuffer == framebuffer)
{
bindReadFramebuffer(0);
}
if (mState.drawFramebuffer == framebuffer)
{
bindDrawFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 109:
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
// had been executed with the target RENDERBUFFER and name of zero.
if (mState.renderbuffer.id() == renderbuffer)
{
bindRenderbuffer(0);
}
// [OpenGL ES 2.0.24] section 4.4 page 111:
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
// point to which this image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if (readFramebuffer)
{
readFramebuffer->detachRenderbuffer(renderbuffer);
}
if (drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachRenderbuffer(renderbuffer);
}
}
Texture *Context::getIncompleteTexture(SamplerType type)
{
Texture *t = mIncompleteTextures[type].get();
if (t == NULL)
{
static const GLubyte color[] = { 0, 0, 0, 255 };
switch (type)
{
default:
UNREACHABLE();
// default falls through to SAMPLER_2D
case SAMPLER_2D:
{
Texture2D *incomplete2d = new Texture2D(Texture::INCOMPLETE_TEXTURE_ID);
incomplete2d->setImage(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
t = incomplete2d;
}
break;
case SAMPLER_CUBE:
{
TextureCubeMap *incompleteCube = new TextureCubeMap(Texture::INCOMPLETE_TEXTURE_ID);
incompleteCube->setImagePosX(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegX(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImagePosY(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegY(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImagePosZ(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegZ(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
t = incompleteCube;
}
break;
}
mIncompleteTextures[type].set(t);
}
return t;
}
bool Context::cullSkipsDraw(GLenum drawMode)
{
return mState.cullFace && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode);
}
bool Context::isTriangleMode(GLenum drawMode)
{
switch (drawMode)
{
case GL_TRIANGLES:
case GL_TRIANGLE_FAN:
case GL_TRIANGLE_STRIP:
return true;
case GL_POINTS:
case GL_LINES:
case GL_LINE_LOOP:
case GL_LINE_STRIP:
return false;
default: UNREACHABLE();
}
return false;
}
void Context::setVertexAttrib(GLuint index, const GLfloat *values)
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mState.vertexAttribute[index].mCurrentValue[0] = values[0];
mState.vertexAttribute[index].mCurrentValue[1] = values[1];
mState.vertexAttribute[index].mCurrentValue[2] = values[2];
mState.vertexAttribute[index].mCurrentValue[3] = values[3];
mVertexDataManager->dirtyCurrentValue(index);
}
void Context::initExtensionString()
{
mExtensionString += "GL_OES_packed_depth_stencil ";
mExtensionString += "GL_EXT_texture_format_BGRA8888 ";
mExtensionString += "GL_EXT_read_format_bgra ";
mExtensionString += "GL_ANGLE_framebuffer_blit ";
mExtensionString += "GL_OES_rgb8_rgba8 ";
mExtensionString += "GL_OES_standard_derivatives ";
if (supportsEventQueries())
{
mExtensionString += "GL_NV_fence ";
}
if (supportsCompressedTextures())
{
mExtensionString += "GL_EXT_texture_compression_dxt1 ";
}
if (supportsFloatTextures())
{
mExtensionString += "GL_OES_texture_float ";
}
if (supportsHalfFloatTextures())
{
mExtensionString += "GL_OES_texture_half_float ";
}
if (supportsFloatLinearFilter())
{
mExtensionString += "GL_OES_texture_float_linear ";
}
if (supportsHalfFloatLinearFilter())
{
mExtensionString += "GL_OES_texture_half_float_linear ";
}
if (getMaxSupportedSamples() != 0)
{
mExtensionString += "GL_ANGLE_framebuffer_multisample ";
}
if (supports32bitIndices())
{
mExtensionString += "GL_OES_element_index_uint ";
}
std::string::size_type end = mExtensionString.find_last_not_of(' ');
if (end != std::string::npos)
{
mExtensionString.resize(end+1);
}
}
const char *Context::getExtensionString() const
{
return mExtensionString.c_str();
}
void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask)
{
IDirect3DDevice9 *device = getDevice();
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if (!readFramebuffer || readFramebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE ||
!drawFramebuffer || drawFramebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if (drawFramebuffer->getSamples() != 0)
{
return error(GL_INVALID_OPERATION);
}
RECT sourceRect;
RECT destRect;
if (srcX0 < srcX1)
{
sourceRect.left = srcX0;
sourceRect.right = srcX1;
destRect.left = dstX0;
destRect.right = dstX1;
}
else
{
sourceRect.left = srcX1;
destRect.left = dstX1;
sourceRect.right = srcX0;
destRect.right = dstX0;
}
// Arguments to StretchRect must be in D3D-style (0-top) coordinates, so we must
// flip our Y-values here
if (srcY0 < srcY1)
{
sourceRect.bottom = srcY1;
destRect.bottom = dstY1;
sourceRect.top = srcY0;
destRect.top = dstY0;
}
else
{
sourceRect.bottom = srcY0;
destRect.bottom = dstY0;
sourceRect.top = srcY1;
destRect.top = dstY1;
}
RECT sourceScissoredRect = sourceRect;
RECT destScissoredRect = destRect;
if (mState.scissorTest)
{
// Only write to parts of the destination framebuffer which pass the scissor test
// Please note: the destRect is now in D3D-style coordinates, so the *top* of the
// rect will be checked against scissorY, rather than the bottom.
if (destRect.left < mState.scissorX)
{
int xDiff = mState.scissorX - destRect.left;
destScissoredRect.left = mState.scissorX;
sourceScissoredRect.left += xDiff;
}
if (destRect.right > mState.scissorX + mState.scissorWidth)
{
int xDiff = destRect.right - (mState.scissorX + mState.scissorWidth);
destScissoredRect.right = mState.scissorX + mState.scissorWidth;
sourceScissoredRect.right -= xDiff;
}
if (destRect.top < mState.scissorY)
{
int yDiff = mState.scissorY - destRect.top;
destScissoredRect.top = mState.scissorY;
sourceScissoredRect.top += yDiff;
}
if (destRect.bottom > mState.scissorY + mState.scissorHeight)
{
int yDiff = destRect.bottom - (mState.scissorY + mState.scissorHeight);
destScissoredRect.bottom = mState.scissorY + mState.scissorHeight;
sourceScissoredRect.bottom -= yDiff;
}
}
bool blitRenderTarget = false;
bool blitDepthStencil = false;
RECT sourceTrimmedRect = sourceScissoredRect;
RECT destTrimmedRect = destScissoredRect;
// The source & destination rectangles also may need to be trimmed if they fall out of the bounds of
// the actual draw and read surfaces.
if (sourceTrimmedRect.left < 0)
{
int xDiff = 0 - sourceTrimmedRect.left;
sourceTrimmedRect.left = 0;
destTrimmedRect.left += xDiff;
}
int readBufferWidth = readFramebuffer->getColorbuffer()->getWidth();
int readBufferHeight = readFramebuffer->getColorbuffer()->getHeight();
int drawBufferWidth = drawFramebuffer->getColorbuffer()->getWidth();
int drawBufferHeight = drawFramebuffer->getColorbuffer()->getHeight();
if (sourceTrimmedRect.right > readBufferWidth)
{
int xDiff = sourceTrimmedRect.right - readBufferWidth;
sourceTrimmedRect.right = readBufferWidth;
destTrimmedRect.right -= xDiff;
}
if (sourceTrimmedRect.top < 0)
{
int yDiff = 0 - sourceTrimmedRect.top;
sourceTrimmedRect.top = 0;
destTrimmedRect.top += yDiff;
}
if (sourceTrimmedRect.bottom > readBufferHeight)
{
int yDiff = sourceTrimmedRect.bottom - readBufferHeight;
sourceTrimmedRect.bottom = readBufferHeight;
destTrimmedRect.bottom -= yDiff;
}
if (destTrimmedRect.left < 0)
{
int xDiff = 0 - destTrimmedRect.left;
destTrimmedRect.left = 0;
sourceTrimmedRect.left += xDiff;
}
if (destTrimmedRect.right > drawBufferWidth)
{
int xDiff = destTrimmedRect.right - drawBufferWidth;
destTrimmedRect.right = drawBufferWidth;
sourceTrimmedRect.right -= xDiff;
}
if (destTrimmedRect.top < 0)
{
int yDiff = 0 - destTrimmedRect.top;
destTrimmedRect.top = 0;
sourceTrimmedRect.top += yDiff;
}
if (destTrimmedRect.bottom > drawBufferHeight)
{
int yDiff = destTrimmedRect.bottom - drawBufferHeight;
destTrimmedRect.bottom = drawBufferHeight;
sourceTrimmedRect.bottom -= yDiff;
}
bool partialBufferCopy = false;
if (sourceTrimmedRect.bottom - sourceTrimmedRect.top < readBufferHeight ||
sourceTrimmedRect.right - sourceTrimmedRect.left < readBufferWidth ||
destTrimmedRect.bottom - destTrimmedRect.top < drawBufferHeight ||
destTrimmedRect.right - destTrimmedRect.left < drawBufferWidth ||
sourceTrimmedRect.top != 0 || destTrimmedRect.top != 0 || sourceTrimmedRect.left != 0 || destTrimmedRect.left != 0)
{
partialBufferCopy = true;
}
if (mask & GL_COLOR_BUFFER_BIT)
{
const bool validReadType = readFramebuffer->getColorbufferType() == GL_TEXTURE_2D ||
readFramebuffer->getColorbufferType() == GL_RENDERBUFFER;
const bool validDrawType = drawFramebuffer->getColorbufferType() == GL_TEXTURE_2D ||
drawFramebuffer->getColorbufferType() == GL_RENDERBUFFER;
if (!validReadType || !validDrawType ||
readFramebuffer->getColorbuffer()->getD3DFormat() != drawFramebuffer->getColorbuffer()->getD3DFormat())
{
ERR("Color buffer format conversion in BlitFramebufferANGLE not supported by this implementation");
return error(GL_INVALID_OPERATION);
}
if (partialBufferCopy && readFramebuffer->getSamples() != 0)
{
return error(GL_INVALID_OPERATION);
}
blitRenderTarget = true;
}
if (mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT))
{
DepthStencilbuffer *readDSBuffer = NULL;
DepthStencilbuffer *drawDSBuffer = NULL;
// We support OES_packed_depth_stencil, and do not support a separately attached depth and stencil buffer, so if we have
// both a depth and stencil buffer, it will be the same buffer.
if (mask & GL_DEPTH_BUFFER_BIT)
{
if (readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer())
{
if (readFramebuffer->getDepthbufferType() != drawFramebuffer->getDepthbufferType() ||
readFramebuffer->getDepthbuffer()->getD3DFormat() != drawFramebuffer->getDepthbuffer()->getD3DFormat())
{
return error(GL_INVALID_OPERATION);
}
blitDepthStencil = true;
readDSBuffer = readFramebuffer->getDepthbuffer();
drawDSBuffer = drawFramebuffer->getDepthbuffer();
}
}
if (mask & GL_STENCIL_BUFFER_BIT)
{
if (readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer())
{
if (readFramebuffer->getStencilbufferType() != drawFramebuffer->getStencilbufferType() ||
readFramebuffer->getStencilbuffer()->getD3DFormat() != drawFramebuffer->getStencilbuffer()->getD3DFormat())
{
return error(GL_INVALID_OPERATION);
}
blitDepthStencil = true;
readDSBuffer = readFramebuffer->getStencilbuffer();
drawDSBuffer = drawFramebuffer->getStencilbuffer();
}
}
if (partialBufferCopy)
{
ERR("Only whole-buffer depth and stencil blits are supported by this implementation.");
return error(GL_INVALID_OPERATION); // only whole-buffer copies are permitted
}
if ((drawDSBuffer && drawDSBuffer->getSamples() != 0) ||
(readDSBuffer && readDSBuffer->getSamples() != 0))
{
return error(GL_INVALID_OPERATION);
}
}
if (blitRenderTarget || blitDepthStencil)
{
egl::Display *display = getDisplay();
display->endScene();
if (blitRenderTarget)
{
HRESULT result = device->StretchRect(readFramebuffer->getRenderTarget(), &sourceTrimmedRect,
drawFramebuffer->getRenderTarget(), &destTrimmedRect, D3DTEXF_NONE);
if (FAILED(result))
{
ERR("BlitFramebufferANGLE failed: StretchRect returned %x.", result);
return;
}
}
if (blitDepthStencil)
{
HRESULT result = device->StretchRect(readFramebuffer->getDepthStencil(), NULL, drawFramebuffer->getDepthStencil(), NULL, D3DTEXF_NONE);
if (FAILED(result))
{
ERR("BlitFramebufferANGLE failed: StretchRect returned %x.", result);
return;
}
}
}
}
}
extern "C"
{
gl::Context *glCreateContext(const egl::Config *config, const gl::Context *shareContext)
{
return new gl::Context(config, shareContext);
}
void glDestroyContext(gl::Context *context)
{
delete context;
if (context == gl::getContext())
{
gl::makeCurrent(NULL, NULL, NULL);
}
}
void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface)
{
gl::makeCurrent(context, display, surface);
}
gl::Context *glGetCurrentContext()
{
return gl::getContext();
}
}