/*
* Copyright (C) 2000 Lars Knoll (knoll@kde.org)
* Copyright (C) 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All right reserved.
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "BidiResolver.h"
#include "Hyphenation.h"
#include "InlineIterator.h"
#include "InlineTextBox.h"
#include "Logging.h"
#include "RenderArena.h"
#include "RenderCombineText.h"
#include "RenderInline.h"
#include "RenderLayer.h"
#include "RenderListMarker.h"
#include "RenderRubyRun.h"
#include "RenderView.h"
#include "Settings.h"
#include "TextBreakIterator.h"
#include "TextRun.h"
#include "TrailingFloatsRootInlineBox.h"
#include "VerticalPositionCache.h"
#include "break_lines.h"
#include <wtf/AlwaysInline.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/StdLibExtras.h>
#include <wtf/Vector.h>
#include <wtf/unicode/CharacterNames.h>
#if ENABLE(SVG)
#include "RenderSVGInlineText.h"
#include "SVGRootInlineBox.h"
#endif
#ifdef ANDROID_LAYOUT
#include "Frame.h"
#include "FrameTree.h"
#include "Settings.h"
#include "Text.h"
#include "HTMLNames.h"
#endif // ANDROID_LAYOUT
using namespace std;
using namespace WTF;
using namespace Unicode;
namespace WebCore {
// We don't let our line box tree for a single line get any deeper than this.
const unsigned cMaxLineDepth = 200;
static inline int borderPaddingMarginStart(RenderInline* child)
{
return child->marginStart() + child->paddingStart() + child->borderStart();
}
static inline int borderPaddingMarginEnd(RenderInline* child)
{
return child->marginEnd() + child->paddingEnd() + child->borderEnd();
}
static int inlineLogicalWidth(RenderObject* child, bool start = true, bool end = true)
{
unsigned lineDepth = 1;
int extraWidth = 0;
RenderObject* parent = child->parent();
while (parent->isRenderInline() && lineDepth++ < cMaxLineDepth) {
RenderInline* parentAsRenderInline = toRenderInline(parent);
if (start && !child->previousSibling())
extraWidth += borderPaddingMarginStart(parentAsRenderInline);
if (end && !child->nextSibling())
extraWidth += borderPaddingMarginEnd(parentAsRenderInline);
child = parent;
parent = child->parent();
}
return extraWidth;
}
static void checkMidpoints(LineMidpointState& lineMidpointState, InlineIterator& lBreak)
{
// Check to see if our last midpoint is a start point beyond the line break. If so,
// shave it off the list, and shave off a trailing space if the previous end point doesn't
// preserve whitespace.
if (lBreak.m_obj && lineMidpointState.numMidpoints && !(lineMidpointState.numMidpoints % 2)) {
InlineIterator* midpoints = lineMidpointState.midpoints.data();
InlineIterator& endpoint = midpoints[lineMidpointState.numMidpoints - 2];
const InlineIterator& startpoint = midpoints[lineMidpointState.numMidpoints - 1];
InlineIterator currpoint = endpoint;
while (!currpoint.atEnd() && currpoint != startpoint && currpoint != lBreak)
currpoint.increment();
if (currpoint == lBreak) {
// We hit the line break before the start point. Shave off the start point.
lineMidpointState.numMidpoints--;
if (endpoint.m_obj->style()->collapseWhiteSpace())
endpoint.m_pos--;
}
}
}
static void addMidpoint(LineMidpointState& lineMidpointState, const InlineIterator& midpoint)
{
if (lineMidpointState.midpoints.size() <= lineMidpointState.numMidpoints)
lineMidpointState.midpoints.grow(lineMidpointState.numMidpoints + 10);
InlineIterator* midpoints = lineMidpointState.midpoints.data();
midpoints[lineMidpointState.numMidpoints++] = midpoint;
}
static inline BidiRun* createRun(int start, int end, RenderObject* obj, InlineBidiResolver& resolver)
{
return new (obj->renderArena()) BidiRun(start, end, obj, resolver.context(), resolver.dir());
}
void RenderBlock::appendRunsForObject(BidiRunList<BidiRun>& runs, int start, int end, RenderObject* obj, InlineBidiResolver& resolver)
{
if (start > end || obj->isFloating() ||
(obj->isPositioned() && !obj->style()->isOriginalDisplayInlineType() && !obj->container()->isRenderInline()))
return;
LineMidpointState& lineMidpointState = resolver.midpointState();
bool haveNextMidpoint = (lineMidpointState.currentMidpoint < lineMidpointState.numMidpoints);
InlineIterator nextMidpoint;
if (haveNextMidpoint)
nextMidpoint = lineMidpointState.midpoints[lineMidpointState.currentMidpoint];
if (lineMidpointState.betweenMidpoints) {
if (!(haveNextMidpoint && nextMidpoint.m_obj == obj))
return;
// This is a new start point. Stop ignoring objects and
// adjust our start.
lineMidpointState.betweenMidpoints = false;
start = nextMidpoint.m_pos;
lineMidpointState.currentMidpoint++;
if (start < end)
return appendRunsForObject(runs, start, end, obj, resolver);
} else {
if (!haveNextMidpoint || (obj != nextMidpoint.m_obj)) {
runs.addRun(createRun(start, end, obj, resolver));
return;
}
// An end midpoint has been encountered within our object. We
// need to go ahead and append a run with our endpoint.
if (static_cast<int>(nextMidpoint.m_pos + 1) <= end) {
lineMidpointState.betweenMidpoints = true;
lineMidpointState.currentMidpoint++;
if (nextMidpoint.m_pos != UINT_MAX) { // UINT_MAX means stop at the object and don't include any of it.
if (static_cast<int>(nextMidpoint.m_pos + 1) > start)
runs.addRun(createRun(start, nextMidpoint.m_pos + 1, obj, resolver));
return appendRunsForObject(runs, nextMidpoint.m_pos + 1, end, obj, resolver);
}
} else
runs.addRun(createRun(start, end, obj, resolver));
}
}
static inline InlineBox* createInlineBoxForRenderer(RenderObject* obj, bool isRootLineBox, bool isOnlyRun = false)
{
if (isRootLineBox)
return toRenderBlock(obj)->createAndAppendRootInlineBox();
if (obj->isText()) {
InlineTextBox* textBox = toRenderText(obj)->createInlineTextBox();
// We only treat a box as text for a <br> if we are on a line by ourself or in strict mode
// (Note the use of strict mode. In "almost strict" mode, we don't treat the box for <br> as text.)
if (obj->isBR())
textBox->setIsText(isOnlyRun || obj->document()->inNoQuirksMode());
return textBox;
}
if (obj->isBox())
return toRenderBox(obj)->createInlineBox();
return toRenderInline(obj)->createAndAppendInlineFlowBox();
}
static inline void dirtyLineBoxesForRenderer(RenderObject* o, bool fullLayout)
{
if (o->isText()) {
if (o->preferredLogicalWidthsDirty() && (o->isCounter() || o->isQuote()))
toRenderText(o)->computePreferredLogicalWidths(0); // FIXME: Counters depend on this hack. No clue why. Should be investigated and removed.
toRenderText(o)->dirtyLineBoxes(fullLayout);
} else
toRenderInline(o)->dirtyLineBoxes(fullLayout);
}
static bool parentIsConstructedOrHaveNext(InlineFlowBox* parentBox)
{
do {
if (parentBox->isConstructed() || parentBox->nextOnLine())
return true;
parentBox = parentBox->parent();
} while (parentBox);
return false;
}
InlineFlowBox* RenderBlock::createLineBoxes(RenderObject* obj, bool firstLine, InlineBox* childBox)
{
// See if we have an unconstructed line box for this object that is also
// the last item on the line.
unsigned lineDepth = 1;
InlineFlowBox* parentBox = 0;
InlineFlowBox* result = 0;
bool hasDefaultLineBoxContain = style()->lineBoxContain() == RenderStyle::initialLineBoxContain();
do {
ASSERT(obj->isRenderInline() || obj == this);
RenderInline* inlineFlow = (obj != this) ? toRenderInline(obj) : 0;
// Get the last box we made for this render object.
parentBox = inlineFlow ? inlineFlow->lastLineBox() : toRenderBlock(obj)->lastLineBox();
// If this box or its ancestor is constructed then it is from a previous line, and we need
// to make a new box for our line. If this box or its ancestor is unconstructed but it has
// something following it on the line, then we know we have to make a new box
// as well. In this situation our inline has actually been split in two on
// the same line (this can happen with very fancy language mixtures).
bool constructedNewBox = false;
bool allowedToConstructNewBox = !hasDefaultLineBoxContain || !inlineFlow || inlineFlow->alwaysCreateLineBoxes();
bool canUseExistingParentBox = parentBox && !parentIsConstructedOrHaveNext(parentBox);
if (allowedToConstructNewBox && !canUseExistingParentBox) {
// We need to make a new box for this render object. Once
// made, we need to place it at the end of the current line.
InlineBox* newBox = createInlineBoxForRenderer(obj, obj == this);
ASSERT(newBox->isInlineFlowBox());
parentBox = static_cast<InlineFlowBox*>(newBox);
parentBox->setFirstLineStyleBit(firstLine);
parentBox->setIsHorizontal(isHorizontalWritingMode());
if (!hasDefaultLineBoxContain)
parentBox->clearDescendantsHaveSameLineHeightAndBaseline();
constructedNewBox = true;
}
if (constructedNewBox || canUseExistingParentBox) {
if (!result)
result = parentBox;
// If we have hit the block itself, then |box| represents the root
// inline box for the line, and it doesn't have to be appended to any parent
// inline.
if (childBox)
parentBox->addToLine(childBox);
if (!constructedNewBox || obj == this)
break;
childBox = parentBox;
}
// If we've exceeded our line depth, then jump straight to the root and skip all the remaining
// intermediate inline flows.
obj = (++lineDepth >= cMaxLineDepth) ? this : obj->parent();
} while (true);
return result;
}
static bool reachedEndOfTextRenderer(const BidiRunList<BidiRun>& bidiRuns)
{
BidiRun* run = bidiRuns.logicallyLastRun();
if (!run)
return true;
unsigned int pos = run->stop();
RenderObject* r = run->m_object;
if (!r->isText() || r->isBR())
return false;
RenderText* renderText = toRenderText(r);
if (pos >= renderText->textLength())
return true;
while (isASCIISpace(renderText->characters()[pos])) {
pos++;
if (pos >= renderText->textLength())
return true;
}
return false;
}
RootInlineBox* RenderBlock::constructLine(BidiRunList<BidiRun>& bidiRuns, bool firstLine, bool lastLine)
{
ASSERT(bidiRuns.firstRun());
bool rootHasSelectedChildren = false;
InlineFlowBox* parentBox = 0;
for (BidiRun* r = bidiRuns.firstRun(); r; r = r->next()) {
// Create a box for our object.
bool isOnlyRun = (bidiRuns.runCount() == 1);
if (bidiRuns.runCount() == 2 && !r->m_object->isListMarker())
isOnlyRun = (!style()->isLeftToRightDirection() ? bidiRuns.lastRun() : bidiRuns.firstRun())->m_object->isListMarker();
InlineBox* box = createInlineBoxForRenderer(r->m_object, false, isOnlyRun);
r->m_box = box;
ASSERT(box);
if (!box)
continue;
if (!rootHasSelectedChildren && box->renderer()->selectionState() != RenderObject::SelectionNone)
rootHasSelectedChildren = true;
// If we have no parent box yet, or if the run is not simply a sibling,
// then we need to construct inline boxes as necessary to properly enclose the
// run's inline box.
if (!parentBox || parentBox->renderer() != r->m_object->parent())
// Create new inline boxes all the way back to the appropriate insertion point.
parentBox = createLineBoxes(r->m_object->parent(), firstLine, box);
else {
// Append the inline box to this line.
parentBox->addToLine(box);
}
bool visuallyOrdered = r->m_object->style()->visuallyOrdered();
box->setBidiLevel(r->level());
if (box->isInlineTextBox()) {
InlineTextBox* text = static_cast<InlineTextBox*>(box);
text->setStart(r->m_start);
text->setLen(r->m_stop - r->m_start);
text->m_dirOverride = r->dirOverride(visuallyOrdered);
if (r->m_hasHyphen)
text->setHasHyphen(true);
}
}
// We should have a root inline box. It should be unconstructed and
// be the last continuation of our line list.
ASSERT(lastLineBox() && !lastLineBox()->isConstructed());
// Set the m_selectedChildren flag on the root inline box if one of the leaf inline box
// from the bidi runs walk above has a selection state.
if (rootHasSelectedChildren)
lastLineBox()->root()->setHasSelectedChildren(true);
// Set bits on our inline flow boxes that indicate which sides should
// paint borders/margins/padding. This knowledge will ultimately be used when
// we determine the horizontal positions and widths of all the inline boxes on
// the line.
bool isLogicallyLastRunWrapped = bidiRuns.logicallyLastRun()->m_object && bidiRuns.logicallyLastRun()->m_object->isText() ? !reachedEndOfTextRenderer(bidiRuns) : true;
lastLineBox()->determineSpacingForFlowBoxes(lastLine, isLogicallyLastRunWrapped, bidiRuns.logicallyLastRun()->m_object);
// Now mark the line boxes as being constructed.
lastLineBox()->setConstructed();
// Return the last line.
return lastRootBox();
}
ETextAlign RenderBlock::textAlignmentForLine(bool endsWithSoftBreak) const
{
ETextAlign alignment = style()->textAlign();
if (!endsWithSoftBreak && alignment == JUSTIFY)
alignment = TAAUTO;
return alignment;
}
static void updateLogicalWidthForLeftAlignedBlock(bool isLeftToRightDirection, BidiRun* trailingSpaceRun, float& logicalLeft, float& totalLogicalWidth, float availableLogicalWidth)
{
// The direction of the block should determine what happens with wide lines.
// In particular with RTL blocks, wide lines should still spill out to the left.
if (isLeftToRightDirection) {
if (totalLogicalWidth > availableLogicalWidth && trailingSpaceRun)
trailingSpaceRun->m_box->setLogicalWidth(max<float>(0, trailingSpaceRun->m_box->logicalWidth() - totalLogicalWidth + availableLogicalWidth));
return;
}
if (trailingSpaceRun)
trailingSpaceRun->m_box->setLogicalWidth(0);
else if (totalLogicalWidth > availableLogicalWidth)
logicalLeft -= (totalLogicalWidth - availableLogicalWidth);
}
static void updateLogicalWidthForRightAlignedBlock(bool isLeftToRightDirection, BidiRun* trailingSpaceRun, float& logicalLeft, float& totalLogicalWidth, float availableLogicalWidth)
{
// Wide lines spill out of the block based off direction.
// So even if text-align is right, if direction is LTR, wide lines should overflow out of the right
// side of the block.
if (isLeftToRightDirection) {
if (trailingSpaceRun) {
totalLogicalWidth -= trailingSpaceRun->m_box->logicalWidth();
trailingSpaceRun->m_box->setLogicalWidth(0);
}
if (totalLogicalWidth < availableLogicalWidth)
logicalLeft += availableLogicalWidth - totalLogicalWidth;
return;
}
if (totalLogicalWidth > availableLogicalWidth && trailingSpaceRun) {
trailingSpaceRun->m_box->setLogicalWidth(max<float>(0, trailingSpaceRun->m_box->logicalWidth() - totalLogicalWidth + availableLogicalWidth));
totalLogicalWidth -= trailingSpaceRun->m_box->logicalWidth();
} else
logicalLeft += availableLogicalWidth - totalLogicalWidth;
}
static void updateLogicalWidthForCenterAlignedBlock(bool isLeftToRightDirection, BidiRun* trailingSpaceRun, float& logicalLeft, float& totalLogicalWidth, float availableLogicalWidth)
{
float trailingSpaceWidth = 0;
if (trailingSpaceRun) {
totalLogicalWidth -= trailingSpaceRun->m_box->logicalWidth();
trailingSpaceWidth = min(trailingSpaceRun->m_box->logicalWidth(), (availableLogicalWidth - totalLogicalWidth + 1) / 2);
trailingSpaceRun->m_box->setLogicalWidth(max<float>(0, trailingSpaceWidth));
}
if (isLeftToRightDirection)
logicalLeft += max<float>((availableLogicalWidth - totalLogicalWidth) / 2, 0);
else
logicalLeft += totalLogicalWidth > availableLogicalWidth ? (availableLogicalWidth - totalLogicalWidth) : (availableLogicalWidth - totalLogicalWidth) / 2 - trailingSpaceWidth;
}
void RenderBlock::computeInlineDirectionPositionsForLine(RootInlineBox* lineBox, bool firstLine, BidiRun* firstRun, BidiRun* trailingSpaceRun, bool reachedEnd,
GlyphOverflowAndFallbackFontsMap& textBoxDataMap, VerticalPositionCache& verticalPositionCache)
{
ETextAlign textAlign = textAlignmentForLine(!reachedEnd && !lineBox->endsWithBreak());
float logicalLeft = logicalLeftOffsetForLine(logicalHeight(), firstLine);
float availableLogicalWidth = logicalRightOffsetForLine(logicalHeight(), firstLine) - logicalLeft;
bool needsWordSpacing = false;
float totalLogicalWidth = lineBox->getFlowSpacingLogicalWidth();
unsigned expansionOpportunityCount = 0;
bool isAfterExpansion = true;
Vector<unsigned, 16> expansionOpportunities;
RenderObject* previousObject = 0;
for (BidiRun* r = firstRun; r; r = r->next()) {
if (!r->m_box || r->m_object->isPositioned() || r->m_box->isLineBreak())
continue; // Positioned objects are only participating to figure out their
// correct static x position. They have no effect on the width.
// Similarly, line break boxes have no effect on the width.
if (r->m_object->isText()) {
RenderText* rt = toRenderText(r->m_object);
if (textAlign == JUSTIFY && r != trailingSpaceRun) {
if (!isAfterExpansion)
static_cast<InlineTextBox*>(r->m_box)->setCanHaveLeadingExpansion(true);
unsigned opportunitiesInRun = Font::expansionOpportunityCount(rt->characters() + r->m_start, r->m_stop - r->m_start, r->m_box->direction(), isAfterExpansion);
expansionOpportunities.append(opportunitiesInRun);
expansionOpportunityCount += opportunitiesInRun;
}
if (int length = rt->textLength()) {
if (!r->m_start && needsWordSpacing && isSpaceOrNewline(rt->characters()[r->m_start]))
totalLogicalWidth += rt->style(firstLine)->font().wordSpacing();
needsWordSpacing = !isSpaceOrNewline(rt->characters()[r->m_stop - 1]) && r->m_stop == length;
}
HashSet<const SimpleFontData*> fallbackFonts;
GlyphOverflow glyphOverflow;
// Always compute glyph overflow if the block's line-box-contain value is "glyphs".
if (lineBox->fitsToGlyphs()) {
// If we don't stick out of the root line's font box, then don't bother computing our glyph overflow. This optimization
// will keep us from computing glyph bounds in nearly all cases.
bool includeRootLine = lineBox->includesRootLineBoxFontOrLeading();
int baselineShift = lineBox->verticalPositionForBox(r->m_box, verticalPositionCache);
int rootDescent = includeRootLine ? lineBox->renderer()->style(firstLine)->font().fontMetrics().descent() : 0;
int rootAscent = includeRootLine ? lineBox->renderer()->style(firstLine)->font().fontMetrics().ascent() : 0;
int boxAscent = rt->style(firstLine)->font().fontMetrics().ascent() - baselineShift;
int boxDescent = rt->style(firstLine)->font().fontMetrics().descent() + baselineShift;
if (boxAscent > rootDescent || boxDescent > rootAscent)
glyphOverflow.computeBounds = true;
}
int hyphenWidth = 0;
if (static_cast<InlineTextBox*>(r->m_box)->hasHyphen()) {
const AtomicString& hyphenString = rt->style()->hyphenString();
hyphenWidth = rt->style(firstLine)->font().width(TextRun(hyphenString.characters(), hyphenString.length()));
}
r->m_box->setLogicalWidth(rt->width(r->m_start, r->m_stop - r->m_start, totalLogicalWidth, firstLine, &fallbackFonts, &glyphOverflow) + hyphenWidth);
if (!fallbackFonts.isEmpty()) {
ASSERT(r->m_box->isText());
GlyphOverflowAndFallbackFontsMap::iterator it = textBoxDataMap.add(static_cast<InlineTextBox*>(r->m_box), make_pair(Vector<const SimpleFontData*>(), GlyphOverflow())).first;
ASSERT(it->second.first.isEmpty());
copyToVector(fallbackFonts, it->second.first);
r->m_box->parent()->clearDescendantsHaveSameLineHeightAndBaseline();
}
if ((glyphOverflow.top || glyphOverflow.bottom || glyphOverflow.left || glyphOverflow.right)) {
ASSERT(r->m_box->isText());
GlyphOverflowAndFallbackFontsMap::iterator it = textBoxDataMap.add(static_cast<InlineTextBox*>(r->m_box), make_pair(Vector<const SimpleFontData*>(), GlyphOverflow())).first;
it->second.second = glyphOverflow;
r->m_box->clearKnownToHaveNoOverflow();
}
} else {
isAfterExpansion = false;
if (!r->m_object->isRenderInline()) {
RenderBox* renderBox = toRenderBox(r->m_object);
if (renderBox->isRubyRun()) {
int startOverhang;
int endOverhang;
RenderObject* nextObject = 0;
for (BidiRun* runWithNextObject = r->next(); runWithNextObject; runWithNextObject = runWithNextObject->next()) {
if (!runWithNextObject->m_object->isPositioned() && !runWithNextObject->m_box->isLineBreak()) {
nextObject = runWithNextObject->m_object;
break;
}
}
toRenderRubyRun(renderBox)->getOverhang(firstLine, renderBox->style()->isLeftToRightDirection() ? previousObject : nextObject, renderBox->style()->isLeftToRightDirection() ? nextObject : previousObject, startOverhang, endOverhang);
setMarginStartForChild(renderBox, -startOverhang);
setMarginEndForChild(renderBox, -endOverhang);
}
r->m_box->setLogicalWidth(logicalWidthForChild(renderBox));
totalLogicalWidth += marginStartForChild(renderBox) + marginEndForChild(renderBox);
}
}
totalLogicalWidth += r->m_box->logicalWidth();
previousObject = r->m_object;
}
if (isAfterExpansion && !expansionOpportunities.isEmpty()) {
expansionOpportunities.last()--;
expansionOpportunityCount--;
}
// Armed with the total width of the line (without justification),
// we now examine our text-align property in order to determine where to position the
// objects horizontally. The total width of the line can be increased if we end up
// justifying text.
switch (textAlign) {
case LEFT:
case WEBKIT_LEFT:
updateLogicalWidthForLeftAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth);
break;
case JUSTIFY:
adjustInlineDirectionLineBounds(expansionOpportunityCount, logicalLeft, availableLogicalWidth);
if (expansionOpportunityCount) {
if (trailingSpaceRun) {
totalLogicalWidth -= trailingSpaceRun->m_box->logicalWidth();
trailingSpaceRun->m_box->setLogicalWidth(0);
}
break;
}
// fall through
case TAAUTO:
// for right to left fall through to right aligned
if (style()->isLeftToRightDirection()) {
if (totalLogicalWidth > availableLogicalWidth && trailingSpaceRun)
trailingSpaceRun->m_box->setLogicalWidth(max<float>(0, trailingSpaceRun->m_box->logicalWidth() - totalLogicalWidth + availableLogicalWidth));
break;
}
case RIGHT:
case WEBKIT_RIGHT:
updateLogicalWidthForRightAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth);
break;
case CENTER:
case WEBKIT_CENTER:
updateLogicalWidthForCenterAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth);
break;
case TASTART:
if (style()->isLeftToRightDirection())
updateLogicalWidthForLeftAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth);
else
updateLogicalWidthForRightAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth);
break;
case TAEND:
if (style()->isLeftToRightDirection())
updateLogicalWidthForRightAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth);
else
updateLogicalWidthForLeftAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth);
break;
}
if (expansionOpportunityCount && availableLogicalWidth > totalLogicalWidth) {
size_t i = 0;
for (BidiRun* r = firstRun; r; r = r->next()) {
if (!r->m_box || r == trailingSpaceRun)
continue;
if (r->m_object->isText()) {
unsigned opportunitiesInRun = expansionOpportunities[i++];
ASSERT(opportunitiesInRun <= expansionOpportunityCount);
// Only justify text if whitespace is collapsed.
if (r->m_object->style()->collapseWhiteSpace()) {
InlineTextBox* textBox = static_cast<InlineTextBox*>(r->m_box);
float expansion = (availableLogicalWidth - totalLogicalWidth) * opportunitiesInRun / expansionOpportunityCount;
textBox->setExpansion(expansion);
totalLogicalWidth += expansion;
}
expansionOpportunityCount -= opportunitiesInRun;
if (!expansionOpportunityCount)
break;
}
}
}
// The widths of all runs are now known. We can now place every inline box (and
// compute accurate widths for the inline flow boxes).
needsWordSpacing = false;
lineBox->placeBoxesInInlineDirection(logicalLeft, needsWordSpacing, textBoxDataMap);
}
void RenderBlock::computeBlockDirectionPositionsForLine(RootInlineBox* lineBox, BidiRun* firstRun, GlyphOverflowAndFallbackFontsMap& textBoxDataMap,
VerticalPositionCache& verticalPositionCache)
{
setLogicalHeight(lineBox->alignBoxesInBlockDirection(logicalHeight(), textBoxDataMap, verticalPositionCache));
lineBox->setBlockLogicalHeight(logicalHeight());
// Now make sure we place replaced render objects correctly.
for (BidiRun* r = firstRun; r; r = r->next()) {
ASSERT(r->m_box);
if (!r->m_box)
continue; // Skip runs with no line boxes.
// Align positioned boxes with the top of the line box. This is
// a reasonable approximation of an appropriate y position.
if (r->m_object->isPositioned())
r->m_box->setLogicalTop(logicalHeight());
// Position is used to properly position both replaced elements and
// to update the static normal flow x/y of positioned elements.
if (r->m_object->isText())
toRenderText(r->m_object)->positionLineBox(r->m_box);
else if (r->m_object->isBox())
toRenderBox(r->m_object)->positionLineBox(r->m_box);
}
// Positioned objects and zero-length text nodes destroy their boxes in
// position(), which unnecessarily dirties the line.
lineBox->markDirty(false);
}
static inline bool isCollapsibleSpace(UChar character, RenderText* renderer)
{
if (character == ' ' || character == '\t' || character == softHyphen)
return true;
if (character == '\n')
return !renderer->style()->preserveNewline();
if (character == noBreakSpace)
return renderer->style()->nbspMode() == SPACE;
return false;
}
static void setStaticPositions(RenderBlock* block, RenderBox* child)
{
// FIXME: The math here is actually not really right. It's a best-guess approximation that
// will work for the common cases
RenderObject* containerBlock = child->container();
int blockHeight = block->logicalHeight();
if (containerBlock->isRenderInline()) {
// A relative positioned inline encloses us. In this case, we also have to determine our
// position as though we were an inline. Set |staticInlinePosition| and |staticBlockPosition| on the relative positioned
// inline so that we can obtain the value later.
toRenderInline(containerBlock)->layer()->setStaticInlinePosition(block->startOffsetForLine(blockHeight, false));
toRenderInline(containerBlock)->layer()->setStaticBlockPosition(blockHeight);
}
if (child->style()->isOriginalDisplayInlineType())
child->layer()->setStaticInlinePosition(block->startOffsetForLine(blockHeight, false));
else
child->layer()->setStaticInlinePosition(block->borderAndPaddingStart());
child->layer()->setStaticBlockPosition(blockHeight);
}
inline BidiRun* RenderBlock::handleTrailingSpaces(BidiRunList<BidiRun>& bidiRuns, BidiContext* currentContext)
{
if (!bidiRuns.runCount()
|| !bidiRuns.logicallyLastRun()->m_object->style()->breakOnlyAfterWhiteSpace()
|| !bidiRuns.logicallyLastRun()->m_object->style()->autoWrap())
return 0;
BidiRun* trailingSpaceRun = bidiRuns.logicallyLastRun();
RenderObject* lastObject = trailingSpaceRun->m_object;
if (!lastObject->isText())
return 0;
RenderText* lastText = toRenderText(lastObject);
const UChar* characters = lastText->characters();
int firstSpace = trailingSpaceRun->stop();
while (firstSpace > trailingSpaceRun->start()) {
UChar current = characters[firstSpace - 1];
if (!isCollapsibleSpace(current, lastText))
break;
firstSpace--;
}
if (firstSpace == trailingSpaceRun->stop())
return 0;
TextDirection direction = style()->direction();
bool shouldReorder = trailingSpaceRun != (direction == LTR ? bidiRuns.lastRun() : bidiRuns.firstRun());
if (firstSpace != trailingSpaceRun->start()) {
BidiContext* baseContext = currentContext;
while (BidiContext* parent = baseContext->parent())
baseContext = parent;
BidiRun* newTrailingRun = new (renderArena()) BidiRun(firstSpace, trailingSpaceRun->m_stop, trailingSpaceRun->m_object, baseContext, OtherNeutral);
trailingSpaceRun->m_stop = firstSpace;
if (direction == LTR)
bidiRuns.addRun(newTrailingRun);
else
bidiRuns.prependRun(newTrailingRun);
trailingSpaceRun = newTrailingRun;
return trailingSpaceRun;
}
if (!shouldReorder)
return trailingSpaceRun;
if (direction == LTR) {
bidiRuns.moveRunToEnd(trailingSpaceRun);
trailingSpaceRun->m_level = 0;
} else {
bidiRuns.moveRunToBeginning(trailingSpaceRun);
trailingSpaceRun->m_level = 1;
}
return trailingSpaceRun;
}
void RenderBlock::appendFloatingObjectToLastLine(FloatingObject* floatingObject)
{
ASSERT(!floatingObject->m_originatingLine);
floatingObject->m_originatingLine = lastRootBox();
lastRootBox()->appendFloat(floatingObject->renderer());
}
void RenderBlock::layoutInlineChildren(bool relayoutChildren, int& repaintLogicalTop, int& repaintLogicalBottom)
{
bool useRepaintBounds = false;
m_overflow.clear();
setLogicalHeight(borderBefore() + paddingBefore());
// Figure out if we should clear out our line boxes.
// FIXME: Handle resize eventually!
bool fullLayout = !firstLineBox() || selfNeedsLayout() || relayoutChildren;
if (fullLayout)
lineBoxes()->deleteLineBoxes(renderArena());
// Text truncation only kicks in if your overflow isn't visible and your text-overflow-mode isn't
// clip.
// FIXME: CSS3 says that descendants that are clipped must also know how to truncate. This is insanely
// difficult to figure out (especially in the middle of doing layout), and is really an esoteric pile of nonsense
// anyway, so we won't worry about following the draft here.
bool hasTextOverflow = style()->textOverflow() && hasOverflowClip();
// Walk all the lines and delete our ellipsis line boxes if they exist.
if (hasTextOverflow)
deleteEllipsisLineBoxes();
if (firstChild()) {
#ifdef ANDROID_LAYOUT
// if we are in fitColumnToScreen mode
// and the current object is not float:right in LTR or not float:left in RTL,
// and text align is auto, or justify or left in LTR, or right in RTL, we
// will wrap text around screen width so that it doesn't need to scroll
// horizontally when reading a paragraph.
// In case the line height is less than the font size, we skip
// the text wrapping since this will cause text overlapping.
// If a text has background image, we ignore text wrapping,
// otherwise the background will be potentially messed up.
const Settings* settings = document()->settings();
bool doTextWrap = settings && settings->layoutAlgorithm() == Settings::kLayoutFitColumnToScreen;
if (doTextWrap) {
int ta = style()->textAlign();
int dir = style()->direction();
bool autowrap = style()->autoWrap();
// if the RenderBlock is positioned, don't wrap text around screen
// width as it may cause text to overlap.
bool positioned = isPositioned();
EFloat cssfloat = style()->floating();
const int lineHeight = style()->computedLineHeight();
const int fontSize = style()->fontSize();
doTextWrap = autowrap && !positioned &&
(fontSize <= lineHeight) && !style()->hasBackground() &&
(((dir == LTR && cssfloat != FRIGHT) ||
(dir == RTL && cssfloat != FNONE)) &&
((ta == TAAUTO) || (ta == JUSTIFY) ||
((ta == LEFT || ta == WEBKIT_LEFT) && (dir == LTR)) ||
((ta == RIGHT || ta == WEBKIT_RIGHT) && (dir == RTL))));
}
bool hasTextToWrap = false;
#endif
// layout replaced elements
bool endOfInline = false;
RenderObject* o = bidiFirst(this, 0, false);
Vector<FloatWithRect> floats;
bool hasInlineChild = false;
while (o) {
if (!hasInlineChild && o->isInline())
hasInlineChild = true;
if (o->isReplaced() || o->isFloating() || o->isPositioned()) {
RenderBox* box = toRenderBox(o);
if (relayoutChildren || o->style()->width().isPercent() || o->style()->height().isPercent())
o->setChildNeedsLayout(true, false);
// If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths.
if (relayoutChildren && (o->style()->paddingStart().isPercent() || o->style()->paddingEnd().isPercent()))
o->setPreferredLogicalWidthsDirty(true, false);
if (o->isPositioned())
o->containingBlock()->insertPositionedObject(box);
#if PLATFORM(ANDROID)
else {
#ifdef ANDROID_LAYOUT
// ignore text wrap for textField or menuList
if (doTextWrap && (o->isTextField() || o->isMenuList()))
doTextWrap = false;
#endif
if (o->isFloating())
floats.append(FloatWithRect(box));
else if (fullLayout || o->needsLayout()) {
// Replaced elements
toRenderBox(o)->dirtyLineBoxes(fullLayout);
o->layoutIfNeeded();
}
}
#else
else if (o->isFloating())
floats.append(FloatWithRect(box));
else if (fullLayout || o->needsLayout()) {
// Replaced elements
toRenderBox(o)->dirtyLineBoxes(fullLayout);
o->layoutIfNeeded();
}
#endif // PLATFORM(ANDROID)
} else if (o->isText() || (o->isRenderInline() && !endOfInline)) {
if (!o->isText())
toRenderInline(o)->updateAlwaysCreateLineBoxes();
if (fullLayout || o->selfNeedsLayout())
dirtyLineBoxesForRenderer(o, fullLayout);
o->setNeedsLayout(false);
#ifdef ANDROID_LAYOUT
if (doTextWrap && !hasTextToWrap && o->isText()) {
Node* node = o->node();
// as it is very common for sites to use a serial of <a> or
// <li> as tabs, we don't force text to wrap if all the text
// are short and within an <a> or <li> tag, and only separated
// by short word like "|" or ";".
if (node && node->isTextNode() &&
!static_cast<Text*>(node)->containsOnlyWhitespace()) {
int length = static_cast<Text*>(node)->length();
// FIXME, need a magic number to decide it is too long to
// be a tab. Pick 25 for now as it covers around 160px
// (half of 320px) with the default font.
if (length > 25 || (length > 3 &&
(!node->parentOrHostNode()->hasTagName(HTMLNames::aTag) &&
!node->parentOrHostNode()->hasTagName(HTMLNames::liTag))))
hasTextToWrap = true;
}
}
#endif
}
o = bidiNext(this, o, 0, false, &endOfInline);
}
#ifdef ANDROID_LAYOUT
// try to make sure that inline text will not span wider than the
// screen size unless the container has a fixed height,
if (doTextWrap && hasTextToWrap) {
// check all the nested containing blocks, unless it is table or
// table-cell, to make sure there is no fixed height as it implies
// fixed layout. If we constrain the text to fit screen, we may
// cause text overlap with the block after.
bool isConstrained = false;
RenderObject* obj = this;
while (obj) {
if (obj->style()->height().isFixed() && (!obj->isTable() && !obj->isTableCell())) {
isConstrained = true;
break;
}
if (obj->isFloating() || obj->isPositioned()) {
// floating and absolute or fixed positioning are done out
// of normal flow. Don't need to worry about height any more.
break;
}
obj = obj->container();
}
if (!isConstrained) {
int textWrapWidth = view()->frameView()->textWrapWidth();
int padding = paddingLeft() + paddingRight();
if (textWrapWidth > 0 && width() > (textWrapWidth + padding)) {
// limit the content width (width excluding padding) to be
// (textWrapWidth - 2 * ANDROID_FCTS_MARGIN_PADDING)
int maxWidth = textWrapWidth - 2 * ANDROID_FCTS_MARGIN_PADDING + padding;
setWidth(min(width(), maxWidth));
m_minPreferredLogicalWidth = min(m_minPreferredLogicalWidth, maxWidth);
m_maxPreferredLogicalWidth = min(m_maxPreferredLogicalWidth, maxWidth);
// if overflow isn't visible, block elements may get clipped
// due to the limited content width. disable overflow clipping.
setHasOverflowClip(false);
IntRect overflow = layoutOverflowRect();
if (overflow.width() > maxWidth) {
overflow.setWidth(maxWidth);
clearLayoutOverflow();
addLayoutOverflow(overflow);
}
}
}
}
#endif
// We want to skip ahead to the first dirty line
InlineBidiResolver resolver;
unsigned floatIndex;
bool firstLine = true;
bool previousLineBrokeCleanly = true;
RootInlineBox* startLine = determineStartPosition(firstLine, fullLayout, previousLineBrokeCleanly, resolver, floats, floatIndex,
useRepaintBounds, repaintLogicalTop, repaintLogicalBottom);
if (fullLayout && hasInlineChild && !selfNeedsLayout()) {
setNeedsLayout(true, false); // Mark ourselves as needing a full layout. This way we'll repaint like
// we're supposed to.
RenderView* v = view();
if (v && !v->doingFullRepaint() && hasLayer()) {
// Because we waited until we were already inside layout to discover
// that the block really needed a full layout, we missed our chance to repaint the layer
// before layout started. Luckily the layer has cached the repaint rect for its original
// position and size, and so we can use that to make a repaint happen now.
repaintUsingContainer(containerForRepaint(), layer()->repaintRect());
}
}
FloatingObject* lastFloat = (m_floatingObjects && !m_floatingObjects->set().isEmpty()) ? m_floatingObjects->set().last() : 0;
LineMidpointState& lineMidpointState = resolver.midpointState();
// We also find the first clean line and extract these lines. We will add them back
// if we determine that we're able to synchronize after handling all our dirty lines.
InlineIterator cleanLineStart;
BidiStatus cleanLineBidiStatus;
int endLineLogicalTop = 0;
RootInlineBox* endLine = (fullLayout || !startLine) ?
0 : determineEndPosition(startLine, floats, floatIndex, cleanLineStart, cleanLineBidiStatus, endLineLogicalTop);
if (startLine) {
if (!useRepaintBounds) {
useRepaintBounds = true;
repaintLogicalTop = logicalHeight();
repaintLogicalBottom = logicalHeight();
}
RenderArena* arena = renderArena();
RootInlineBox* box = startLine;
while (box) {
repaintLogicalTop = min(repaintLogicalTop, box->logicalTopVisualOverflow());
repaintLogicalBottom = max(repaintLogicalBottom, box->logicalBottomVisualOverflow());
RootInlineBox* next = box->nextRootBox();
box->deleteLine(arena);
box = next;
}
}
InlineIterator end = resolver.position();
if (!fullLayout && lastRootBox() && lastRootBox()->endsWithBreak()) {
// If the last line before the start line ends with a line break that clear floats,
// adjust the height accordingly.
// A line break can be either the first or the last object on a line, depending on its direction.
if (InlineBox* lastLeafChild = lastRootBox()->lastLeafChild()) {
RenderObject* lastObject = lastLeafChild->renderer();
if (!lastObject->isBR())
lastObject = lastRootBox()->firstLeafChild()->renderer();
if (lastObject->isBR()) {
EClear clear = lastObject->style()->clear();
if (clear != CNONE)
newLine(clear);
}
}
}
bool endLineMatched = false;
bool checkForEndLineMatch = endLine;
bool checkForFloatsFromLastLine = false;
bool isLineEmpty = true;
bool paginated = view()->layoutState() && view()->layoutState()->isPaginated();
LineBreakIteratorInfo lineBreakIteratorInfo;
VerticalPositionCache verticalPositionCache;
while (!end.atEnd()) {
// FIXME: Is this check necessary before the first iteration or can it be moved to the end?
if (checkForEndLineMatch && (endLineMatched = matchedEndLine(resolver, cleanLineStart, cleanLineBidiStatus, endLine, endLineLogicalTop, repaintLogicalBottom, repaintLogicalTop)))
break;
lineMidpointState.reset();
isLineEmpty = true;
EClear clear = CNONE;
bool hyphenated;
Vector<RenderBox*> positionedObjects;
InlineIterator oldEnd = end;
FloatingObject* lastFloatFromPreviousLine = (m_floatingObjects && !m_floatingObjects->set().isEmpty()) ? m_floatingObjects->set().last() : 0;
end = findNextLineBreak(resolver, firstLine, isLineEmpty, lineBreakIteratorInfo, previousLineBrokeCleanly, hyphenated, &clear, lastFloatFromPreviousLine, positionedObjects);
if (resolver.position().atEnd()) {
// FIXME: We shouldn't be creating any runs in findNextLineBreak to begin with!
// Once BidiRunList is separated from BidiResolver this will not be needed.
resolver.runs().deleteRuns();
resolver.markCurrentRunEmpty(); // FIXME: This can probably be replaced by an ASSERT (or just removed).
checkForFloatsFromLastLine = true;
break;
}
ASSERT(end != resolver.position());
if (isLineEmpty) {
if (lastRootBox())
lastRootBox()->setLineBreakInfo(end.m_obj, end.m_pos, resolver.status());
} else {
VisualDirectionOverride override = (style()->visuallyOrdered() ? (style()->direction() == LTR ? VisualLeftToRightOverride : VisualRightToLeftOverride) : NoVisualOverride);
// FIXME: This ownership is reversed. We should own the BidiRunList and pass it to createBidiRunsForLine.
BidiRunList<BidiRun>& bidiRuns = resolver.runs();
resolver.createBidiRunsForLine(end, override, previousLineBrokeCleanly);
ASSERT(resolver.position() == end);
BidiRun* trailingSpaceRun = !previousLineBrokeCleanly ? handleTrailingSpaces(bidiRuns, resolver.context()) : 0;
// Now that the runs have been ordered, we create the line boxes.
// At the same time we figure out where border/padding/margin should be applied for
// inline flow boxes.
RootInlineBox* lineBox = 0;
int oldLogicalHeight = logicalHeight();
if (bidiRuns.runCount()) {
if (hyphenated)
bidiRuns.logicallyLastRun()->m_hasHyphen = true;
lineBox = constructLine(bidiRuns, firstLine, !end.m_obj);
if (lineBox) {
lineBox->setEndsWithBreak(previousLineBrokeCleanly);
#if ENABLE(SVG)
bool isSVGRootInlineBox = lineBox->isSVGRootInlineBox();
#else
bool isSVGRootInlineBox = false;
#endif
GlyphOverflowAndFallbackFontsMap textBoxDataMap;
// Now we position all of our text runs horizontally.
if (!isSVGRootInlineBox)
computeInlineDirectionPositionsForLine(lineBox, firstLine, bidiRuns.firstRun(), trailingSpaceRun, end.atEnd(), textBoxDataMap, verticalPositionCache);
// Now position our text runs vertically.
computeBlockDirectionPositionsForLine(lineBox, bidiRuns.firstRun(), textBoxDataMap, verticalPositionCache);
#if ENABLE(SVG)
// SVG text layout code computes vertical & horizontal positions on its own.
// Note that we still need to execute computeVerticalPositionsForLine() as
// it calls InlineTextBox::positionLineBox(), which tracks whether the box
// contains reversed text or not. If we wouldn't do that editing and thus
// text selection in RTL boxes would not work as expected.
if (isSVGRootInlineBox) {
ASSERT(isSVGText());
static_cast<SVGRootInlineBox*>(lineBox)->computePerCharacterLayoutInformation();
}
#endif
// Compute our overflow now.
lineBox->computeOverflow(lineBox->lineTop(), lineBox->lineBottom(), textBoxDataMap);
#if PLATFORM(MAC)
// Highlight acts as an overflow inflation.
if (style()->highlight() != nullAtom)
lineBox->addHighlightOverflow();
#endif
}
}
bidiRuns.deleteRuns();
resolver.markCurrentRunEmpty(); // FIXME: This can probably be replaced by an ASSERT (or just removed).
if (lineBox) {
lineBox->setLineBreakInfo(end.m_obj, end.m_pos, resolver.status());
if (useRepaintBounds) {
repaintLogicalTop = min(repaintLogicalTop, lineBox->logicalTopVisualOverflow());
repaintLogicalBottom = max(repaintLogicalBottom, lineBox->logicalBottomVisualOverflow());
}
if (paginated) {
int adjustment = 0;
adjustLinePositionForPagination(lineBox, adjustment);
if (adjustment) {
int oldLineWidth = availableLogicalWidthForLine(oldLogicalHeight, firstLine);
lineBox->adjustBlockDirectionPosition(adjustment);
if (useRepaintBounds) // This can only be a positive adjustment, so no need to update repaintTop.
repaintLogicalBottom = max(repaintLogicalBottom, lineBox->logicalBottomVisualOverflow());
if (availableLogicalWidthForLine(oldLogicalHeight + adjustment, firstLine) != oldLineWidth) {
// We have to delete this line, remove all floats that got added, and let line layout re-run.
lineBox->deleteLine(renderArena());
removeFloatingObjectsBelow(lastFloatFromPreviousLine, oldLogicalHeight);
setLogicalHeight(oldLogicalHeight + adjustment);
resolver.setPosition(oldEnd);
end = oldEnd;
continue;
}
setLogicalHeight(lineBox->blockLogicalHeight());
}
}
}
for (size_t i = 0; i < positionedObjects.size(); ++i)
setStaticPositions(this, positionedObjects[i]);
firstLine = false;
newLine(clear);
}
if (m_floatingObjects && lastRootBox()) {
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.begin();
FloatingObjectSetIterator end = floatingObjectSet.end();
if (lastFloat) {
FloatingObjectSetIterator lastFloatIterator = floatingObjectSet.find(lastFloat);
ASSERT(lastFloatIterator != end);
++lastFloatIterator;
it = lastFloatIterator;
}
for (; it != end; ++it) {
FloatingObject* f = *it;
appendFloatingObjectToLastLine(f);
ASSERT(f->m_renderer == floats[floatIndex].object);
// If a float's geometry has changed, give up on syncing with clean lines.
if (floats[floatIndex].rect != f->frameRect())
checkForEndLineMatch = false;
floatIndex++;
}
lastFloat = !floatingObjectSet.isEmpty() ? floatingObjectSet.last() : 0;
}
lineMidpointState.reset();
resolver.setPosition(end);
}
if (endLine) {
if (endLineMatched) {
// Attach all the remaining lines, and then adjust their y-positions as needed.
int delta = logicalHeight() - endLineLogicalTop;
for (RootInlineBox* line = endLine; line; line = line->nextRootBox()) {
line->attachLine();
if (paginated) {
delta -= line->paginationStrut();
adjustLinePositionForPagination(line, delta);
}
if (delta) {
repaintLogicalTop = min(repaintLogicalTop, line->logicalTopVisualOverflow() + min(delta, 0));
repaintLogicalBottom = max(repaintLogicalBottom, line->logicalBottomVisualOverflow() + max(delta, 0));
line->adjustBlockDirectionPosition(delta);
}
if (Vector<RenderBox*>* cleanLineFloats = line->floatsPtr()) {
Vector<RenderBox*>::iterator end = cleanLineFloats->end();
for (Vector<RenderBox*>::iterator f = cleanLineFloats->begin(); f != end; ++f) {
FloatingObject* floatingObject = insertFloatingObject(*f);
ASSERT(!floatingObject->m_originatingLine);
floatingObject->m_originatingLine = line;
setLogicalHeight(logicalTopForChild(*f) - marginBeforeForChild(*f) + delta);
positionNewFloats();
}
}
}
setLogicalHeight(lastRootBox()->blockLogicalHeight());
} else {
// Delete all the remaining lines.
RootInlineBox* line = endLine;
RenderArena* arena = renderArena();
while (line) {
repaintLogicalTop = min(repaintLogicalTop, line->logicalTopVisualOverflow());
repaintLogicalBottom = max(repaintLogicalBottom, line->logicalBottomVisualOverflow());
RootInlineBox* next = line->nextRootBox();
line->deleteLine(arena);
line = next;
}
}
}
if (m_floatingObjects && (checkForFloatsFromLastLine || positionNewFloats()) && lastRootBox()) {
// In case we have a float on the last line, it might not be positioned up to now.
// This has to be done before adding in the bottom border/padding, or the float will
// include the padding incorrectly. -dwh
if (checkForFloatsFromLastLine) {
int bottomVisualOverflow = lastRootBox()->logicalBottomVisualOverflow();
int bottomLayoutOverflow = lastRootBox()->logicalBottomLayoutOverflow();
TrailingFloatsRootInlineBox* trailingFloatsLineBox = new (renderArena()) TrailingFloatsRootInlineBox(this);
m_lineBoxes.appendLineBox(trailingFloatsLineBox);
trailingFloatsLineBox->setConstructed();
GlyphOverflowAndFallbackFontsMap textBoxDataMap;
VerticalPositionCache verticalPositionCache;
trailingFloatsLineBox->alignBoxesInBlockDirection(logicalHeight(), textBoxDataMap, verticalPositionCache);
int blockLogicalHeight = logicalHeight();
IntRect logicalLayoutOverflow(0, blockLogicalHeight, 1, bottomLayoutOverflow - blockLogicalHeight);
IntRect logicalVisualOverflow(0, blockLogicalHeight, 1, bottomVisualOverflow - blockLogicalHeight);
trailingFloatsLineBox->setOverflowFromLogicalRects(logicalLayoutOverflow, logicalVisualOverflow, trailingFloatsLineBox->lineTop(), trailingFloatsLineBox->lineBottom());
trailingFloatsLineBox->setBlockLogicalHeight(logicalHeight());
}
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.begin();
FloatingObjectSetIterator end = floatingObjectSet.end();
if (lastFloat) {
FloatingObjectSetIterator lastFloatIterator = floatingObjectSet.find(lastFloat);
ASSERT(lastFloatIterator != end);
++lastFloatIterator;
it = lastFloatIterator;
}
for (; it != end; ++it)
appendFloatingObjectToLastLine(*it);
lastFloat = !floatingObjectSet.isEmpty() ? floatingObjectSet.last() : 0;
}
size_t floatCount = floats.size();
// Floats that did not have layout did not repaint when we laid them out. They would have
// painted by now if they had moved, but if they stayed at (0, 0), they still need to be
// painted.
for (size_t i = 0; i < floatCount; ++i) {
if (!floats[i].everHadLayout) {
RenderBox* f = floats[i].object;
if (!f->x() && !f->y() && f->checkForRepaintDuringLayout())
f->repaint();
}
}
}
// Expand the last line to accommodate Ruby and emphasis marks.
int lastLineAnnotationsAdjustment = 0;
if (lastRootBox()) {
int lowestAllowedPosition = max(lastRootBox()->lineBottom(), logicalHeight() + paddingAfter());
if (!style()->isFlippedLinesWritingMode())
lastLineAnnotationsAdjustment = lastRootBox()->computeUnderAnnotationAdjustment(lowestAllowedPosition);
else
lastLineAnnotationsAdjustment = lastRootBox()->computeOverAnnotationAdjustment(lowestAllowedPosition);
}
// Now add in the bottom border/padding.
setLogicalHeight(logicalHeight() + lastLineAnnotationsAdjustment + borderAfter() + paddingAfter() + scrollbarLogicalHeight());
if (!firstLineBox() && hasLineIfEmpty())
setLogicalHeight(logicalHeight() + lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes));
// See if we have any lines that spill out of our block. If we do, then we will possibly need to
// truncate text.
if (hasTextOverflow)
checkLinesForTextOverflow();
}
void RenderBlock::checkFloatsInCleanLine(RootInlineBox* line, Vector<FloatWithRect>& floats, size_t& floatIndex, bool& encounteredNewFloat, bool& dirtiedByFloat)
{
Vector<RenderBox*>* cleanLineFloats = line->floatsPtr();
if (!cleanLineFloats)
return;
Vector<RenderBox*>::iterator end = cleanLineFloats->end();
for (Vector<RenderBox*>::iterator it = cleanLineFloats->begin(); it != end; ++it) {
RenderBox* floatingBox = *it;
floatingBox->layoutIfNeeded();
IntSize newSize(floatingBox->width() + floatingBox->marginLeft() + floatingBox->marginRight(), floatingBox->height() + floatingBox->marginTop() + floatingBox->marginBottom());
ASSERT(floatIndex < floats.size());
if (floats[floatIndex].object != floatingBox) {
encounteredNewFloat = true;
return;
}
if (floats[floatIndex].rect.size() != newSize) {
int floatTop = isHorizontalWritingMode() ? floats[floatIndex].rect.y() : floats[floatIndex].rect.x();
int floatHeight = isHorizontalWritingMode() ? max(floats[floatIndex].rect.height(), newSize.height())
: max(floats[floatIndex].rect.width(), newSize.width());
floatHeight = min(floatHeight, numeric_limits<int>::max() - floatTop);
line->markDirty();
markLinesDirtyInBlockRange(line->blockLogicalHeight(), floatTop + floatHeight, line);
floats[floatIndex].rect.setSize(newSize);
dirtiedByFloat = true;
}
floatIndex++;
}
}
RootInlineBox* RenderBlock::determineStartPosition(bool& firstLine, bool& fullLayout, bool& previousLineBrokeCleanly,
InlineBidiResolver& resolver, Vector<FloatWithRect>& floats, unsigned& numCleanFloats,
bool& useRepaintBounds, int& repaintLogicalTop, int& repaintLogicalBottom)
{
RootInlineBox* curr = 0;
RootInlineBox* last = 0;
bool dirtiedByFloat = false;
if (!fullLayout) {
// Paginate all of the clean lines.
bool paginated = view()->layoutState() && view()->layoutState()->isPaginated();
int paginationDelta = 0;
size_t floatIndex = 0;
for (curr = firstRootBox(); curr && !curr->isDirty(); curr = curr->nextRootBox()) {
if (paginated) {
paginationDelta -= curr->paginationStrut();
adjustLinePositionForPagination(curr, paginationDelta);
if (paginationDelta) {
if (containsFloats() || !floats.isEmpty()) {
// FIXME: Do better eventually. For now if we ever shift because of pagination and floats are present just go to a full layout.
fullLayout = true;
break;
}
if (!useRepaintBounds)
useRepaintBounds = true;
repaintLogicalTop = min(repaintLogicalTop, curr->logicalTopVisualOverflow() + min(paginationDelta, 0));
repaintLogicalBottom = max(repaintLogicalBottom, curr->logicalBottomVisualOverflow() + max(paginationDelta, 0));
curr->adjustBlockDirectionPosition(paginationDelta);
}
}
// If a new float has been inserted before this line or before its last known float,just do a full layout.
checkFloatsInCleanLine(curr, floats, floatIndex, fullLayout, dirtiedByFloat);
if (dirtiedByFloat || fullLayout)
break;
}
// Check if a new float has been inserted after the last known float.
if (!curr && floatIndex < floats.size())
fullLayout = true;
}
if (fullLayout) {
// Nuke all our lines.
if (firstRootBox()) {
RenderArena* arena = renderArena();
curr = firstRootBox();
while (curr) {
RootInlineBox* next = curr->nextRootBox();
curr->deleteLine(arena);
curr = next;
}
ASSERT(!firstLineBox() && !lastLineBox());
}
} else {
if (curr) {
// We have a dirty line.
if (RootInlineBox* prevRootBox = curr->prevRootBox()) {
// We have a previous line.
if (!dirtiedByFloat && (!prevRootBox->endsWithBreak() || (prevRootBox->lineBreakObj()->isText() && prevRootBox->lineBreakPos() >= toRenderText(prevRootBox->lineBreakObj())->textLength())))
// The previous line didn't break cleanly or broke at a newline
// that has been deleted, so treat it as dirty too.
curr = prevRootBox;
}
} else {
// No dirty lines were found.
// If the last line didn't break cleanly, treat it as dirty.
if (lastRootBox() && !lastRootBox()->endsWithBreak())
curr = lastRootBox();
}
// If we have no dirty lines, then last is just the last root box.
last = curr ? curr->prevRootBox() : lastRootBox();
}
numCleanFloats = 0;
if (!floats.isEmpty()) {
int savedLogicalHeight = logicalHeight();
// Restore floats from clean lines.
RootInlineBox* line = firstRootBox();
while (line != curr) {
if (Vector<RenderBox*>* cleanLineFloats = line->floatsPtr()) {
Vector<RenderBox*>::iterator end = cleanLineFloats->end();
for (Vector<RenderBox*>::iterator f = cleanLineFloats->begin(); f != end; ++f) {
FloatingObject* floatingObject = insertFloatingObject(*f);
ASSERT(!floatingObject->m_originatingLine);
floatingObject->m_originatingLine = line;
setLogicalHeight(logicalTopForChild(*f) - marginBeforeForChild(*f));
positionNewFloats();
ASSERT(floats[numCleanFloats].object == *f);
numCleanFloats++;
}
}
line = line->nextRootBox();
}
setLogicalHeight(savedLogicalHeight);
}
firstLine = !last;
previousLineBrokeCleanly = !last || last->endsWithBreak();
RenderObject* startObj;
int pos = 0;
if (last) {
setLogicalHeight(last->blockLogicalHeight());
startObj = last->lineBreakObj();
pos = last->lineBreakPos();
resolver.setStatus(last->lineBreakBidiStatus());
} else {
bool ltr = style()->isLeftToRightDirection();
Direction direction = ltr ? LeftToRight : RightToLeft;
resolver.setLastStrongDir(direction);
resolver.setLastDir(direction);
resolver.setEorDir(direction);
resolver.setContext(BidiContext::create(ltr ? 0 : 1, direction, style()->unicodeBidi() == Override, FromStyleOrDOM));
startObj = bidiFirst(this, &resolver);
}
resolver.setPosition(InlineIterator(this, startObj, pos));
return curr;
}
RootInlineBox* RenderBlock::determineEndPosition(RootInlineBox* startLine, Vector<FloatWithRect>& floats, size_t floatIndex, InlineIterator& cleanLineStart, BidiStatus& cleanLineBidiStatus, int& logicalTop)
{
RootInlineBox* last = 0;
for (RootInlineBox* curr = startLine->nextRootBox(); curr; curr = curr->nextRootBox()) {
if (!curr->isDirty()) {
bool encounteredNewFloat = false;
bool dirtiedByFloat = false;
checkFloatsInCleanLine(curr, floats, floatIndex, encounteredNewFloat, dirtiedByFloat);
if (encounteredNewFloat)
return 0;
}
if (curr->isDirty())
last = 0;
else if (!last)
last = curr;
}
if (!last)
return 0;
// At this point, |last| is the first line in a run of clean lines that ends with the last line
// in the block.
RootInlineBox* prev = last->prevRootBox();
cleanLineStart = InlineIterator(this, prev->lineBreakObj(), prev->lineBreakPos());
cleanLineBidiStatus = prev->lineBreakBidiStatus();
logicalTop = prev->blockLogicalHeight();
for (RootInlineBox* line = last; line; line = line->nextRootBox())
line->extractLine(); // Disconnect all line boxes from their render objects while preserving
// their connections to one another.
return last;
}
bool RenderBlock::matchedEndLine(const InlineBidiResolver& resolver, const InlineIterator& endLineStart, const BidiStatus& endLineStatus, RootInlineBox*& endLine,
int& endLogicalTop, int& repaintLogicalBottom, int& repaintLogicalTop)
{
if (resolver.position() == endLineStart) {
if (resolver.status() != endLineStatus)
return false;
int delta = logicalHeight() - endLogicalTop;
if (!delta || !m_floatingObjects)
return true;
// See if any floats end in the range along which we want to shift the lines vertically.
int logicalTop = min(logicalHeight(), endLogicalTop);
RootInlineBox* lastLine = endLine;
while (RootInlineBox* nextLine = lastLine->nextRootBox())
lastLine = nextLine;
int logicalBottom = lastLine->blockLogicalHeight() + abs(delta);
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* f = *it;
if (logicalBottomForFloat(f) >= logicalTop && logicalBottomForFloat(f) < logicalBottom)
return false;
}
return true;
}
// The first clean line doesn't match, but we can check a handful of following lines to try
// to match back up.
static int numLines = 8; // The # of lines we're willing to match against.
RootInlineBox* line = endLine;
for (int i = 0; i < numLines && line; i++, line = line->nextRootBox()) {
if (line->lineBreakObj() == resolver.position().m_obj && line->lineBreakPos() == resolver.position().m_pos) {
// We have a match.
if (line->lineBreakBidiStatus() != resolver.status())
return false; // ...but the bidi state doesn't match.
RootInlineBox* result = line->nextRootBox();
// Set our logical top to be the block height of endLine.
if (result)
endLogicalTop = line->blockLogicalHeight();
int delta = logicalHeight() - endLogicalTop;
if (delta && m_floatingObjects) {
// See if any floats end in the range along which we want to shift the lines vertically.
int logicalTop = min(logicalHeight(), endLogicalTop);
RootInlineBox* lastLine = endLine;
while (RootInlineBox* nextLine = lastLine->nextRootBox())
lastLine = nextLine;
int logicalBottom = lastLine->blockLogicalHeight() + abs(delta);
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* f = *it;
if (logicalBottomForFloat(f) >= logicalTop && logicalBottomForFloat(f) < logicalBottom)
return false;
}
}
// Now delete the lines that we failed to sync.
RootInlineBox* boxToDelete = endLine;
RenderArena* arena = renderArena();
while (boxToDelete && boxToDelete != result) {
repaintLogicalTop = min(repaintLogicalTop, boxToDelete->logicalTopVisualOverflow());
repaintLogicalBottom = max(repaintLogicalBottom, boxToDelete->logicalBottomVisualOverflow());
RootInlineBox* next = boxToDelete->nextRootBox();
boxToDelete->deleteLine(arena);
boxToDelete = next;
}
endLine = result;
return result;
}
}
return false;
}
static inline bool skipNonBreakingSpace(const InlineIterator& it, bool isLineEmpty, bool previousLineBrokeCleanly)
{
if (it.m_obj->style()->nbspMode() != SPACE || it.current() != noBreakSpace)
return false;
// FIXME: This is bad. It makes nbsp inconsistent with space and won't work correctly
// with m_minWidth/m_maxWidth.
// Do not skip a non-breaking space if it is the first character
// on a line after a clean line break (or on the first line, since previousLineBrokeCleanly starts off
// |true|).
if (isLineEmpty && previousLineBrokeCleanly)
return false;
return true;
}
static inline bool shouldCollapseWhiteSpace(const RenderStyle* style, bool isLineEmpty, bool previousLineBrokeCleanly)
{
return style->collapseWhiteSpace() || (style->whiteSpace() == PRE_WRAP && (!isLineEmpty || !previousLineBrokeCleanly));
}
static bool inlineFlowRequiresLineBox(RenderInline* flow)
{
// FIXME: Right now, we only allow line boxes for inlines that are truly empty.
// We need to fix this, though, because at the very least, inlines containing only
// ignorable whitespace should should also have line boxes.
return !flow->firstChild() && flow->hasInlineDirectionBordersPaddingOrMargin();
}
bool RenderBlock::requiresLineBox(const InlineIterator& it, bool isLineEmpty, bool previousLineBrokeCleanly)
{
if (it.m_obj->isFloatingOrPositioned())
return false;
if (it.m_obj->isRenderInline() && !inlineFlowRequiresLineBox(toRenderInline(it.m_obj)))
return false;
if (!shouldCollapseWhiteSpace(it.m_obj->style(), isLineEmpty, previousLineBrokeCleanly) || it.m_obj->isBR())
return true;
UChar current = it.current();
return current != ' ' && current != '\t' && current != softHyphen && (current != '\n' || it.m_obj->preservesNewline())
&& !skipNonBreakingSpace(it, isLineEmpty, previousLineBrokeCleanly);
}
bool RenderBlock::generatesLineBoxesForInlineChild(RenderObject* inlineObj, bool isLineEmpty, bool previousLineBrokeCleanly)
{
ASSERT(inlineObj->parent() == this);
InlineIterator it(this, inlineObj, 0);
while (!it.atEnd() && !requiresLineBox(it, isLineEmpty, previousLineBrokeCleanly))
it.increment();
return !it.atEnd();
}
// FIXME: The entire concept of the skipTrailingWhitespace function is flawed, since we really need to be building
// line boxes even for containers that may ultimately collapse away. Otherwise we'll never get positioned
// elements quite right. In other words, we need to build this function's work into the normal line
// object iteration process.
// NB. this function will insert any floating elements that would otherwise
// be skipped but it will not position them.
void RenderBlock::skipTrailingWhitespace(InlineIterator& iterator, bool isLineEmpty, bool previousLineBrokeCleanly)
{
while (!iterator.atEnd() && !requiresLineBox(iterator, isLineEmpty, previousLineBrokeCleanly)) {
RenderObject* object = iterator.m_obj;
if (object->isFloating()) {
insertFloatingObject(toRenderBox(object));
} else if (object->isPositioned())
setStaticPositions(this, toRenderBox(object));
iterator.increment();
}
}
void RenderBlock::skipLeadingWhitespace(InlineBidiResolver& resolver, bool isLineEmpty, bool previousLineBrokeCleanly,
FloatingObject* lastFloatFromPreviousLine, LineWidth& width)
{
while (!resolver.position().atEnd() && !requiresLineBox(resolver.position(), isLineEmpty, previousLineBrokeCleanly)) {
RenderObject* object = resolver.position().m_obj;
if (object->isFloating())
positionNewFloatOnLine(insertFloatingObject(toRenderBox(object)), lastFloatFromPreviousLine, width);
else if (object->isPositioned())
setStaticPositions(this, toRenderBox(object));
resolver.increment();
}
resolver.commitExplicitEmbedding();
}
// This is currently just used for list markers and inline flows that have line boxes. Neither should
// have an effect on whitespace at the start of the line.
static bool shouldSkipWhitespaceAfterStartObject(RenderBlock* block, RenderObject* o, LineMidpointState& lineMidpointState)
{
RenderObject* next = bidiNext(block, o);
if (next && !next->isBR() && next->isText() && toRenderText(next)->textLength() > 0) {
RenderText* nextText = toRenderText(next);
UChar nextChar = nextText->characters()[0];
if (nextText->style()->isCollapsibleWhiteSpace(nextChar)) {
addMidpoint(lineMidpointState, InlineIterator(0, o, 0));
return true;
}
}
return false;
}
static inline float textWidth(RenderText* text, unsigned from, unsigned len, const Font& font, float xPos, bool isFixedPitch, bool collapseWhiteSpace)
{
if (isFixedPitch || (!from && len == text->textLength()) || text->style()->hasTextCombine())
return text->width(from, len, font, xPos);
return font.width(TextRun(text->characters() + from, len, !collapseWhiteSpace, xPos));
}
static void tryHyphenating(RenderText* text, const Font& font, const AtomicString& localeIdentifier, int minimumPrefixLength, int minimumSuffixLength, int lastSpace, int pos, float xPos, int availableWidth, bool isFixedPitch, bool collapseWhiteSpace, int lastSpaceWordSpacing, InlineIterator& lineBreak, int nextBreakable, bool& hyphenated)
{
// Map 'hyphenate-limit-{before,after}: auto;' to 2.
if (minimumPrefixLength < 0)
minimumPrefixLength = 2;
if (minimumSuffixLength < 0)
minimumSuffixLength = 2;
if (pos - lastSpace <= minimumSuffixLength)
return;
const AtomicString& hyphenString = text->style()->hyphenString();
int hyphenWidth = font.width(TextRun(hyphenString.characters(), hyphenString.length()));
float maxPrefixWidth = availableWidth - xPos - hyphenWidth - lastSpaceWordSpacing;
// If the maximum width available for the prefix before the hyphen is small, then it is very unlikely
// that an hyphenation opportunity exists, so do not bother to look for it.
if (maxPrefixWidth <= font.pixelSize() * 5 / 4)
return;
unsigned prefixLength = font.offsetForPosition(TextRun(text->characters() + lastSpace, pos - lastSpace, !collapseWhiteSpace, xPos + lastSpaceWordSpacing), maxPrefixWidth, false);
if (prefixLength < static_cast<unsigned>(minimumPrefixLength))
return;
prefixLength = lastHyphenLocation(text->characters() + lastSpace, pos - lastSpace, min(prefixLength, static_cast<unsigned>(pos - lastSpace - minimumSuffixLength)) + 1, localeIdentifier);
// FIXME: The following assumes that the character at lastSpace is a space (and therefore should not factor
// into hyphenate-limit-before) unless lastSpace is 0. This is wrong in the rare case of hyphenating
// the first word in a text node which has leading whitespace.
if (!prefixLength || prefixLength - (lastSpace ? 1 : 0) < static_cast<unsigned>(minimumPrefixLength))
return;
ASSERT(pos - lastSpace - prefixLength >= static_cast<unsigned>(minimumSuffixLength));
#if !ASSERT_DISABLED
float prefixWidth = hyphenWidth + textWidth(text, lastSpace, prefixLength, font, xPos, isFixedPitch, collapseWhiteSpace) + lastSpaceWordSpacing;
ASSERT(xPos + prefixWidth <= availableWidth);
#else
UNUSED_PARAM(isFixedPitch);
#endif
lineBreak.moveTo(text, lastSpace + prefixLength, nextBreakable);
hyphenated = true;
}
class LineWidth {
public:
LineWidth(RenderBlock* block, bool isFirstLine)
: m_block(block)
, m_uncommittedWidth(0)
, m_committedWidth(0)
, m_overhangWidth(0)
, m_left(0)
, m_right(0)
, m_availableWidth(0)
, m_isFirstLine(isFirstLine)
{
ASSERT(block);
updateAvailableWidth();
}
bool fitsOnLine() const { return currentWidth() <= m_availableWidth; }
bool fitsOnLine(float extra) const { return currentWidth() + extra <= m_availableWidth; }
float currentWidth() const { return m_committedWidth + m_uncommittedWidth; }
// FIXME: We should eventually replace these three functions by ones that work on a higher abstraction.
float uncommittedWidth() const { return m_uncommittedWidth; }
float committedWidth() const { return m_committedWidth; }
float availableWidth() const { return m_availableWidth; }
void updateAvailableWidth();
void shrinkAvailableWidthForNewFloatIfNeeded(RenderBlock::FloatingObject*);
void addUncommittedWidth(float delta) { m_uncommittedWidth += delta; }
void commit()
{
m_committedWidth += m_uncommittedWidth;
m_uncommittedWidth = 0;
}
void applyOverhang(RenderRubyRun*, RenderObject* startRenderer, RenderObject* endRenderer);
void fitBelowFloats();
private:
void computeAvailableWidthFromLeftAndRight()
{
m_availableWidth = max(0, m_right - m_left) + m_overhangWidth;
}
private:
RenderBlock* m_block;
float m_uncommittedWidth;
float m_committedWidth;
float m_overhangWidth; // The amount by which |m_availableWidth| has been inflated to account for possible contraction due to ruby overhang.
int m_left;
int m_right;
float m_availableWidth;
bool m_isFirstLine;
};
inline void LineWidth::updateAvailableWidth()
{
int height = m_block->logicalHeight();
m_left = m_block->logicalLeftOffsetForLine(height, m_isFirstLine);
m_right = m_block->logicalRightOffsetForLine(height, m_isFirstLine);
computeAvailableWidthFromLeftAndRight();
}
inline void LineWidth::shrinkAvailableWidthForNewFloatIfNeeded(RenderBlock::FloatingObject* newFloat)
{
int height = m_block->logicalHeight();
if (height < m_block->logicalTopForFloat(newFloat) || height >= m_block->logicalBottomForFloat(newFloat))
return;
if (newFloat->type() == RenderBlock::FloatingObject::FloatLeft)
m_left = m_block->logicalRightForFloat(newFloat);
else
m_right = m_block->logicalLeftForFloat(newFloat);
computeAvailableWidthFromLeftAndRight();
}
void LineWidth::applyOverhang(RenderRubyRun* rubyRun, RenderObject* startRenderer, RenderObject* endRenderer)
{
int startOverhang;
int endOverhang;
rubyRun->getOverhang(m_isFirstLine, startRenderer, endRenderer, startOverhang, endOverhang);
startOverhang = min<int>(startOverhang, m_committedWidth);
m_availableWidth += startOverhang;
endOverhang = max(min<int>(endOverhang, m_availableWidth - currentWidth()), 0);
m_availableWidth += endOverhang;
m_overhangWidth += startOverhang + endOverhang;
}
void LineWidth::fitBelowFloats()
{
ASSERT(!m_committedWidth);
ASSERT(!fitsOnLine());
int floatLogicalBottom;
int lastFloatLogicalBottom = m_block->logicalHeight();
float newLineWidth = m_availableWidth;
while (true) {
floatLogicalBottom = m_block->nextFloatLogicalBottomBelow(lastFloatLogicalBottom);
if (!floatLogicalBottom)
break;
newLineWidth = m_block->availableLogicalWidthForLine(floatLogicalBottom, m_isFirstLine);
lastFloatLogicalBottom = floatLogicalBottom;
if (newLineWidth >= m_uncommittedWidth)
break;
}
if (newLineWidth > m_availableWidth) {
m_block->setLogicalHeight(lastFloatLogicalBottom);
m_availableWidth = newLineWidth + m_overhangWidth;
}
}
InlineIterator RenderBlock::findNextLineBreak(InlineBidiResolver& resolver, bool firstLine, bool& isLineEmpty, LineBreakIteratorInfo& lineBreakIteratorInfo, bool& previousLineBrokeCleanly,
bool& hyphenated, EClear* clear, FloatingObject* lastFloatFromPreviousLine, Vector<RenderBox*>& positionedBoxes)
{
ASSERT(resolver.position().root() == this);
bool appliedStartWidth = resolver.position().m_pos > 0;
LineMidpointState& lineMidpointState = resolver.midpointState();
LineWidth width(this, firstLine);
skipLeadingWhitespace(resolver, isLineEmpty, previousLineBrokeCleanly, lastFloatFromPreviousLine, width);
if (resolver.position().atEnd())
return resolver.position();
// This variable is used only if whitespace isn't set to PRE, and it tells us whether
// or not we are currently ignoring whitespace.
bool ignoringSpaces = false;
InlineIterator ignoreStart;
// This variable tracks whether the very last character we saw was a space. We use
// this to detect when we encounter a second space so we know we have to terminate
// a run.
bool currentCharacterIsSpace = false;
bool currentCharacterIsWS = false;
RenderObject* trailingSpaceObject = 0;
Vector<RenderBox*, 4> trailingPositionedBoxes;
InlineIterator lBreak = resolver.position();
// FIXME: It is error-prone to split the position object out like this.
// Teach this code to work with objects instead of this split tuple.
RenderObject* o = resolver.position().m_obj;
RenderObject* last = o;
unsigned pos = resolver.position().m_pos;
int nextBreakable = resolver.position().m_nextBreakablePosition;
bool atStart = true;
bool prevLineBrokeCleanly = previousLineBrokeCleanly;
previousLineBrokeCleanly = false;
hyphenated = false;
bool autoWrapWasEverTrueOnLine = false;
bool floatsFitOnLine = true;
// Firefox and Opera will allow a table cell to grow to fit an image inside it under
// very specific circumstances (in order to match common WinIE renderings).
// Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.)
bool allowImagesToBreak = !document()->inQuirksMode() || !isTableCell() || !style()->logicalWidth().isIntrinsicOrAuto();
EWhiteSpace currWS = style()->whiteSpace();
EWhiteSpace lastWS = currWS;
while (o) {
RenderObject* next = bidiNext(this, o);
currWS = o->isReplaced() ? o->parent()->style()->whiteSpace() : o->style()->whiteSpace();
lastWS = last->isReplaced() ? last->parent()->style()->whiteSpace() : last->style()->whiteSpace();
bool autoWrap = RenderStyle::autoWrap(currWS);
autoWrapWasEverTrueOnLine = autoWrapWasEverTrueOnLine || autoWrap;
#if ENABLE(SVG)
bool preserveNewline = o->isSVGInlineText() ? false : RenderStyle::preserveNewline(currWS);
#else
bool preserveNewline = RenderStyle::preserveNewline(currWS);
#endif
bool collapseWhiteSpace = RenderStyle::collapseWhiteSpace(currWS);
if (o->isBR()) {
if (width.fitsOnLine()) {
lBreak.moveToStartOf(o);
lBreak.increment();
// A <br> always breaks a line, so don't let the line be collapsed
// away. Also, the space at the end of a line with a <br> does not
// get collapsed away. It only does this if the previous line broke
// cleanly. Otherwise the <br> has no effect on whether the line is
// empty or not.
if (prevLineBrokeCleanly)
isLineEmpty = false;
trailingSpaceObject = 0;
previousLineBrokeCleanly = true;
if (!isLineEmpty && clear)
*clear = o->style()->clear();
}
goto end;
}
if (o->isFloatingOrPositioned()) {
// add to special objects...
if (o->isFloating()) {
RenderBox* floatBox = toRenderBox(o);
FloatingObject* f = insertFloatingObject(floatBox);
// check if it fits in the current line.
// If it does, position it now, otherwise, position
// it after moving to next line (in newLine() func)
if (floatsFitOnLine && width.fitsOnLine(logicalWidthForFloat(f))) {
positionNewFloatOnLine(f, lastFloatFromPreviousLine, width);
if (lBreak.m_obj == o) {
ASSERT(!lBreak.m_pos);
lBreak.increment();
}
} else
floatsFitOnLine = false;
} else if (o->isPositioned()) {
// If our original display wasn't an inline type, then we can
// go ahead and determine our static inline position now.
RenderBox* box = toRenderBox(o);
bool isInlineType = box->style()->isOriginalDisplayInlineType();
if (!isInlineType)
box->layer()->setStaticInlinePosition(borderAndPaddingStart());
else {
// If our original display was an INLINE type, then we can go ahead
// and determine our static y position now.
box->layer()->setStaticBlockPosition(logicalHeight());
}
// If we're ignoring spaces, we have to stop and include this object and
// then start ignoring spaces again.
if (isInlineType || o->container()->isRenderInline()) {
if (ignoringSpaces) {
ignoreStart.m_obj = o;
ignoreStart.m_pos = 0;
addMidpoint(lineMidpointState, ignoreStart); // Stop ignoring spaces.
addMidpoint(lineMidpointState, ignoreStart); // Start ignoring again.
}
if (trailingSpaceObject)
trailingPositionedBoxes.append(box);
} else
positionedBoxes.append(box);
}
} else if (o->isRenderInline()) {
// Right now, we should only encounter empty inlines here.
ASSERT(!o->firstChild());
RenderInline* flowBox = toRenderInline(o);
// Now that some inline flows have line boxes, if we are already ignoring spaces, we need
// to make sure that we stop to include this object and then start ignoring spaces again.
// If this object is at the start of the line, we need to behave like list markers and
// start ignoring spaces.
if (inlineFlowRequiresLineBox(flowBox)) {
isLineEmpty = false;
if (ignoringSpaces) {
trailingSpaceObject = 0;
trailingPositionedBoxes.clear();
addMidpoint(lineMidpointState, InlineIterator(0, o, 0)); // Stop ignoring spaces.
addMidpoint(lineMidpointState, InlineIterator(0, o, 0)); // Start ignoring again.
} else if (style()->collapseWhiteSpace() && resolver.position().m_obj == o
&& shouldSkipWhitespaceAfterStartObject(this, o, lineMidpointState)) {
// Like with list markers, we start ignoring spaces to make sure that any
// additional spaces we see will be discarded.
currentCharacterIsSpace = true;
currentCharacterIsWS = true;
ignoringSpaces = true;
}
}
width.addUncommittedWidth(borderPaddingMarginStart(flowBox) + borderPaddingMarginEnd(flowBox));
} else if (o->isReplaced()) {
RenderBox* replacedBox = toRenderBox(o);
// Break on replaced elements if either has normal white-space.
if ((autoWrap || RenderStyle::autoWrap(lastWS)) && (!o->isImage() || allowImagesToBreak)) {
width.commit();
lBreak.moveToStartOf(o);
}
if (ignoringSpaces)
addMidpoint(lineMidpointState, InlineIterator(0, o, 0));
isLineEmpty = false;
ignoringSpaces = false;
currentCharacterIsSpace = false;
currentCharacterIsWS = false;
trailingSpaceObject = 0;
trailingPositionedBoxes.clear();
// Optimize for a common case. If we can't find whitespace after the list
// item, then this is all moot.
int replacedLogicalWidth = logicalWidthForChild(replacedBox) + marginStartForChild(replacedBox) + marginEndForChild(replacedBox) + inlineLogicalWidth(o);
if (o->isListMarker()) {
if (style()->collapseWhiteSpace() && shouldSkipWhitespaceAfterStartObject(this, o, lineMidpointState)) {
// Like with inline flows, we start ignoring spaces to make sure that any
// additional spaces we see will be discarded.
currentCharacterIsSpace = true;
currentCharacterIsWS = true;
ignoringSpaces = true;
}
if (toRenderListMarker(o)->isInside())
width.addUncommittedWidth(replacedLogicalWidth);
} else
width.addUncommittedWidth(replacedLogicalWidth);
if (o->isRubyRun())
width.applyOverhang(toRenderRubyRun(o), last, next);
} else if (o->isText()) {
if (!pos)
appliedStartWidth = false;
RenderText* t = toRenderText(o);
#if ENABLE(SVG)
bool isSVGText = t->isSVGInlineText();
#endif
RenderStyle* style = t->style(firstLine);
if (style->hasTextCombine() && o->isCombineText())
toRenderCombineText(o)->combineText();
int strlen = t->textLength();
int len = strlen - pos;
const UChar* str = t->characters();
const Font& f = style->font();
bool isFixedPitch = f.isFixedPitch();
bool canHyphenate = style->hyphens() == HyphensAuto && WebCore::canHyphenate(style->locale());
int lastSpace = pos;
float wordSpacing = o->style()->wordSpacing();
float lastSpaceWordSpacing = 0;
// Non-zero only when kerning is enabled, in which case we measure words with their trailing
// space, then subtract its width.
float wordTrailingSpaceWidth = f.typesettingFeatures() & Kerning ? f.width(TextRun(&space, 1)) + wordSpacing : 0;
float wrapW = width.uncommittedWidth() + inlineLogicalWidth(o, !appliedStartWidth, true);
float charWidth = 0;
bool breakNBSP = autoWrap && o->style()->nbspMode() == SPACE;
// Auto-wrapping text should wrap in the middle of a word only if it could not wrap before the word,
// which is only possible if the word is the first thing on the line, that is, if |w| is zero.
bool breakWords = o->style()->breakWords() && ((autoWrap && !width.committedWidth()) || currWS == PRE);
bool midWordBreak = false;
bool breakAll = o->style()->wordBreak() == BreakAllWordBreak && autoWrap;
float hyphenWidth = 0;
if (t->isWordBreak()) {
width.commit();
lBreak.moveToStartOf(o);
ASSERT(!len);
}
while (len) {
bool previousCharacterIsSpace = currentCharacterIsSpace;
bool previousCharacterIsWS = currentCharacterIsWS;
UChar c = str[pos];
currentCharacterIsSpace = c == ' ' || c == '\t' || (!preserveNewline && (c == '\n'));
if (!collapseWhiteSpace || !currentCharacterIsSpace)
isLineEmpty = false;
if (c == softHyphen && autoWrap && !hyphenWidth && style->hyphens() != HyphensNone) {
const AtomicString& hyphenString = style->hyphenString();
hyphenWidth = f.width(TextRun(hyphenString.characters(), hyphenString.length()));
width.addUncommittedWidth(hyphenWidth);
}
bool applyWordSpacing = false;
currentCharacterIsWS = currentCharacterIsSpace || (breakNBSP && c == noBreakSpace);
if ((breakAll || breakWords) && !midWordBreak) {
wrapW += charWidth;
charWidth = textWidth(t, pos, 1, f, width.committedWidth() + wrapW, isFixedPitch, collapseWhiteSpace);
midWordBreak = width.committedWidth() + wrapW + charWidth > width.availableWidth();
}
if (lineBreakIteratorInfo.first != t) {
lineBreakIteratorInfo.first = t;
lineBreakIteratorInfo.second.reset(str, strlen);
}
bool betweenWords = c == '\n' || (currWS != PRE && !atStart && isBreakable(lineBreakIteratorInfo.second, pos, nextBreakable, breakNBSP) && (style->hyphens() != HyphensNone || (pos && str[pos - 1] != softHyphen)));
if (betweenWords || midWordBreak) {
bool stoppedIgnoringSpaces = false;
if (ignoringSpaces) {
if (!currentCharacterIsSpace) {
// Stop ignoring spaces and begin at this
// new point.
ignoringSpaces = false;
lastSpaceWordSpacing = 0;
lastSpace = pos; // e.g., "Foo goo", don't add in any of the ignored spaces.
addMidpoint(lineMidpointState, InlineIterator(0, o, pos));
stoppedIgnoringSpaces = true;
} else {
// Just keep ignoring these spaces.
pos++;
len--;
continue;
}
}
float additionalTmpW;
if (wordTrailingSpaceWidth && currentCharacterIsSpace)
additionalTmpW = textWidth(t, lastSpace, pos + 1 - lastSpace, f, width.currentWidth(), isFixedPitch, collapseWhiteSpace) - wordTrailingSpaceWidth + lastSpaceWordSpacing;
else
additionalTmpW = textWidth(t, lastSpace, pos - lastSpace, f, width.currentWidth(), isFixedPitch, collapseWhiteSpace) + lastSpaceWordSpacing;
width.addUncommittedWidth(additionalTmpW);
if (!appliedStartWidth) {
width.addUncommittedWidth(inlineLogicalWidth(o, true, false));
appliedStartWidth = true;
}
applyWordSpacing = wordSpacing && currentCharacterIsSpace && !previousCharacterIsSpace;
if (!width.committedWidth() && autoWrap && !width.fitsOnLine())
width.fitBelowFloats();
if (autoWrap || breakWords) {
// If we break only after white-space, consider the current character
// as candidate width for this line.
bool lineWasTooWide = false;
if (width.fitsOnLine() && currentCharacterIsWS && o->style()->breakOnlyAfterWhiteSpace() && !midWordBreak) {
int charWidth = textWidth(t, pos, 1, f, width.currentWidth(), isFixedPitch, collapseWhiteSpace) + (applyWordSpacing ? wordSpacing : 0);
// Check if line is too big even without the extra space
// at the end of the line. If it is not, do nothing.
// If the line needs the extra whitespace to be too long,
// then move the line break to the space and skip all
// additional whitespace.
if (!width.fitsOnLine(charWidth)) {
lineWasTooWide = true;
lBreak.moveTo(o, pos, nextBreakable);
skipTrailingWhitespace(lBreak, isLineEmpty, previousLineBrokeCleanly);
}
}
if (lineWasTooWide || !width.fitsOnLine()) {
if (canHyphenate && !width.fitsOnLine()) {
tryHyphenating(t, f, style->locale(), style->hyphenationLimitBefore(), style->hyphenationLimitAfter(), lastSpace, pos, width.currentWidth() - additionalTmpW, width.availableWidth(), isFixedPitch, collapseWhiteSpace, lastSpaceWordSpacing, lBreak, nextBreakable, hyphenated);
if (hyphenated)
goto end;
}
if (lBreak.atTextParagraphSeparator()) {
if (!stoppedIgnoringSpaces && pos > 0) {
// We need to stop right before the newline and then start up again.
addMidpoint(lineMidpointState, InlineIterator(0, o, pos - 1)); // Stop
addMidpoint(lineMidpointState, InlineIterator(0, o, pos)); // Start
}
lBreak.increment();
previousLineBrokeCleanly = true;
}
if (lBreak.m_obj && lBreak.m_pos && lBreak.m_obj->isText() && toRenderText(lBreak.m_obj)->textLength() && toRenderText(lBreak.m_obj)->characters()[lBreak.m_pos - 1] == softHyphen && style->hyphens() != HyphensNone)
hyphenated = true;
goto end; // Didn't fit. Jump to the end.
} else {
if (!betweenWords || (midWordBreak && !autoWrap))
width.addUncommittedWidth(-additionalTmpW);
if (hyphenWidth) {
// Subtract the width of the soft hyphen out since we fit on a line.
width.addUncommittedWidth(-hyphenWidth);
hyphenWidth = 0;
}
}
}
if (c == '\n' && preserveNewline) {
if (!stoppedIgnoringSpaces && pos > 0) {
// We need to stop right before the newline and then start up again.
addMidpoint(lineMidpointState, InlineIterator(0, o, pos - 1)); // Stop
addMidpoint(lineMidpointState, InlineIterator(0, o, pos)); // Start
}
lBreak.moveTo(o, pos, nextBreakable);
lBreak.increment();
previousLineBrokeCleanly = true;
return lBreak;
}
if (autoWrap && betweenWords) {
width.commit();
wrapW = 0;
lBreak.moveTo(o, pos, nextBreakable);
// Auto-wrapping text should not wrap in the middle of a word once it has had an
// opportunity to break after a word.
breakWords = false;
}
if (midWordBreak) {
// Remember this as a breakable position in case
// adding the end width forces a break.
lBreak.moveTo(o, pos, nextBreakable);
midWordBreak &= (breakWords || breakAll);
}
if (betweenWords) {
lastSpaceWordSpacing = applyWordSpacing ? wordSpacing : 0;
lastSpace = pos;
}
if (!ignoringSpaces && o->style()->collapseWhiteSpace()) {
// If we encounter a newline, or if we encounter a
// second space, we need to go ahead and break up this
// run and enter a mode where we start collapsing spaces.
if (currentCharacterIsSpace && previousCharacterIsSpace) {
ignoringSpaces = true;
// We just entered a mode where we are ignoring
// spaces. Create a midpoint to terminate the run
// before the second space.
addMidpoint(lineMidpointState, ignoreStart);
}
}
} else if (ignoringSpaces) {
// Stop ignoring spaces and begin at this
// new point.
ignoringSpaces = false;
lastSpaceWordSpacing = applyWordSpacing ? wordSpacing : 0;
lastSpace = pos; // e.g., "Foo goo", don't add in any of the ignored spaces.
addMidpoint(lineMidpointState, InlineIterator(0, o, pos));
}
#if ENABLE(SVG)
if (isSVGText && pos > 0) {
// Force creation of new InlineBoxes for each absolute positioned character (those that start new text chunks).
if (static_cast<RenderSVGInlineText*>(t)->characterStartsNewTextChunk(pos)) {
addMidpoint(lineMidpointState, InlineIterator(0, o, pos - 1));
addMidpoint(lineMidpointState, InlineIterator(0, o, pos));
}
}
#endif
if (currentCharacterIsSpace && !previousCharacterIsSpace) {
ignoreStart.m_obj = o;
ignoreStart.m_pos = pos;
}
if (!currentCharacterIsWS && previousCharacterIsWS) {
if (autoWrap && o->style()->breakOnlyAfterWhiteSpace())
lBreak.moveTo(o, pos, nextBreakable);
}
if (collapseWhiteSpace && currentCharacterIsSpace && !ignoringSpaces)
trailingSpaceObject = o;
else if (!o->style()->collapseWhiteSpace() || !currentCharacterIsSpace) {
trailingSpaceObject = 0;
trailingPositionedBoxes.clear();
}
pos++;
len--;
atStart = false;
}
// IMPORTANT: pos is > length here!
float additionalTmpW = ignoringSpaces ? 0 : textWidth(t, lastSpace, pos - lastSpace, f, width.currentWidth(), isFixedPitch, collapseWhiteSpace) + lastSpaceWordSpacing;
width.addUncommittedWidth(additionalTmpW + inlineLogicalWidth(o, !appliedStartWidth, true));
if (!width.fitsOnLine()) {
if (canHyphenate)
tryHyphenating(t, f, style->locale(), style->hyphenationLimitBefore(), style->hyphenationLimitAfter(), lastSpace, pos, width.currentWidth() - additionalTmpW, width.availableWidth(), isFixedPitch, collapseWhiteSpace, lastSpaceWordSpacing, lBreak, nextBreakable, hyphenated);
if (!hyphenated && lBreak.m_obj && lBreak.m_pos && lBreak.m_obj->isText() && toRenderText(lBreak.m_obj)->textLength() && toRenderText(lBreak.m_obj)->characters()[lBreak.m_pos - 1] == softHyphen && style->hyphens() != HyphensNone)
hyphenated = true;
if (hyphenated)
goto end;
}
} else
ASSERT_NOT_REACHED();
bool checkForBreak = autoWrap;
if (width.committedWidth() && !width.fitsOnLine() && lBreak.m_obj && currWS == NOWRAP)
checkForBreak = true;
else if (next && o->isText() && next->isText() && !next->isBR()) {
if (autoWrap || (next->style()->autoWrap())) {
if (currentCharacterIsSpace)
checkForBreak = true;
else {
checkForBreak = false;
RenderText* nextText = toRenderText(next);
if (nextText->textLength()) {
UChar c = nextText->characters()[0];
if (c == ' ' || c == '\t' || (c == '\n' && !next->preservesNewline()))
// If the next item on the line is text, and if we did not end with
// a space, then the next text run continues our word (and so it needs to
// keep adding to |tmpW|. Just update and continue.
checkForBreak = true;
} else if (nextText->isWordBreak())
checkForBreak = true;
if (!width.fitsOnLine() && !width.committedWidth())
width.fitBelowFloats();
bool canPlaceOnLine = width.fitsOnLine() || !autoWrapWasEverTrueOnLine;
if (canPlaceOnLine && checkForBreak) {
width.commit();
lBreak.moveToStartOf(next);
}
}
}
}
if (checkForBreak && !width.fitsOnLine()) {
// if we have floats, try to get below them.
if (currentCharacterIsSpace && !ignoringSpaces && o->style()->collapseWhiteSpace()) {
trailingSpaceObject = 0;
trailingPositionedBoxes.clear();
}
if (width.committedWidth())
goto end;
width.fitBelowFloats();
// |width| may have been adjusted because we got shoved down past a float (thus
// giving us more room), so we need to retest, and only jump to
// the end label if we still don't fit on the line. -dwh
if (!width.fitsOnLine())
goto end;
}
if (!o->isFloatingOrPositioned()) {
last = o;
if (last->isReplaced() && autoWrap && (!last->isImage() || allowImagesToBreak) && (!last->isListMarker() || toRenderListMarker(last)->isInside())) {
width.commit();
lBreak.moveToStartOf(next);
}
}
o = next;
nextBreakable = -1;
// Clear out our character space bool, since inline <pre>s don't collapse whitespace
// with adjacent inline normal/nowrap spans.
if (!collapseWhiteSpace)
currentCharacterIsSpace = false;
pos = 0;
atStart = false;
}
if (width.fitsOnLine() || lastWS == NOWRAP)
lBreak.clear();
end:
if (lBreak == resolver.position() && (!lBreak.m_obj || !lBreak.m_obj->isBR())) {
// we just add as much as possible
if (style()->whiteSpace() == PRE) {
// FIXME: Don't really understand this case.
if (pos != 0) {
// FIXME: This should call moveTo which would clear m_nextBreakablePosition
// this code as-is is likely wrong.
lBreak.m_obj = o;
lBreak.m_pos = pos - 1;
} else
lBreak.moveTo(last, last->isText() ? last->length() : 0);
} else if (lBreak.m_obj) {
// Don't ever break in the middle of a word if we can help it.
// There's no room at all. We just have to be on this line,
// even though we'll spill out.
lBreak.moveTo(o, pos);
}
}
// make sure we consume at least one char/object.
if (lBreak == resolver.position())
lBreak.increment();
// Sanity check our midpoints.
checkMidpoints(lineMidpointState, lBreak);
if (trailingSpaceObject) {
// This object is either going to be part of the last midpoint, or it is going
// to be the actual endpoint. In both cases we just decrease our pos by 1 level to
// exclude the space, allowing it to - in effect - collapse into the newline.
if (lineMidpointState.numMidpoints % 2) {
// Find the trailing space object's midpoint.
int trailingSpaceMidpoint = lineMidpointState.numMidpoints - 1;
for ( ; trailingSpaceMidpoint >= 0 && lineMidpointState.midpoints[trailingSpaceMidpoint].m_obj != trailingSpaceObject; --trailingSpaceMidpoint) { }
ASSERT(trailingSpaceMidpoint >= 0);
lineMidpointState.midpoints[trailingSpaceMidpoint].m_pos--;
// Now make sure every single trailingPositionedBox following the trailingSpaceMidpoint properly stops and starts
// ignoring spaces.
size_t currentMidpoint = trailingSpaceMidpoint + 1;
for (size_t i = 0; i < trailingPositionedBoxes.size(); ++i) {
if (currentMidpoint >= lineMidpointState.numMidpoints) {
// We don't have a midpoint for this box yet.
InlineIterator ignoreStart(this, trailingPositionedBoxes[i], 0);
addMidpoint(lineMidpointState, ignoreStart); // Stop ignoring.
addMidpoint(lineMidpointState, ignoreStart); // Start ignoring again.
} else {
ASSERT(lineMidpointState.midpoints[currentMidpoint].m_obj == trailingPositionedBoxes[i]);
ASSERT(lineMidpointState.midpoints[currentMidpoint + 1].m_obj == trailingPositionedBoxes[i]);
}
currentMidpoint += 2;
}
} else if (!lBreak.m_obj && trailingSpaceObject->isText()) {
// Add a new end midpoint that stops right at the very end.
RenderText* text = toRenderText(trailingSpaceObject);
unsigned length = text->textLength();
unsigned pos = length >= 2 ? length - 2 : UINT_MAX;
InlineIterator endMid(0, trailingSpaceObject, pos);
addMidpoint(lineMidpointState, endMid);
for (size_t i = 0; i < trailingPositionedBoxes.size(); ++i) {
ignoreStart.m_obj = trailingPositionedBoxes[i];
ignoreStart.m_pos = 0;
addMidpoint(lineMidpointState, ignoreStart); // Stop ignoring spaces.
addMidpoint(lineMidpointState, ignoreStart); // Start ignoring again.
}
}
}
// We might have made lBreak an iterator that points past the end
// of the object. Do this adjustment to make it point to the start
// of the next object instead to avoid confusing the rest of the
// code.
if (lBreak.m_pos > 0) {
lBreak.m_pos--;
lBreak.increment();
}
return lBreak;
}
void RenderBlock::addOverflowFromInlineChildren()
{
int endPadding = hasOverflowClip() ? paddingEnd() : 0;
// FIXME: Need to find another way to do this, since scrollbars could show when we don't want them to.
if (hasOverflowClip() && !endPadding && node() && node()->rendererIsEditable() && node() == node()->rootEditableElement() && style()->isLeftToRightDirection())
endPadding = 1;
for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) {
addLayoutOverflow(curr->paddedLayoutOverflowRect(endPadding));
if (!hasOverflowClip())
addVisualOverflow(curr->visualOverflowRect(curr->lineTop(), curr->lineBottom()));
}
}
void RenderBlock::deleteEllipsisLineBoxes()
{
for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox())
curr->clearTruncation();
}
void RenderBlock::checkLinesForTextOverflow()
{
// Determine the width of the ellipsis using the current font.
// FIXME: CSS3 says this is configurable, also need to use 0x002E (FULL STOP) if horizontal ellipsis is "not renderable"
TextRun ellipsisRun(&horizontalEllipsis, 1);
DEFINE_STATIC_LOCAL(AtomicString, ellipsisStr, (&horizontalEllipsis, 1));
const Font& firstLineFont = firstLineStyle()->font();
const Font& font = style()->font();
int firstLineEllipsisWidth = firstLineFont.width(ellipsisRun);
int ellipsisWidth = (font == firstLineFont) ? firstLineEllipsisWidth : font.width(ellipsisRun);
// For LTR text truncation, we want to get the right edge of our padding box, and then we want to see
// if the right edge of a line box exceeds that. For RTL, we use the left edge of the padding box and
// check the left edge of the line box to see if it is less
// Include the scrollbar for overflow blocks, which means we want to use "contentWidth()"
bool ltr = style()->isLeftToRightDirection();
for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) {
int blockRightEdge = logicalRightOffsetForLine(curr->y(), curr == firstRootBox());
int blockLeftEdge = logicalLeftOffsetForLine(curr->y(), curr == firstRootBox());
int lineBoxEdge = ltr ? curr->x() + curr->logicalWidth() : curr->x();
if ((ltr && lineBoxEdge > blockRightEdge) || (!ltr && lineBoxEdge < blockLeftEdge)) {
// This line spills out of our box in the appropriate direction. Now we need to see if the line
// can be truncated. In order for truncation to be possible, the line must have sufficient space to
// accommodate our truncation string, and no replaced elements (images, tables) can overlap the ellipsis
// space.
int width = curr == firstRootBox() ? firstLineEllipsisWidth : ellipsisWidth;
int blockEdge = ltr ? blockRightEdge : blockLeftEdge;
if (curr->lineCanAccommodateEllipsis(ltr, blockEdge, lineBoxEdge, width))
curr->placeEllipsis(ellipsisStr, ltr, blockLeftEdge, blockRightEdge, width);
}
}
}
bool RenderBlock::positionNewFloatOnLine(FloatingObject* newFloat, FloatingObject* lastFloatFromPreviousLine, LineWidth& width)
{
if (!positionNewFloats())
return false;
width.shrinkAvailableWidthForNewFloatIfNeeded(newFloat);
if (!newFloat->m_paginationStrut)
return true;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
ASSERT(floatingObjectSet.last() == newFloat);
int floatLogicalTop = logicalTopForFloat(newFloat);
int paginationStrut = newFloat->m_paginationStrut;
if (floatLogicalTop - paginationStrut != logicalHeight())
return true;
FloatingObjectSetIterator it = floatingObjectSet.end();
--it; // Last float is newFloat, skip that one.
FloatingObjectSetIterator begin = floatingObjectSet.begin();
while (it != begin) {
--it;
FloatingObject* f = *it;
if (f == lastFloatFromPreviousLine)
break;
if (logicalTopForFloat(f) == logicalHeight()) {
ASSERT(!f->m_paginationStrut);
f->m_paginationStrut = paginationStrut;
RenderBox* o = f->m_renderer;
setLogicalTopForChild(o, logicalTopForChild(o) + marginBeforeForChild(o) + paginationStrut);
if (o->isRenderBlock())
toRenderBlock(o)->setChildNeedsLayout(true, false);
o->layoutIfNeeded();
setLogicalTopForFloat(f, logicalTopForFloat(f) + f->m_paginationStrut);
}
}
setLogicalHeight(logicalHeight() + paginationStrut);
width.updateAvailableWidth();
return true;
}
}