//===- FragmentLinker.cpp -------------------------------------------------===//
//
// The MCLinker Project
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the FragmentLinker class
//
//===----------------------------------------------------------------------===//
#include <mcld/Fragment/FragmentLinker.h>
#include <llvm/Support/Host.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Support/Casting.h>
#include <mcld/LinkerConfig.h>
#include <mcld/Module.h>
#include <mcld/MC/MCLDInput.h>
#include <mcld/LD/BranchIslandFactory.h>
#include <mcld/LD/Resolver.h>
#include <mcld/LD/LDContext.h>
#include <mcld/LD/RelocationFactory.h>
#include <mcld/LD/RelocData.h>
#include <mcld/LD/SectionRules.h>
#include <mcld/Support/MemoryRegion.h>
#include <mcld/Support/MemoryArea.h>
#include <mcld/Support/FileHandle.h>
#include <mcld/Support/MsgHandling.h>
#include <mcld/Target/TargetLDBackend.h>
#include <mcld/Fragment/Relocation.h>
using namespace mcld;
//===----------------------------------------------------------------------===//
// FragmentLinker
//===----------------------------------------------------------------------===//
/// Constructor
FragmentLinker::FragmentLinker(const LinkerConfig& pConfig,
Module& pModule,
TargetLDBackend& pBackend)
: m_Config(pConfig),
m_Module(pModule),
m_Backend(pBackend) {
}
/// Destructor
FragmentLinker::~FragmentLinker()
{
}
bool FragmentLinker::finalizeSymbols()
{
Module::sym_iterator symbol, symEnd = m_Module.sym_end();
for (symbol = m_Module.sym_begin(); symbol != symEnd; ++symbol) {
if ((*symbol)->resolveInfo()->isAbsolute() ||
(*symbol)->resolveInfo()->type() == ResolveInfo::File) {
// absolute symbols or symbols with function type should have
// zero value
(*symbol)->setValue(0x0);
continue;
}
if ((*symbol)->resolveInfo()->type() == ResolveInfo::ThreadLocal) {
m_Backend.finalizeTLSSymbol(**symbol);
continue;
}
if ((*symbol)->hasFragRef()) {
// set the virtual address of the symbol. If the output file is
// relocatable object file, the section's virtual address becomes zero.
// And the symbol's value become section relative offset.
uint64_t value = (*symbol)->fragRef()->getOutputOffset();
assert(NULL != (*symbol)->fragRef()->frag());
uint64_t addr = (*symbol)->fragRef()->frag()->getParent()->getSection().addr();
(*symbol)->setValue(value + addr);
continue;
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Relocation Operations
//===----------------------------------------------------------------------===//
bool FragmentLinker::applyRelocations()
{
// when producing relocatables, no need to apply relocation
if (LinkerConfig::Object == m_Config.codeGenType())
return true;
// apply all relocations of all inputs
Module::obj_iterator input, inEnd = m_Module.obj_end();
for (input = m_Module.obj_begin(); input != inEnd; ++input) {
LDContext::sect_iterator rs, rsEnd = (*input)->context()->relocSectEnd();
for (rs = (*input)->context()->relocSectBegin(); rs != rsEnd; ++rs) {
// bypass the reloc section if
// 1. its section kind is changed to Ignore. (The target section is a
// discarded group section.)
// 2. it has no reloc data. (All symbols in the input relocs are in the
// discarded group sections)
if (LDFileFormat::Ignore == (*rs)->kind() || !(*rs)->hasRelocData())
continue;
RelocData::iterator reloc, rEnd = (*rs)->getRelocData()->end();
for (reloc = (*rs)->getRelocData()->begin(); reloc != rEnd; ++reloc) {
Relocation* relocation = llvm::cast<Relocation>(reloc);
relocation->apply(*m_Backend.getRelocator());
} // for all relocations
} // for all relocation section
} // for all inputs
// apply relocations created by relaxation
BranchIslandFactory* br_factory = m_Backend.getBRIslandFactory();
BranchIslandFactory::iterator facIter, facEnd = br_factory->end();
for (facIter = br_factory->begin(); facIter != facEnd; ++facIter) {
BranchIsland& island = *facIter;
BranchIsland::reloc_iterator iter, iterEnd = island.reloc_end();
for (iter = island.reloc_begin(); iter != iterEnd; ++iter)
(*iter)->apply(*m_Backend.getRelocator());
}
return true;
}
void FragmentLinker::syncRelocationResult(MemoryArea& pOutput)
{
if (LinkerConfig::Object != m_Config.codeGenType())
normalSyncRelocationResult(pOutput);
else
partialSyncRelocationResult(pOutput);
return;
}
void FragmentLinker::normalSyncRelocationResult(MemoryArea& pOutput)
{
MemoryRegion* region = pOutput.request(0, pOutput.handler()->size());
uint8_t* data = region->getBuffer();
// sync all relocations of all inputs
Module::obj_iterator input, inEnd = m_Module.obj_end();
for (input = m_Module.obj_begin(); input != inEnd; ++input) {
LDContext::sect_iterator rs, rsEnd = (*input)->context()->relocSectEnd();
for (rs = (*input)->context()->relocSectBegin(); rs != rsEnd; ++rs) {
// bypass the reloc section if
// 1. its section kind is changed to Ignore. (The target section is a
// discarded group section.)
// 2. it has no reloc data. (All symbols in the input relocs are in the
// discarded group sections)
if (LDFileFormat::Ignore == (*rs)->kind() || !(*rs)->hasRelocData())
continue;
RelocData::iterator reloc, rEnd = (*rs)->getRelocData()->end();
for (reloc = (*rs)->getRelocData()->begin(); reloc != rEnd; ++reloc) {
Relocation* relocation = llvm::cast<Relocation>(reloc);
// bypass the relocation with NONE type. This is to avoid overwrite the
// target result by NONE type relocation if there is a place which has
// two relocations to apply to, and one of it is NONE type. The result
// we want is the value of the other relocation result. For example,
// in .exidx, there are usually an R_ARM_NONE and R_ARM_PREL31 apply to
// the same place
if (0x0 == relocation->type())
continue;
writeRelocationResult(*relocation, data);
} // for all relocations
} // for all relocation section
} // for all inputs
// sync relocations created by relaxation
BranchIslandFactory* br_factory = m_Backend.getBRIslandFactory();
BranchIslandFactory::iterator facIter, facEnd = br_factory->end();
for (facIter = br_factory->begin(); facIter != facEnd; ++facIter) {
BranchIsland& island = *facIter;
BranchIsland::reloc_iterator iter, iterEnd = island.reloc_end();
for (iter = island.reloc_begin(); iter != iterEnd; ++iter) {
Relocation* reloc = *iter;
writeRelocationResult(*reloc, data);
}
}
pOutput.clear();
}
void FragmentLinker::partialSyncRelocationResult(MemoryArea& pOutput)
{
MemoryRegion* region = pOutput.request(0, pOutput.handler()->size());
uint8_t* data = region->getBuffer();
// traverse outputs' LDSection to get RelocData
Module::iterator sectIter, sectEnd = m_Module.end();
for (sectIter = m_Module.begin(); sectIter != sectEnd; ++sectIter) {
if (LDFileFormat::Relocation != (*sectIter)->kind())
continue;
RelocData* reloc_data = (*sectIter)->getRelocData();
RelocData::iterator relocIter, relocEnd = reloc_data->end();
for (relocIter = reloc_data->begin(); relocIter != relocEnd; ++relocIter) {
Relocation* reloc = llvm::cast<Relocation>(relocIter);
// bypass the relocation with NONE type. This is to avoid overwrite the
// target result by NONE type relocation if there is a place which has
// two relocations to apply to, and one of it is NONE type. The result
// we want is the value of the other relocation result. For example,
// in .exidx, there are usually an R_ARM_NONE and R_ARM_PREL31 apply to
// the same place
if (0x0 == reloc->type())
continue;
writeRelocationResult(*reloc, data);
}
}
pOutput.clear();
}
void FragmentLinker::writeRelocationResult(Relocation& pReloc, uint8_t* pOutput)
{
// get output file offset
size_t out_offset =
pReloc.targetRef().frag()->getParent()->getSection().offset() +
pReloc.targetRef().getOutputOffset();
uint8_t* target_addr = pOutput + out_offset;
// byte swapping if target and host has different endian, and then write back
if(llvm::sys::isLittleEndianHost() != m_Config.targets().isLittleEndian()) {
uint64_t tmp_data = 0;
switch(pReloc.size(*m_Backend.getRelocator())) {
case 8u:
std::memcpy(target_addr, &pReloc.target(), 1);
break;
case 16u:
tmp_data = mcld::bswap16(pReloc.target());
std::memcpy(target_addr, &tmp_data, 2);
break;
case 32u:
tmp_data = mcld::bswap32(pReloc.target());
std::memcpy(target_addr, &tmp_data, 4);
break;
case 64u:
tmp_data = mcld::bswap64(pReloc.target());
std::memcpy(target_addr, &tmp_data, 8);
break;
default:
break;
}
}
else
std::memcpy(target_addr, &pReloc.target(),
pReloc.size(*m_Backend.getRelocator())/8);
}