/*
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "InlineFlowBox.h"
#include "CachedImage.h"
#include "CSSPropertyNames.h"
#include "Document.h"
#include "EllipsisBox.h"
#include "GraphicsContext.h"
#include "InlineTextBox.h"
#include "HitTestResult.h"
#include "RootInlineBox.h"
#include "RenderBlock.h"
#include "RenderInline.h"
#include "RenderLayer.h"
#include "RenderListMarker.h"
#include "RenderRubyBase.h"
#include "RenderRubyRun.h"
#include "RenderRubyText.h"
#include "RenderTableCell.h"
#include "RootInlineBox.h"
#include "Text.h"
#include <math.h>
using namespace std;
namespace WebCore {
#ifndef NDEBUG
InlineFlowBox::~InlineFlowBox()
{
if (!m_hasBadChildList)
for (InlineBox* child = firstChild(); child; child = child->nextOnLine())
child->setHasBadParent();
}
#endif
int InlineFlowBox::getFlowSpacingLogicalWidth()
{
int totWidth = marginBorderPaddingLogicalLeft() + marginBorderPaddingLogicalRight();
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->isInlineFlowBox())
totWidth += static_cast<InlineFlowBox*>(curr)->getFlowSpacingLogicalWidth();
}
return totWidth;
}
IntRect InlineFlowBox::roundedFrameRect() const
{
// Begin by snapping the x and y coordinates to the nearest pixel.
int snappedX = lroundf(x());
int snappedY = lroundf(y());
int snappedMaxX = lroundf(x() + width());
int snappedMaxY = lroundf(y() + height());
return IntRect(snappedX, snappedY, snappedMaxX - snappedX, snappedMaxY - snappedY);
}
void InlineFlowBox::addToLine(InlineBox* child)
{
ASSERT(!child->parent());
ASSERT(!child->nextOnLine());
ASSERT(!child->prevOnLine());
checkConsistency();
child->setParent(this);
if (!m_firstChild) {
m_firstChild = child;
m_lastChild = child;
} else {
m_lastChild->setNextOnLine(child);
child->setPrevOnLine(m_lastChild);
m_lastChild = child;
}
child->setFirstLineStyleBit(m_firstLine);
child->setIsHorizontal(isHorizontal());
if (child->isText()) {
if (child->renderer()->parent() == renderer())
m_hasTextChildren = true;
m_hasTextDescendants = true;
} else if (child->isInlineFlowBox()) {
if (static_cast<InlineFlowBox*>(child)->hasTextDescendants())
m_hasTextDescendants = true;
}
if (descendantsHaveSameLineHeightAndBaseline() && !child->renderer()->isPositioned()) {
RenderStyle* parentStyle = renderer()->style(m_firstLine);
RenderStyle* childStyle = child->renderer()->style(m_firstLine);
bool shouldClearDescendantsHaveSameLineHeightAndBaseline = false;
if (child->renderer()->isReplaced())
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
else if (child->isText()) {
if (child->renderer()->isBR() || child->renderer()->parent() != renderer()) {
if (!parentStyle->font().fontMetrics().hasIdenticalAscentDescentAndLineGap(childStyle->font().fontMetrics())
|| parentStyle->lineHeight() != childStyle->lineHeight()
|| (parentStyle->verticalAlign() != BASELINE && !isRootInlineBox()) || childStyle->verticalAlign() != BASELINE)
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
}
if (childStyle->hasTextCombine() || childStyle->textEmphasisMark() != TextEmphasisMarkNone)
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
} else {
if (child->renderer()->isBR()) {
// FIXME: This is dumb. We only turn off because current layout test results expect the <br> to be 0-height on the baseline.
// Other than making a zillion tests have to regenerate results, there's no reason to ditch the optimization here.
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
} else {
ASSERT(isInlineFlowBox());
InlineFlowBox* childFlowBox = static_cast<InlineFlowBox*>(child);
// Check the child's bit, and then also check for differences in font, line-height, vertical-align
if (!childFlowBox->descendantsHaveSameLineHeightAndBaseline()
|| !parentStyle->font().fontMetrics().hasIdenticalAscentDescentAndLineGap(childStyle->font().fontMetrics())
|| parentStyle->lineHeight() != childStyle->lineHeight()
|| (parentStyle->verticalAlign() != BASELINE && !isRootInlineBox()) || childStyle->verticalAlign() != BASELINE
|| childStyle->hasBorder() || childStyle->hasPadding() || childStyle->hasTextCombine())
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
}
}
if (shouldClearDescendantsHaveSameLineHeightAndBaseline)
clearDescendantsHaveSameLineHeightAndBaseline();
}
if (!child->renderer()->isPositioned()) {
if (child->isText()) {
RenderStyle* childStyle = child->renderer()->style(m_firstLine);
if (childStyle->letterSpacing() < 0 || childStyle->textShadow() || childStyle->textEmphasisMark() != TextEmphasisMarkNone || childStyle->textStrokeWidth())
child->clearKnownToHaveNoOverflow();
} else if (child->renderer()->isReplaced()) {
RenderBox* box = toRenderBox(child->renderer());
if (box->hasRenderOverflow() || box->hasSelfPaintingLayer())
child->clearKnownToHaveNoOverflow();
} else if (!child->renderer()->isBR() && (child->renderer()->style(m_firstLine)->boxShadow() || child->boxModelObject()->hasSelfPaintingLayer()
|| (child->renderer()->isListMarker() && !toRenderListMarker(child->renderer())->isInside())))
child->clearKnownToHaveNoOverflow();
if (knownToHaveNoOverflow() && child->isInlineFlowBox() && !static_cast<InlineFlowBox*>(child)->knownToHaveNoOverflow())
clearKnownToHaveNoOverflow();
}
checkConsistency();
}
void InlineFlowBox::removeChild(InlineBox* child)
{
checkConsistency();
if (!m_dirty)
dirtyLineBoxes();
root()->childRemoved(child);
if (child == m_firstChild)
m_firstChild = child->nextOnLine();
if (child == m_lastChild)
m_lastChild = child->prevOnLine();
if (child->nextOnLine())
child->nextOnLine()->setPrevOnLine(child->prevOnLine());
if (child->prevOnLine())
child->prevOnLine()->setNextOnLine(child->nextOnLine());
child->setParent(0);
checkConsistency();
}
void InlineFlowBox::deleteLine(RenderArena* arena)
{
InlineBox* child = firstChild();
InlineBox* next = 0;
while (child) {
ASSERT(this == child->parent());
next = child->nextOnLine();
#ifndef NDEBUG
child->setParent(0);
#endif
child->deleteLine(arena);
child = next;
}
#ifndef NDEBUG
m_firstChild = 0;
m_lastChild = 0;
#endif
removeLineBoxFromRenderObject();
destroy(arena);
}
void InlineFlowBox::removeLineBoxFromRenderObject()
{
toRenderInline(renderer())->lineBoxes()->removeLineBox(this);
}
void InlineFlowBox::extractLine()
{
if (!m_extracted)
extractLineBoxFromRenderObject();
for (InlineBox* child = firstChild(); child; child = child->nextOnLine())
child->extractLine();
}
void InlineFlowBox::extractLineBoxFromRenderObject()
{
toRenderInline(renderer())->lineBoxes()->extractLineBox(this);
}
void InlineFlowBox::attachLine()
{
if (m_extracted)
attachLineBoxToRenderObject();
for (InlineBox* child = firstChild(); child; child = child->nextOnLine())
child->attachLine();
}
void InlineFlowBox::attachLineBoxToRenderObject()
{
toRenderInline(renderer())->lineBoxes()->attachLineBox(this);
}
void InlineFlowBox::adjustPosition(float dx, float dy)
{
InlineBox::adjustPosition(dx, dy);
for (InlineBox* child = firstChild(); child; child = child->nextOnLine())
child->adjustPosition(dx, dy);
if (m_overflow)
m_overflow->move(dx, dy); // FIXME: Rounding error here since overflow was pixel snapped, but nobody other than list markers passes non-integral values here.
}
RenderLineBoxList* InlineFlowBox::rendererLineBoxes() const
{
return toRenderInline(renderer())->lineBoxes();
}
static inline bool isLastChildForRenderer(RenderObject* ancestor, RenderObject* child)
{
if (!child)
return false;
if (child == ancestor)
return true;
RenderObject* curr = child;
RenderObject* parent = curr->parent();
while (parent && (!parent->isRenderBlock() || parent->isInline())) {
if (parent->lastChild() != curr)
return false;
if (parent == ancestor)
return true;
curr = parent;
parent = curr->parent();
}
return true;
}
static bool isAnsectorAndWithinBlock(RenderObject* ancestor, RenderObject* child)
{
RenderObject* object = child;
while (object && (!object->isRenderBlock() || object->isInline())) {
if (object == ancestor)
return true;
object = object->parent();
}
return false;
}
void InlineFlowBox::determineSpacingForFlowBoxes(bool lastLine, bool isLogicallyLastRunWrapped, RenderObject* logicallyLastRunRenderer)
{
// All boxes start off open. They will not apply any margins/border/padding on
// any side.
bool includeLeftEdge = false;
bool includeRightEdge = false;
// The root inline box never has borders/margins/padding.
if (parent()) {
bool ltr = renderer()->style()->isLeftToRightDirection();
// Check to see if all initial lines are unconstructed. If so, then
// we know the inline began on this line (unless we are a continuation).
RenderLineBoxList* lineBoxList = rendererLineBoxes();
if (!lineBoxList->firstLineBox()->isConstructed() && !renderer()->isInlineElementContinuation()) {
if (ltr && lineBoxList->firstLineBox() == this)
includeLeftEdge = true;
else if (!ltr && lineBoxList->lastLineBox() == this)
includeRightEdge = true;
}
if (!lineBoxList->lastLineBox()->isConstructed()) {
RenderInline* inlineFlow = toRenderInline(renderer());
bool isLastObjectOnLine = !isAnsectorAndWithinBlock(renderer(), logicallyLastRunRenderer) || (isLastChildForRenderer(renderer(), logicallyLastRunRenderer) && !isLogicallyLastRunWrapped);
// We include the border under these conditions:
// (1) The next line was not created, or it is constructed. We check the previous line for rtl.
// (2) The logicallyLastRun is not a descendant of this renderer.
// (3) The logicallyLastRun is a descendant of this renderer, but it is the last child of this renderer and it does not wrap to the next line.
if (ltr) {
if (!nextLineBox()
&& ((lastLine || isLastObjectOnLine) && !inlineFlow->continuation()))
includeRightEdge = true;
} else {
if ((!prevLineBox() || prevLineBox()->isConstructed())
&& ((lastLine || isLastObjectOnLine) && !inlineFlow->continuation()))
includeLeftEdge = true;
}
}
}
setEdges(includeLeftEdge, includeRightEdge);
// Recur into our children.
for (InlineBox* currChild = firstChild(); currChild; currChild = currChild->nextOnLine()) {
if (currChild->isInlineFlowBox()) {
InlineFlowBox* currFlow = static_cast<InlineFlowBox*>(currChild);
currFlow->determineSpacingForFlowBoxes(lastLine, isLogicallyLastRunWrapped, logicallyLastRunRenderer);
}
}
}
float InlineFlowBox::placeBoxesInInlineDirection(float logicalLeft, bool& needsWordSpacing, GlyphOverflowAndFallbackFontsMap& textBoxDataMap)
{
// Set our x position.
setLogicalLeft(logicalLeft);
float startLogicalLeft = logicalLeft;
logicalLeft += borderLogicalLeft() + paddingLogicalLeft();
float minLogicalLeft = startLogicalLeft;
float maxLogicalRight = logicalLeft;
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isText()) {
InlineTextBox* text = static_cast<InlineTextBox*>(curr);
RenderText* rt = toRenderText(text->renderer());
if (rt->textLength()) {
if (needsWordSpacing && isSpaceOrNewline(rt->characters()[text->start()]))
logicalLeft += rt->style(m_firstLine)->font().wordSpacing();
needsWordSpacing = !isSpaceOrNewline(rt->characters()[text->end()]);
}
text->setLogicalLeft(logicalLeft);
if (knownToHaveNoOverflow())
minLogicalLeft = min(logicalLeft, minLogicalLeft);
logicalLeft += text->logicalWidth();
if (knownToHaveNoOverflow())
maxLogicalRight = max(logicalLeft, maxLogicalRight);
} else {
if (curr->renderer()->isPositioned()) {
if (curr->renderer()->parent()->style()->isLeftToRightDirection())
curr->setLogicalLeft(logicalLeft);
else
// Our offset that we cache needs to be from the edge of the right border box and
// not the left border box. We have to subtract |x| from the width of the block
// (which can be obtained from the root line box).
curr->setLogicalLeft(root()->block()->logicalWidth() - logicalLeft);
continue; // The positioned object has no effect on the width.
}
if (curr->renderer()->isRenderInline()) {
InlineFlowBox* flow = static_cast<InlineFlowBox*>(curr);
logicalLeft += flow->marginLogicalLeft();
if (knownToHaveNoOverflow())
minLogicalLeft = min(logicalLeft, minLogicalLeft);
logicalLeft = flow->placeBoxesInInlineDirection(logicalLeft, needsWordSpacing, textBoxDataMap);
if (knownToHaveNoOverflow())
maxLogicalRight = max(logicalLeft, maxLogicalRight);
logicalLeft += flow->marginLogicalRight();
} else if (!curr->renderer()->isListMarker() || toRenderListMarker(curr->renderer())->isInside()) {
// The box can have a different writing-mode than the overall line, so this is a bit complicated.
// Just get all the physical margin and overflow values by hand based off |isVertical|.
int logicalLeftMargin = isHorizontal() ? curr->boxModelObject()->marginLeft() : curr->boxModelObject()->marginTop();
int logicalRightMargin = isHorizontal() ? curr->boxModelObject()->marginRight() : curr->boxModelObject()->marginBottom();
logicalLeft += logicalLeftMargin;
curr->setLogicalLeft(logicalLeft);
if (knownToHaveNoOverflow())
minLogicalLeft = min(logicalLeft, minLogicalLeft);
logicalLeft += curr->logicalWidth();
if (knownToHaveNoOverflow())
maxLogicalRight = max(logicalLeft, maxLogicalRight);
logicalLeft += logicalRightMargin;
}
}
}
logicalLeft += borderLogicalRight() + paddingLogicalRight();
setLogicalWidth(logicalLeft - startLogicalLeft);
if (knownToHaveNoOverflow() && (minLogicalLeft < startLogicalLeft || maxLogicalRight > logicalLeft))
clearKnownToHaveNoOverflow();
return logicalLeft;
}
bool InlineFlowBox::requiresIdeographicBaseline(const GlyphOverflowAndFallbackFontsMap& textBoxDataMap) const
{
if (isHorizontal())
return false;
if (renderer()->style(m_firstLine)->fontDescription().textOrientation() == TextOrientationUpright
|| renderer()->style(m_firstLine)->font().primaryFont()->hasVerticalGlyphs())
return true;
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isPositioned())
continue; // Positioned placeholders don't affect calculations.
if (curr->isInlineFlowBox()) {
if (static_cast<InlineFlowBox*>(curr)->requiresIdeographicBaseline(textBoxDataMap))
return true;
} else {
if (curr->renderer()->style(m_firstLine)->font().primaryFont()->hasVerticalGlyphs())
return true;
const Vector<const SimpleFontData*>* usedFonts = 0;
if (curr->isInlineTextBox()) {
GlyphOverflowAndFallbackFontsMap::const_iterator it = textBoxDataMap.find(static_cast<InlineTextBox*>(curr));
usedFonts = it == textBoxDataMap.end() ? 0 : &it->second.first;
}
if (usedFonts) {
for (size_t i = 0; i < usedFonts->size(); ++i) {
if (usedFonts->at(i)->hasVerticalGlyphs())
return true;
}
}
}
}
return false;
}
void InlineFlowBox::adjustMaxAscentAndDescent(int& maxAscent, int& maxDescent, int maxPositionTop, int maxPositionBottom)
{
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
// The computed lineheight needs to be extended for the
// positioned elements
if (curr->renderer()->isPositioned())
continue; // Positioned placeholders don't affect calculations.
if (curr->verticalAlign() == TOP || curr->verticalAlign() == BOTTOM) {
int lineHeight = curr->lineHeight();
if (curr->verticalAlign() == TOP) {
if (maxAscent + maxDescent < lineHeight)
maxDescent = lineHeight - maxAscent;
}
else {
if (maxAscent + maxDescent < lineHeight)
maxAscent = lineHeight - maxDescent;
}
if (maxAscent + maxDescent >= max(maxPositionTop, maxPositionBottom))
break;
}
if (curr->isInlineFlowBox())
static_cast<InlineFlowBox*>(curr)->adjustMaxAscentAndDescent(maxAscent, maxDescent, maxPositionTop, maxPositionBottom);
}
}
void InlineFlowBox::computeLogicalBoxHeights(RootInlineBox* rootBox, int& maxPositionTop, int& maxPositionBottom,
int& maxAscent, int& maxDescent, bool& setMaxAscent, bool& setMaxDescent,
bool strictMode, GlyphOverflowAndFallbackFontsMap& textBoxDataMap,
FontBaseline baselineType, VerticalPositionCache& verticalPositionCache)
{
// The primary purpose of this function is to compute the maximal ascent and descent values for
// a line. These values are computed based off the block's line-box-contain property, which indicates
// what parts of descendant boxes have to fit within the line.
//
// The maxAscent value represents the distance of the highest point of any box (typically including line-height) from
// the root box's baseline. The maxDescent value represents the distance of the lowest point of any box
// (also typically including line-height) from the root box baseline. These values can be negative.
//
// A secondary purpose of this function is to store the offset of every box's baseline from the root box's
// baseline. This information is cached in the logicalTop() of every box. We're effectively just using
// the logicalTop() as scratch space.
//
// Because a box can be positioned such that it ends up fully above or fully below the
// root line box, we only consider it to affect the maxAscent and maxDescent values if some
// part of the box (EXCLUDING leading) is above (for ascent) or below (for descent) the root box's baseline.
bool affectsAscent = false;
bool affectsDescent = false;
bool checkChildren = !descendantsHaveSameLineHeightAndBaseline();
if (isRootInlineBox()) {
// Examine our root box.
int ascent = 0;
int descent = 0;
rootBox->ascentAndDescentForBox(rootBox, textBoxDataMap, ascent, descent, affectsAscent, affectsDescent);
if (strictMode || hasTextChildren() || (!checkChildren && hasTextDescendants())) {
if (maxAscent < ascent || !setMaxAscent) {
maxAscent = ascent;
setMaxAscent = true;
}
if (maxDescent < descent || !setMaxDescent) {
maxDescent = descent;
setMaxDescent = true;
}
}
}
if (!checkChildren)
return;
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isPositioned())
continue; // Positioned placeholders don't affect calculations.
InlineFlowBox* inlineFlowBox = curr->isInlineFlowBox() ? static_cast<InlineFlowBox*>(curr) : 0;
bool affectsAscent = false;
bool affectsDescent = false;
// The verticalPositionForBox function returns the distance between the child box's baseline
// and the root box's baseline. The value is negative if the child box's baseline is above the
// root box's baseline, and it is positive if the child box's baseline is below the root box's baseline.
curr->setLogicalTop(rootBox->verticalPositionForBox(curr, verticalPositionCache));
int ascent = 0;
int descent = 0;
rootBox->ascentAndDescentForBox(curr, textBoxDataMap, ascent, descent, affectsAscent, affectsDescent);
int boxHeight = ascent + descent;
if (curr->verticalAlign() == TOP) {
if (maxPositionTop < boxHeight)
maxPositionTop = boxHeight;
} else if (curr->verticalAlign() == BOTTOM) {
if (maxPositionBottom < boxHeight)
maxPositionBottom = boxHeight;
} else if (!inlineFlowBox || strictMode || inlineFlowBox->hasTextChildren() || (inlineFlowBox->descendantsHaveSameLineHeightAndBaseline() && inlineFlowBox->hasTextDescendants())
|| inlineFlowBox->boxModelObject()->hasInlineDirectionBordersOrPadding()) {
// Note that these values can be negative. Even though we only affect the maxAscent and maxDescent values
// if our box (excluding line-height) was above (for ascent) or below (for descent) the root baseline, once you factor in line-height
// the final box can end up being fully above or fully below the root box's baseline! This is ok, but what it
// means is that ascent and descent (including leading), can end up being negative. The setMaxAscent and
// setMaxDescent booleans are used to ensure that we're willing to initially set maxAscent/Descent to negative
// values.
ascent -= curr->logicalTop();
descent += curr->logicalTop();
if (affectsAscent && (maxAscent < ascent || !setMaxAscent)) {
maxAscent = ascent;
setMaxAscent = true;
}
if (affectsDescent && (maxDescent < descent || !setMaxDescent)) {
maxDescent = descent;
setMaxDescent = true;
}
}
if (inlineFlowBox)
inlineFlowBox->computeLogicalBoxHeights(rootBox, maxPositionTop, maxPositionBottom, maxAscent, maxDescent,
setMaxAscent, setMaxDescent, strictMode, textBoxDataMap,
baselineType, verticalPositionCache);
}
}
void InlineFlowBox::placeBoxesInBlockDirection(int top, int maxHeight, int maxAscent, bool strictMode, int& lineTop, int& lineBottom, bool& setLineTop,
int& lineTopIncludingMargins, int& lineBottomIncludingMargins, bool& hasAnnotationsBefore, bool& hasAnnotationsAfter, FontBaseline baselineType)
{
bool isRootBox = isRootInlineBox();
if (isRootBox) {
const FontMetrics& fontMetrics = renderer()->style(m_firstLine)->fontMetrics();
setLogicalTop(top + maxAscent - fontMetrics.ascent(baselineType));
}
int adjustmentForChildrenWithSameLineHeightAndBaseline = 0;
if (descendantsHaveSameLineHeightAndBaseline()) {
adjustmentForChildrenWithSameLineHeightAndBaseline = logicalTop();
if (parent())
adjustmentForChildrenWithSameLineHeightAndBaseline += (boxModelObject()->borderBefore() + boxModelObject()->paddingBefore());
}
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isPositioned())
continue; // Positioned placeholders don't affect calculations.
if (descendantsHaveSameLineHeightAndBaseline()) {
curr->adjustBlockDirectionPosition(adjustmentForChildrenWithSameLineHeightAndBaseline);
continue;
}
InlineFlowBox* inlineFlowBox = curr->isInlineFlowBox() ? static_cast<InlineFlowBox*>(curr) : 0;
bool childAffectsTopBottomPos = true;
if (curr->verticalAlign() == TOP)
curr->setLogicalTop(top);
else if (curr->verticalAlign() == BOTTOM)
curr->setLogicalTop(top + maxHeight - curr->lineHeight());
else {
if (!strictMode && inlineFlowBox && !inlineFlowBox->hasTextChildren() && !curr->boxModelObject()->hasInlineDirectionBordersOrPadding()
&& !(inlineFlowBox->descendantsHaveSameLineHeightAndBaseline() && inlineFlowBox->hasTextDescendants()))
childAffectsTopBottomPos = false;
int posAdjust = maxAscent - curr->baselinePosition(baselineType);
curr->setLogicalTop(curr->logicalTop() + top + posAdjust);
}
int newLogicalTop = curr->logicalTop();
int newLogicalTopIncludingMargins = newLogicalTop;
int boxHeight = curr->logicalHeight();
int boxHeightIncludingMargins = boxHeight;
if (curr->isText() || curr->isInlineFlowBox()) {
const FontMetrics& fontMetrics = curr->renderer()->style(m_firstLine)->fontMetrics();
newLogicalTop += curr->baselinePosition(baselineType) - fontMetrics.ascent(baselineType);
if (curr->isInlineFlowBox()) {
RenderBoxModelObject* boxObject = toRenderBoxModelObject(curr->renderer());
newLogicalTop -= boxObject->style(m_firstLine)->isHorizontalWritingMode() ? boxObject->borderTop() + boxObject->paddingTop() :
boxObject->borderRight() + boxObject->paddingRight();
}
newLogicalTopIncludingMargins = newLogicalTop;
} else if (!curr->renderer()->isBR()) {
RenderBox* box = toRenderBox(curr->renderer());
newLogicalTopIncludingMargins = newLogicalTop;
int overSideMargin = curr->isHorizontal() ? box->marginTop() : box->marginRight();
int underSideMargin = curr->isHorizontal() ? box->marginBottom() : box->marginLeft();
newLogicalTop += overSideMargin;
boxHeightIncludingMargins += overSideMargin + underSideMargin;
}
curr->setLogicalTop(newLogicalTop);
if (childAffectsTopBottomPos) {
if (curr->renderer()->isRubyRun()) {
// Treat the leading on the first and last lines of ruby runs as not being part of the overall lineTop/lineBottom.
// Really this is a workaround hack for the fact that ruby should have been done as line layout and not done using
// inline-block.
if (!renderer()->style()->isFlippedLinesWritingMode())
hasAnnotationsBefore = true;
else
hasAnnotationsAfter = true;
RenderRubyRun* rubyRun = static_cast<RenderRubyRun*>(curr->renderer());
if (RenderRubyBase* rubyBase = rubyRun->rubyBase()) {
int bottomRubyBaseLeading = (curr->logicalHeight() - rubyBase->logicalBottom()) + rubyBase->logicalHeight() - (rubyBase->lastRootBox() ? rubyBase->lastRootBox()->lineBottom() : 0);
int topRubyBaseLeading = rubyBase->logicalTop() + (rubyBase->firstRootBox() ? rubyBase->firstRootBox()->lineTop() : 0);
newLogicalTop += !renderer()->style()->isFlippedLinesWritingMode() ? topRubyBaseLeading : bottomRubyBaseLeading;
boxHeight -= (topRubyBaseLeading + bottomRubyBaseLeading);
}
}
if (curr->isInlineTextBox()) {
TextEmphasisPosition emphasisMarkPosition;
if (static_cast<InlineTextBox*>(curr)->getEmphasisMarkPosition(curr->renderer()->style(m_firstLine), emphasisMarkPosition)) {
bool emphasisMarkIsOver = emphasisMarkPosition == TextEmphasisPositionOver;
if (emphasisMarkIsOver != curr->renderer()->style(m_firstLine)->isFlippedLinesWritingMode())
hasAnnotationsBefore = true;
else
hasAnnotationsAfter = true;
}
}
if (!setLineTop) {
setLineTop = true;
lineTop = newLogicalTop;
lineTopIncludingMargins = min(lineTop, newLogicalTopIncludingMargins);
} else {
lineTop = min(lineTop, newLogicalTop);
lineTopIncludingMargins = min(lineTop, min(lineTopIncludingMargins, newLogicalTopIncludingMargins));
}
lineBottom = max(lineBottom, newLogicalTop + boxHeight);
lineBottomIncludingMargins = max(lineBottom, max(lineBottomIncludingMargins, newLogicalTopIncludingMargins + boxHeightIncludingMargins));
}
// Adjust boxes to use their real box y/height and not the logical height (as dictated by
// line-height).
if (inlineFlowBox)
inlineFlowBox->placeBoxesInBlockDirection(top, maxHeight, maxAscent, strictMode, lineTop, lineBottom, setLineTop,
lineTopIncludingMargins, lineBottomIncludingMargins, hasAnnotationsBefore, hasAnnotationsAfter, baselineType);
}
if (isRootBox) {
if (strictMode || hasTextChildren() || (descendantsHaveSameLineHeightAndBaseline() && hasTextDescendants())) {
if (!setLineTop) {
setLineTop = true;
lineTop = logicalTop();
lineTopIncludingMargins = lineTop;
} else {
lineTop = min(lineTop, logicalTop());
lineTopIncludingMargins = min(lineTop, lineTopIncludingMargins);
}
lineBottom = max(lineBottom, logicalTop() + logicalHeight());
lineBottomIncludingMargins = max(lineBottom, lineBottomIncludingMargins);
}
if (renderer()->style()->isFlippedLinesWritingMode())
flipLinesInBlockDirection(lineTopIncludingMargins, lineBottomIncludingMargins);
}
}
void InlineFlowBox::flipLinesInBlockDirection(int lineTop, int lineBottom)
{
// Flip the box on the line such that the top is now relative to the lineBottom instead of the lineTop.
setLogicalTop(lineBottom - (logicalTop() - lineTop) - logicalHeight());
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isPositioned())
continue; // Positioned placeholders aren't affected here.
if (curr->isInlineFlowBox())
static_cast<InlineFlowBox*>(curr)->flipLinesInBlockDirection(lineTop, lineBottom);
else
curr->setLogicalTop(lineBottom - (curr->logicalTop() - lineTop) - curr->logicalHeight());
}
}
inline void InlineFlowBox::addBoxShadowVisualOverflow(IntRect& logicalVisualOverflow)
{
if (!parent())
return; // Box-shadow doesn't apply to root line boxes.
int boxShadowLogicalTop;
int boxShadowLogicalBottom;
renderer()->style(m_firstLine)->getBoxShadowBlockDirectionExtent(boxShadowLogicalTop, boxShadowLogicalBottom);
int logicalTopVisualOverflow = min(logicalTop() + boxShadowLogicalTop, logicalVisualOverflow.y());
int logicalBottomVisualOverflow = max(logicalBottom() + boxShadowLogicalBottom, logicalVisualOverflow.maxY());
int boxShadowLogicalLeft;
int boxShadowLogicalRight;
renderer()->style(m_firstLine)->getBoxShadowInlineDirectionExtent(boxShadowLogicalLeft, boxShadowLogicalRight);
int logicalLeftVisualOverflow = min(pixelSnappedLogicalLeft() + boxShadowLogicalLeft, logicalVisualOverflow.x());
int logicalRightVisualOverflow = max(pixelSnappedLogicalRight() + boxShadowLogicalRight, logicalVisualOverflow.maxX());
logicalVisualOverflow = IntRect(logicalLeftVisualOverflow, logicalTopVisualOverflow,
logicalRightVisualOverflow - logicalLeftVisualOverflow, logicalBottomVisualOverflow - logicalTopVisualOverflow);
}
inline void InlineFlowBox::addTextBoxVisualOverflow(InlineTextBox* textBox, GlyphOverflowAndFallbackFontsMap& textBoxDataMap, IntRect& logicalVisualOverflow)
{
if (textBox->knownToHaveNoOverflow())
return;
RenderStyle* style = textBox->renderer()->style(m_firstLine);
GlyphOverflowAndFallbackFontsMap::iterator it = textBoxDataMap.find(textBox);
GlyphOverflow* glyphOverflow = it == textBoxDataMap.end() ? 0 : &it->second.second;
bool isFlippedLine = style->isFlippedLinesWritingMode();
int topGlyphEdge = glyphOverflow ? (isFlippedLine ? glyphOverflow->bottom : glyphOverflow->top) : 0;
int bottomGlyphEdge = glyphOverflow ? (isFlippedLine ? glyphOverflow->top : glyphOverflow->bottom) : 0;
int leftGlyphEdge = glyphOverflow ? glyphOverflow->left : 0;
int rightGlyphEdge = glyphOverflow ? glyphOverflow->right : 0;
int strokeOverflow = static_cast<int>(ceilf(style->textStrokeWidth() / 2.0f));
int topGlyphOverflow = -strokeOverflow - topGlyphEdge;
int bottomGlyphOverflow = strokeOverflow + bottomGlyphEdge;
int leftGlyphOverflow = -strokeOverflow - leftGlyphEdge;
int rightGlyphOverflow = strokeOverflow + rightGlyphEdge;
TextEmphasisPosition emphasisMarkPosition;
if (style->textEmphasisMark() != TextEmphasisMarkNone && textBox->getEmphasisMarkPosition(style, emphasisMarkPosition)) {
int emphasisMarkHeight = style->font().emphasisMarkHeight(style->textEmphasisMarkString());
if ((emphasisMarkPosition == TextEmphasisPositionOver) == (!style->isFlippedLinesWritingMode()))
topGlyphOverflow = min(topGlyphOverflow, -emphasisMarkHeight);
else
bottomGlyphOverflow = max(bottomGlyphOverflow, emphasisMarkHeight);
}
// If letter-spacing is negative, we should factor that into right layout overflow. (Even in RTL, letter-spacing is
// applied to the right, so this is not an issue with left overflow.
rightGlyphOverflow -= min(0, (int)style->font().letterSpacing());
int textShadowLogicalTop;
int textShadowLogicalBottom;
style->getTextShadowBlockDirectionExtent(textShadowLogicalTop, textShadowLogicalBottom);
int childOverflowLogicalTop = min(textShadowLogicalTop + topGlyphOverflow, topGlyphOverflow);
int childOverflowLogicalBottom = max(textShadowLogicalBottom + bottomGlyphOverflow, bottomGlyphOverflow);
int textShadowLogicalLeft;
int textShadowLogicalRight;
style->getTextShadowInlineDirectionExtent(textShadowLogicalLeft, textShadowLogicalRight);
int childOverflowLogicalLeft = min(textShadowLogicalLeft + leftGlyphOverflow, leftGlyphOverflow);
int childOverflowLogicalRight = max(textShadowLogicalRight + rightGlyphOverflow, rightGlyphOverflow);
int logicalTopVisualOverflow = min(textBox->logicalTop() + childOverflowLogicalTop, logicalVisualOverflow.y());
int logicalBottomVisualOverflow = max(textBox->logicalBottom() + childOverflowLogicalBottom, logicalVisualOverflow.maxY());
int logicalLeftVisualOverflow = min(textBox->pixelSnappedLogicalLeft() + childOverflowLogicalLeft, logicalVisualOverflow.x());
int logicalRightVisualOverflow = max(textBox->pixelSnappedLogicalRight() + childOverflowLogicalRight, logicalVisualOverflow.maxX());
logicalVisualOverflow = IntRect(logicalLeftVisualOverflow, logicalTopVisualOverflow,
logicalRightVisualOverflow - logicalLeftVisualOverflow, logicalBottomVisualOverflow - logicalTopVisualOverflow);
textBox->setLogicalOverflowRect(logicalVisualOverflow);
}
inline void InlineFlowBox::addReplacedChildOverflow(const InlineBox* inlineBox, IntRect& logicalLayoutOverflow, IntRect& logicalVisualOverflow)
{
RenderBox* box = toRenderBox(inlineBox->renderer());
// Visual overflow only propagates if the box doesn't have a self-painting layer. This rectangle does not include
// transforms or relative positioning (since those objects always have self-painting layers), but it does need to be adjusted
// for writing-mode differences.
if (!box->hasSelfPaintingLayer()) {
IntRect childLogicalVisualOverflow = box->logicalVisualOverflowRectForPropagation(renderer()->style());
childLogicalVisualOverflow.move(inlineBox->logicalLeft(), inlineBox->logicalTop());
logicalVisualOverflow.unite(childLogicalVisualOverflow);
}
// Layout overflow internal to the child box only propagates if the child box doesn't have overflow clip set.
// Otherwise the child border box propagates as layout overflow. This rectangle must include transforms and relative positioning
// and be adjusted for writing-mode differences.
IntRect childLogicalLayoutOverflow = box->logicalLayoutOverflowRectForPropagation(renderer()->style());
childLogicalLayoutOverflow.move(inlineBox->logicalLeft(), inlineBox->logicalTop());
logicalLayoutOverflow.unite(childLogicalLayoutOverflow);
}
void InlineFlowBox::computeOverflow(int lineTop, int lineBottom, GlyphOverflowAndFallbackFontsMap& textBoxDataMap)
{
// If we know we have no overflow, we can just bail.
if (knownToHaveNoOverflow())
return;
// Visual overflow just includes overflow for stuff we need to repaint ourselves. Self-painting layers are ignored.
// Layout overflow is used to determine scrolling extent, so it still includes child layers and also factors in
// transforms, relative positioning, etc.
IntRect logicalLayoutOverflow(enclosingIntRect(logicalFrameRectIncludingLineHeight(lineTop, lineBottom)));
IntRect logicalVisualOverflow(logicalLayoutOverflow);
// box-shadow on root line boxes is applying to the block and not to the lines.
addBoxShadowVisualOverflow(logicalVisualOverflow);
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isPositioned())
continue; // Positioned placeholders don't affect calculations.
if (curr->renderer()->isText()) {
InlineTextBox* text = static_cast<InlineTextBox*>(curr);
RenderText* rt = toRenderText(text->renderer());
if (rt->isBR())
continue;
IntRect textBoxOverflow(enclosingIntRect(text->logicalFrameRect()));
addTextBoxVisualOverflow(text, textBoxDataMap, textBoxOverflow);
logicalVisualOverflow.unite(textBoxOverflow);
} else if (curr->renderer()->isRenderInline()) {
InlineFlowBox* flow = static_cast<InlineFlowBox*>(curr);
flow->computeOverflow(lineTop, lineBottom, textBoxDataMap);
if (!flow->boxModelObject()->hasSelfPaintingLayer())
logicalVisualOverflow.unite(flow->logicalVisualOverflowRect(lineTop, lineBottom));
IntRect childLayoutOverflow = flow->logicalLayoutOverflowRect(lineTop, lineBottom);
childLayoutOverflow.move(flow->boxModelObject()->relativePositionLogicalOffset());
logicalLayoutOverflow.unite(childLayoutOverflow);
} else
addReplacedChildOverflow(curr, logicalLayoutOverflow, logicalVisualOverflow);
}
setOverflowFromLogicalRects(logicalLayoutOverflow, logicalVisualOverflow, lineTop, lineBottom);
}
void InlineFlowBox::setLayoutOverflow(const IntRect& rect, int lineTop, int lineBottom)
{
IntRect frameBox = enclosingIntRect(frameRectIncludingLineHeight(lineTop, lineBottom));
if (frameBox.contains(rect) || rect.isEmpty())
return;
if (!m_overflow)
m_overflow.set(new RenderOverflow(frameBox, frameBox));
m_overflow->setLayoutOverflow(rect);
}
void InlineFlowBox::setVisualOverflow(const IntRect& rect, int lineTop, int lineBottom)
{
IntRect frameBox = enclosingIntRect(frameRectIncludingLineHeight(lineTop, lineBottom));
if (frameBox.contains(rect) || rect.isEmpty())
return;
if (!m_overflow)
m_overflow.set(new RenderOverflow(frameBox, frameBox));
m_overflow->setVisualOverflow(rect);
}
void InlineFlowBox::setOverflowFromLogicalRects(const IntRect& logicalLayoutOverflow, const IntRect& logicalVisualOverflow, int lineTop, int lineBottom)
{
IntRect layoutOverflow(isHorizontal() ? logicalLayoutOverflow : logicalLayoutOverflow.transposedRect());
setLayoutOverflow(layoutOverflow, lineTop, lineBottom);
IntRect visualOverflow(isHorizontal() ? logicalVisualOverflow : logicalVisualOverflow.transposedRect());
setVisualOverflow(visualOverflow, lineTop, lineBottom);
}
bool InlineFlowBox::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, int lineTop, int lineBottom)
{
IntRect overflowRect(visualOverflowRect(lineTop, lineBottom));
flipForWritingMode(overflowRect);
overflowRect.move(tx, ty);
if (!overflowRect.intersects(result.rectForPoint(x, y)))
return false;
// Check children first.
for (InlineBox* curr = lastChild(); curr; curr = curr->prevOnLine()) {
if ((curr->renderer()->isText() || !curr->boxModelObject()->hasSelfPaintingLayer()) && curr->nodeAtPoint(request, result, x, y, tx, ty, lineTop, lineBottom)) {
renderer()->updateHitTestResult(result, IntPoint(x - tx, y - ty));
return true;
}
}
// Now check ourselves. Pixel snap hit testing.
IntRect frameRect = roundedFrameRect();
int minX = frameRect.x();
int minY = frameRect.y();
int width = frameRect.width();
int height = frameRect.height();
// Constrain our hit testing to the line top and bottom if necessary.
bool noQuirksMode = renderer()->document()->inNoQuirksMode();
if (!noQuirksMode && !hasTextChildren() && !(descendantsHaveSameLineHeightAndBaseline() && hasTextDescendants())) {
RootInlineBox* rootBox = root();
int& top = isHorizontal() ? minY : minX;
int& logicalHeight = isHorizontal() ? height : width;
int bottom = min(rootBox->lineBottom(), top + logicalHeight);
top = max(rootBox->lineTop(), top);
logicalHeight = bottom - top;
}
// Move x/y to our coordinates.
IntRect rect(minX, minY, width, height);
flipForWritingMode(rect);
rect.move(tx, ty);
if (visibleToHitTesting() && rect.intersects(result.rectForPoint(x, y))) {
renderer()->updateHitTestResult(result, flipForWritingMode(IntPoint(x - tx, y - ty))); // Don't add in m_x or m_y here, we want coords in the containing block's space.
if (!result.addNodeToRectBasedTestResult(renderer()->node(), x, y, rect))
return true;
}
return false;
}
void InlineFlowBox::paint(PaintInfo& paintInfo, int tx, int ty, int lineTop, int lineBottom)
{
IntRect overflowRect(visualOverflowRect(lineTop, lineBottom));
overflowRect.inflate(renderer()->maximalOutlineSize(paintInfo.phase));
flipForWritingMode(overflowRect);
overflowRect.move(tx, ty);
if (!paintInfo.rect.intersects(overflowRect))
return;
if (paintInfo.phase != PaintPhaseChildOutlines) {
if (paintInfo.phase == PaintPhaseOutline || paintInfo.phase == PaintPhaseSelfOutline) {
// Add ourselves to the paint info struct's list of inlines that need to paint their
// outlines.
if (renderer()->style()->visibility() == VISIBLE && renderer()->hasOutline() && !isRootInlineBox()) {
RenderInline* inlineFlow = toRenderInline(renderer());
RenderBlock* cb = 0;
bool containingBlockPaintsContinuationOutline = inlineFlow->continuation() || inlineFlow->isInlineElementContinuation();
if (containingBlockPaintsContinuationOutline) {
// FIXME: See https://bugs.webkit.org/show_bug.cgi?id=54690. We currently don't reconnect inline continuations
// after a child removal. As a result, those merged inlines do not get seperated and hence not get enclosed by
// anonymous blocks. In this case, it is better to bail out and paint it ourself.
RenderBlock* enclosingAnonymousBlock = renderer()->containingBlock();
if (!enclosingAnonymousBlock->isAnonymousBlock())
containingBlockPaintsContinuationOutline = false;
else {
cb = enclosingAnonymousBlock->containingBlock();
for (RenderBoxModelObject* box = boxModelObject(); box != cb; box = box->parent()->enclosingBoxModelObject()) {
if (box->hasSelfPaintingLayer()) {
containingBlockPaintsContinuationOutline = false;
break;
}
}
}
}
if (containingBlockPaintsContinuationOutline) {
// Add ourselves to the containing block of the entire continuation so that it can
// paint us atomically.
cb->addContinuationWithOutline(toRenderInline(renderer()->node()->renderer()));
} else if (!inlineFlow->isInlineElementContinuation())
paintInfo.outlineObjects->add(inlineFlow);
}
} else if (paintInfo.phase == PaintPhaseMask) {
paintMask(paintInfo, tx, ty);
return;
} else {
// Paint our background, border and box-shadow.
paintBoxDecorations(paintInfo, tx, ty);
}
}
if (paintInfo.phase == PaintPhaseMask)
return;
PaintPhase paintPhase = paintInfo.phase == PaintPhaseChildOutlines ? PaintPhaseOutline : paintInfo.phase;
PaintInfo childInfo(paintInfo);
childInfo.phase = paintPhase;
childInfo.updatePaintingRootForChildren(renderer());
// Paint our children.
if (paintPhase != PaintPhaseSelfOutline) {
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isText() || !curr->boxModelObject()->hasSelfPaintingLayer())
curr->paint(childInfo, tx, ty, lineTop, lineBottom);
}
}
}
void InlineFlowBox::paintFillLayers(const PaintInfo& paintInfo, const Color& c, const FillLayer* fillLayer, int _tx, int _ty, int w, int h, CompositeOperator op)
{
if (!fillLayer)
return;
paintFillLayers(paintInfo, c, fillLayer->next(), _tx, _ty, w, h, op);
paintFillLayer(paintInfo, c, fillLayer, _tx, _ty, w, h, op);
}
void InlineFlowBox::paintFillLayer(const PaintInfo& paintInfo, const Color& c, const FillLayer* fillLayer, int tx, int ty, int w, int h, CompositeOperator op)
{
StyleImage* img = fillLayer->image();
bool hasFillImage = img && img->canRender(renderer()->style()->effectiveZoom());
if ((!hasFillImage && !renderer()->style()->hasBorderRadius()) || (!prevLineBox() && !nextLineBox()) || !parent())
boxModelObject()->paintFillLayerExtended(paintInfo, c, fillLayer, tx, ty, w, h, this, w, h, op);
else {
// We have a fill image that spans multiple lines.
// We need to adjust tx and ty by the width of all previous lines.
// Think of background painting on inlines as though you had one long line, a single continuous
// strip. Even though that strip has been broken up across multiple lines, you still paint it
// as though you had one single line. This means each line has to pick up the background where
// the previous line left off.
int logicalOffsetOnLine = 0;
int totalLogicalWidth;
if (renderer()->style()->direction() == LTR) {
for (InlineFlowBox* curr = prevLineBox(); curr; curr = curr->prevLineBox())
logicalOffsetOnLine += curr->logicalWidth();
totalLogicalWidth = logicalOffsetOnLine;
for (InlineFlowBox* curr = this; curr; curr = curr->nextLineBox())
totalLogicalWidth += curr->logicalWidth();
} else {
for (InlineFlowBox* curr = nextLineBox(); curr; curr = curr->nextLineBox())
logicalOffsetOnLine += curr->logicalWidth();
totalLogicalWidth = logicalOffsetOnLine;
for (InlineFlowBox* curr = this; curr; curr = curr->prevLineBox())
totalLogicalWidth += curr->logicalWidth();
}
int stripX = tx - (isHorizontal() ? logicalOffsetOnLine : 0);
int stripY = ty - (isHorizontal() ? 0 : logicalOffsetOnLine);
int stripWidth = isHorizontal() ? totalLogicalWidth : width();
int stripHeight = isHorizontal() ? height() : totalLogicalWidth;
paintInfo.context->save();
paintInfo.context->clip(IntRect(tx, ty, width(), height()));
boxModelObject()->paintFillLayerExtended(paintInfo, c, fillLayer, stripX, stripY, stripWidth, stripHeight, this, w, h, op);
paintInfo.context->restore();
}
}
void InlineFlowBox::paintBoxShadow(GraphicsContext* context, RenderStyle* s, ShadowStyle shadowStyle, int tx, int ty, int w, int h)
{
if ((!prevLineBox() && !nextLineBox()) || !parent())
boxModelObject()->paintBoxShadow(context, tx, ty, w, h, s, shadowStyle);
else {
// FIXME: We can do better here in the multi-line case. We want to push a clip so that the shadow doesn't
// protrude incorrectly at the edges, and we want to possibly include shadows cast from the previous/following lines
boxModelObject()->paintBoxShadow(context, tx, ty, w, h, s, shadowStyle, includeLogicalLeftEdge(), includeLogicalRightEdge());
}
}
void InlineFlowBox::paintBoxDecorations(PaintInfo& paintInfo, int tx, int ty)
{
if (!paintInfo.shouldPaintWithinRoot(renderer()) || renderer()->style()->visibility() != VISIBLE || paintInfo.phase != PaintPhaseForeground)
return;
// Pixel snap background/border painting.
IntRect frameRect = roundedFrameRect();
int x = frameRect.x();
int y = frameRect.y();
int w = frameRect.width();
int h = frameRect.height();
// Constrain our background/border painting to the line top and bottom if necessary.
bool noQuirksMode = renderer()->document()->inNoQuirksMode();
if (!noQuirksMode && !hasTextChildren() && !(descendantsHaveSameLineHeightAndBaseline() && hasTextDescendants())) {
RootInlineBox* rootBox = root();
int& top = isHorizontal() ? y : x;
int& logicalHeight = isHorizontal() ? h : w;
int bottom = min(rootBox->lineBottom(), top + logicalHeight);
top = max(rootBox->lineTop(), top);
logicalHeight = bottom - top;
}
// Move x/y to our coordinates.
IntRect localRect(x, y, w, h);
flipForWritingMode(localRect);
tx += localRect.x();
ty += localRect.y();
GraphicsContext* context = paintInfo.context;
// You can use p::first-line to specify a background. If so, the root line boxes for
// a line may actually have to paint a background.
RenderStyle* styleToUse = renderer()->style(m_firstLine);
if ((!parent() && m_firstLine && styleToUse != renderer()->style()) || (parent() && renderer()->hasBoxDecorations())) {
// Shadow comes first and is behind the background and border.
paintBoxShadow(context, styleToUse, Normal, tx, ty, w, h);
Color c = styleToUse->visitedDependentColor(CSSPropertyBackgroundColor);
paintFillLayers(paintInfo, c, styleToUse->backgroundLayers(), tx, ty, w, h);
paintBoxShadow(context, styleToUse, Inset, tx, ty, w, h);
// :first-line cannot be used to put borders on a line. Always paint borders with our
// non-first-line style.
if (parent() && renderer()->style()->hasBorder()) {
StyleImage* borderImage = renderer()->style()->borderImage().image();
bool hasBorderImage = borderImage && borderImage->canRender(styleToUse->effectiveZoom());
if (hasBorderImage && !borderImage->isLoaded())
return; // Don't paint anything while we wait for the image to load.
// The simple case is where we either have no border image or we are the only box for this object. In those
// cases only a single call to draw is required.
if (!hasBorderImage || (!prevLineBox() && !nextLineBox()))
boxModelObject()->paintBorder(context, tx, ty, w, h, renderer()->style(), includeLogicalLeftEdge(), includeLogicalRightEdge());
else {
// We have a border image that spans multiple lines.
// We need to adjust tx and ty by the width of all previous lines.
// Think of border image painting on inlines as though you had one long line, a single continuous
// strip. Even though that strip has been broken up across multiple lines, you still paint it
// as though you had one single line. This means each line has to pick up the image where
// the previous line left off.
// FIXME: What the heck do we do with RTL here? The math we're using is obviously not right,
// but it isn't even clear how this should work at all.
int logicalOffsetOnLine = 0;
for (InlineFlowBox* curr = prevLineBox(); curr; curr = curr->prevLineBox())
logicalOffsetOnLine += curr->logicalWidth();
int totalLogicalWidth = logicalOffsetOnLine;
for (InlineFlowBox* curr = this; curr; curr = curr->nextLineBox())
totalLogicalWidth += curr->logicalWidth();
int stripX = tx - (isHorizontal() ? logicalOffsetOnLine : 0);
int stripY = ty - (isHorizontal() ? 0 : logicalOffsetOnLine);
int stripWidth = isHorizontal() ? totalLogicalWidth : w;
int stripHeight = isHorizontal() ? h : totalLogicalWidth;
context->save();
context->clip(IntRect(tx, ty, w, h));
boxModelObject()->paintBorder(context, stripX, stripY, stripWidth, stripHeight, renderer()->style());
context->restore();
}
}
}
}
void InlineFlowBox::paintMask(PaintInfo& paintInfo, int tx, int ty)
{
if (!paintInfo.shouldPaintWithinRoot(renderer()) || renderer()->style()->visibility() != VISIBLE || paintInfo.phase != PaintPhaseMask)
return;
// Pixel snap mask painting.
IntRect frameRect = roundedFrameRect();
int x = frameRect.x();
int y = frameRect.y();
int w = frameRect.width();
int h = frameRect.height();
// Constrain our background/border painting to the line top and bottom if necessary.
bool noQuirksMode = renderer()->document()->inNoQuirksMode();
if (!noQuirksMode && !hasTextChildren() && !(descendantsHaveSameLineHeightAndBaseline() && hasTextDescendants())) {
RootInlineBox* rootBox = root();
int& top = isHorizontal() ? y : x;
int& logicalHeight = isHorizontal() ? h : w;
int bottom = min(rootBox->lineBottom(), top + logicalHeight);
top = max(rootBox->lineTop(), top);
logicalHeight = bottom - top;
}
// Move x/y to our coordinates.
IntRect localRect(x, y, w, h);
flipForWritingMode(localRect);
tx += localRect.x();
ty += localRect.y();
const NinePieceImage& maskNinePieceImage = renderer()->style()->maskBoxImage();
StyleImage* maskBoxImage = renderer()->style()->maskBoxImage().image();
// Figure out if we need to push a transparency layer to render our mask.
bool pushTransparencyLayer = false;
bool compositedMask = renderer()->hasLayer() && boxModelObject()->layer()->hasCompositedMask();
CompositeOperator compositeOp = CompositeSourceOver;
if (!compositedMask) {
if ((maskBoxImage && renderer()->style()->maskLayers()->hasImage()) || renderer()->style()->maskLayers()->next())
pushTransparencyLayer = true;
compositeOp = CompositeDestinationIn;
if (pushTransparencyLayer) {
paintInfo.context->setCompositeOperation(CompositeDestinationIn);
paintInfo.context->beginTransparencyLayer(1.0f);
compositeOp = CompositeSourceOver;
}
}
paintFillLayers(paintInfo, Color(), renderer()->style()->maskLayers(), tx, ty, w, h, compositeOp);
bool hasBoxImage = maskBoxImage && maskBoxImage->canRender(renderer()->style()->effectiveZoom());
if (!hasBoxImage || !maskBoxImage->isLoaded())
return; // Don't paint anything while we wait for the image to load.
// The simple case is where we are the only box for this object. In those
// cases only a single call to draw is required.
if (!prevLineBox() && !nextLineBox()) {
boxModelObject()->paintNinePieceImage(paintInfo.context, tx, ty, w, h, renderer()->style(), maskNinePieceImage, compositeOp);
} else {
// We have a mask image that spans multiple lines.
// We need to adjust _tx and _ty by the width of all previous lines.
int logicalOffsetOnLine = 0;
for (InlineFlowBox* curr = prevLineBox(); curr; curr = curr->prevLineBox())
logicalOffsetOnLine += curr->logicalWidth();
int totalLogicalWidth = logicalOffsetOnLine;
for (InlineFlowBox* curr = this; curr; curr = curr->nextLineBox())
totalLogicalWidth += curr->logicalWidth();
int stripX = tx - (isHorizontal() ? logicalOffsetOnLine : 0);
int stripY = ty - (isHorizontal() ? 0 : logicalOffsetOnLine);
int stripWidth = isHorizontal() ? totalLogicalWidth : w;
int stripHeight = isHorizontal() ? h : totalLogicalWidth;
paintInfo.context->save();
paintInfo.context->clip(IntRect(tx, ty, w, h));
boxModelObject()->paintNinePieceImage(paintInfo.context, stripX, stripY, stripWidth, stripHeight, renderer()->style(), maskNinePieceImage, compositeOp);
paintInfo.context->restore();
}
if (pushTransparencyLayer)
paintInfo.context->endTransparencyLayer();
}
InlineBox* InlineFlowBox::firstLeafChild() const
{
InlineBox* leaf = 0;
for (InlineBox* child = firstChild(); child && !leaf; child = child->nextOnLine())
leaf = child->isLeaf() ? child : static_cast<InlineFlowBox*>(child)->firstLeafChild();
return leaf;
}
InlineBox* InlineFlowBox::lastLeafChild() const
{
InlineBox* leaf = 0;
for (InlineBox* child = lastChild(); child && !leaf; child = child->prevOnLine())
leaf = child->isLeaf() ? child : static_cast<InlineFlowBox*>(child)->lastLeafChild();
return leaf;
}
RenderObject::SelectionState InlineFlowBox::selectionState()
{
return RenderObject::SelectionNone;
}
bool InlineFlowBox::canAccommodateEllipsis(bool ltr, int blockEdge, int ellipsisWidth)
{
for (InlineBox *box = firstChild(); box; box = box->nextOnLine()) {
if (!box->canAccommodateEllipsis(ltr, blockEdge, ellipsisWidth))
return false;
}
return true;
}
float InlineFlowBox::placeEllipsisBox(bool ltr, float blockLeftEdge, float blockRightEdge, float ellipsisWidth, bool& foundBox)
{
float result = -1;
// We iterate over all children, the foundBox variable tells us when we've found the
// box containing the ellipsis. All boxes after that one in the flow are hidden.
// If our flow is ltr then iterate over the boxes from left to right, otherwise iterate
// from right to left. Varying the order allows us to correctly hide the boxes following the ellipsis.
InlineBox* box = ltr ? firstChild() : lastChild();
// NOTE: these will cross after foundBox = true.
int visibleLeftEdge = blockLeftEdge;
int visibleRightEdge = blockRightEdge;
while (box) {
int currResult = box->placeEllipsisBox(ltr, visibleLeftEdge, visibleRightEdge, ellipsisWidth, foundBox);
if (currResult != -1 && result == -1)
result = currResult;
if (ltr) {
visibleLeftEdge += box->logicalWidth();
box = box->nextOnLine();
}
else {
visibleRightEdge -= box->logicalWidth();
box = box->prevOnLine();
}
}
return result;
}
void InlineFlowBox::clearTruncation()
{
for (InlineBox *box = firstChild(); box; box = box->nextOnLine())
box->clearTruncation();
}
int InlineFlowBox::computeOverAnnotationAdjustment(int allowedPosition) const
{
int result = 0;
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isPositioned())
continue; // Positioned placeholders don't affect calculations.
if (curr->isInlineFlowBox())
result = max(result, static_cast<InlineFlowBox*>(curr)->computeOverAnnotationAdjustment(allowedPosition));
if (curr->renderer()->isReplaced() && curr->renderer()->isRubyRun()) {
RenderRubyRun* rubyRun = static_cast<RenderRubyRun*>(curr->renderer());
RenderRubyText* rubyText = rubyRun->rubyText();
if (!rubyText)
continue;
if (!rubyRun->style()->isFlippedLinesWritingMode()) {
int topOfFirstRubyTextLine = rubyText->logicalTop() + (rubyText->firstRootBox() ? rubyText->firstRootBox()->lineTop() : 0);
if (topOfFirstRubyTextLine >= 0)
continue;
topOfFirstRubyTextLine += curr->logicalTop();
result = max(result, allowedPosition - topOfFirstRubyTextLine);
} else {
int bottomOfLastRubyTextLine = rubyText->logicalTop() + (rubyText->lastRootBox() ? rubyText->lastRootBox()->lineBottom() : rubyText->logicalHeight());
if (bottomOfLastRubyTextLine <= curr->logicalHeight())
continue;
bottomOfLastRubyTextLine += curr->logicalTop();
result = max(result, bottomOfLastRubyTextLine - allowedPosition);
}
}
if (curr->isInlineTextBox()) {
RenderStyle* style = curr->renderer()->style(m_firstLine);
TextEmphasisPosition emphasisMarkPosition;
if (style->textEmphasisMark() != TextEmphasisMarkNone && static_cast<InlineTextBox*>(curr)->getEmphasisMarkPosition(style, emphasisMarkPosition) && emphasisMarkPosition == TextEmphasisPositionOver) {
if (!style->isFlippedLinesWritingMode()) {
int topOfEmphasisMark = curr->logicalTop() - style->font().emphasisMarkHeight(style->textEmphasisMarkString());
result = max(result, allowedPosition - topOfEmphasisMark);
} else {
int bottomOfEmphasisMark = curr->logicalBottom() + style->font().emphasisMarkHeight(style->textEmphasisMarkString());
result = max(result, bottomOfEmphasisMark - allowedPosition);
}
}
}
}
return result;
}
int InlineFlowBox::computeUnderAnnotationAdjustment(int allowedPosition) const
{
int result = 0;
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer()->isPositioned())
continue; // Positioned placeholders don't affect calculations.
if (curr->isInlineFlowBox())
result = max(result, static_cast<InlineFlowBox*>(curr)->computeUnderAnnotationAdjustment(allowedPosition));
if (curr->isInlineTextBox()) {
RenderStyle* style = curr->renderer()->style(m_firstLine);
if (style->textEmphasisMark() != TextEmphasisMarkNone && style->textEmphasisPosition() == TextEmphasisPositionUnder) {
if (!style->isFlippedLinesWritingMode()) {
int bottomOfEmphasisMark = curr->logicalBottom() + style->font().emphasisMarkHeight(style->textEmphasisMarkString());
result = max(result, bottomOfEmphasisMark - allowedPosition);
} else {
int topOfEmphasisMark = curr->logicalTop() - style->font().emphasisMarkHeight(style->textEmphasisMarkString());
result = max(result, allowedPosition - topOfEmphasisMark);
}
}
}
}
return result;
}
void InlineFlowBox::collectLeafBoxesInLogicalOrder(Vector<InlineBox*>& leafBoxesInLogicalOrder, CustomInlineBoxRangeReverse customReverseImplementation, void* userData) const
{
InlineBox* leaf = firstLeafChild();
// FIXME: The reordering code is a copy of parts from BidiResolver::createBidiRunsForLine, operating directly on InlineBoxes, instead of BidiRuns.
// Investigate on how this code could possibly be shared.
unsigned char minLevel = 128;
unsigned char maxLevel = 0;
// First find highest and lowest levels, and initialize leafBoxesInLogicalOrder with the leaf boxes in visual order.
for (; leaf; leaf = leaf->nextLeafChild()) {
minLevel = min(minLevel, leaf->bidiLevel());
maxLevel = max(maxLevel, leaf->bidiLevel());
leafBoxesInLogicalOrder.append(leaf);
}
if (renderer()->style()->visuallyOrdered())
return;
// Reverse of reordering of the line (L2 according to Bidi spec):
// L2. From the highest level found in the text to the lowest odd level on each line,
// reverse any contiguous sequence of characters that are at that level or higher.
// Reversing the reordering of the line is only done up to the lowest odd level.
if (!(minLevel % 2))
++minLevel;
Vector<InlineBox*>::iterator end = leafBoxesInLogicalOrder.end();
while (minLevel <= maxLevel) {
Vector<InlineBox*>::iterator it = leafBoxesInLogicalOrder.begin();
while (it != end) {
while (it != end) {
if ((*it)->bidiLevel() >= minLevel)
break;
++it;
}
Vector<InlineBox*>::iterator first = it;
while (it != end) {
if ((*it)->bidiLevel() < minLevel)
break;
++it;
}
Vector<InlineBox*>::iterator last = it;
if (customReverseImplementation) {
ASSERT(userData);
(*customReverseImplementation)(userData, first, last);
} else
std::reverse(first, last);
}
++minLevel;
}
}
#ifndef NDEBUG
void InlineFlowBox::checkConsistency() const
{
#ifdef CHECK_CONSISTENCY
ASSERT(!m_hasBadChildList);
const InlineBox* prev = 0;
for (const InlineBox* child = m_firstChild; child; child = child->nextOnLine()) {
ASSERT(child->parent() == this);
ASSERT(child->prevOnLine() == prev);
prev = child;
}
ASSERT(prev == m_lastChild);
#endif
}
#endif
} // namespace WebCore