/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/logging.h" #include "base/mutex.h" #include "dex_file-inl.h" #include "dex_instruction-inl.h" #include "driver/compiler_driver.h" #include "driver/dex_compilation_unit.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" namespace art { namespace optimizer { // Controls quickening activation. const bool kEnableQuickening = true; // Control check-cast elision. const bool kEnableCheckCastEllision = true; class DexCompiler { public: DexCompiler(art::CompilerDriver& compiler, const DexCompilationUnit& unit, DexToDexCompilationLevel dex_to_dex_compilation_level) : driver_(compiler), unit_(unit), dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {} ~DexCompiler() {} void Compile(); private: const DexFile& GetDexFile() const { return *unit_.GetDexFile(); } // TODO: since the whole compilation pipeline uses a "const DexFile", we need // to "unconst" here. The DEX-to-DEX compiler should work on a non-const DexFile. DexFile& GetModifiableDexFile() { return *const_cast<DexFile*>(unit_.GetDexFile()); } bool PerformOptimizations() const { return dex_to_dex_compilation_level_ >= kOptimize; } // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where // a barrier is required. void CompileReturnVoid(Instruction* inst, uint32_t dex_pc); // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In // this case, returns the second NOP instruction pointer. Otherwise, returns // the given "inst". Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc); // Compiles a field access into a quick field access. // The field index is replaced by an offset within an Object where we can read // from / write to this field. Therefore, this does not involve any resolution // at runtime. // Since the field index is encoded with 16 bits, we can replace it only if the // field offset can be encoded with 16 bits too. void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc, Instruction::Code new_opcode, bool is_put); // Compiles a virtual method invocation into a quick virtual method invocation. // The method index is replaced by the vtable index where the corresponding // AbstractMethod can be found. Therefore, this does not involve any resolution // at runtime. // Since the method index is encoded with 16 bits, we can replace it only if the // vtable index can be encoded with 16 bits too. void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, Instruction::Code new_opcode, bool is_range); CompilerDriver& driver_; const DexCompilationUnit& unit_; const DexToDexCompilationLevel dex_to_dex_compilation_level_; DISALLOW_COPY_AND_ASSIGN(DexCompiler); }; void DexCompiler::Compile() { DCHECK_GE(dex_to_dex_compilation_level_, kRequired); const DexFile::CodeItem* code_item = unit_.GetCodeItem(); const uint16_t* insns = code_item->insns_; const uint32_t insns_size = code_item->insns_size_in_code_units_; Instruction* inst = const_cast<Instruction*>(Instruction::At(insns)); for (uint32_t dex_pc = 0; dex_pc < insns_size; inst = const_cast<Instruction*>(inst->Next()), dex_pc = inst->GetDexPc(insns)) { switch (inst->Opcode()) { case Instruction::RETURN_VOID: CompileReturnVoid(inst, dex_pc); break; case Instruction::CHECK_CAST: inst = CompileCheckCast(inst, dex_pc); break; case Instruction::IGET: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false); break; case Instruction::IGET_WIDE: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false); break; case Instruction::IGET_OBJECT: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false); break; case Instruction::IPUT: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: case Instruction::IPUT_CHAR: case Instruction::IPUT_SHORT: // These opcodes have the same implementation in interpreter so group // them under IPUT_QUICK. CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true); break; case Instruction::IPUT_WIDE: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true); break; case Instruction::IPUT_OBJECT: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true); break; case Instruction::INVOKE_VIRTUAL: CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false); break; case Instruction::INVOKE_VIRTUAL_RANGE: CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true); break; default: // Nothing to do. break; } } } void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) { DCHECK(inst->Opcode() == Instruction::RETURN_VOID); // Are we compiling a non-clinit constructor? if (!unit_.IsConstructor() || unit_.IsStatic()) { return; } // Do we need a constructor barrier ? if (!driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(), unit_.GetClassDefIndex())) { return; } // Replace RETURN_VOID by RETURN_VOID_BARRIER. VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode()) << " by " << Instruction::Name(Instruction::RETURN_VOID_BARRIER) << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); inst->SetOpcode(Instruction::RETURN_VOID_BARRIER); } Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) { if (!kEnableCheckCastEllision || !PerformOptimizations()) { return inst; } MethodReference referrer(&GetDexFile(), unit_.GetDexMethodIndex()); if (!driver_.IsSafeCast(referrer, dex_pc)) { return inst; } // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code // units and a "nop" instruction size is 1 code unit, we need to replace it by // 2 consecutive NOP instructions. // Because the caller loops over instructions by calling Instruction::Next onto // the current instruction, we need to return the 2nd NOP instruction. Indeed, // its next instruction is the former check-cast's next instruction. VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode()) << " by replacing it with 2 NOPs at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); // We are modifying 4 consecutive bytes. inst->SetOpcode(Instruction::NOP); inst->SetVRegA_10x(0u); // keep compliant with verifier. // Get to next instruction which is the second half of check-cast and replace // it by a NOP. inst = const_cast<Instruction*>(inst->Next()); inst->SetOpcode(Instruction::NOP); inst->SetVRegA_10x(0u); // keep compliant with verifier. return inst; } void DexCompiler::CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc, Instruction::Code new_opcode, bool is_put) { if (!kEnableQuickening || !PerformOptimizations()) { return; } uint32_t field_idx = inst->VRegC_22c(); int field_offset; bool is_volatile; bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, field_offset, is_volatile, is_put); if (fast_path && !is_volatile && IsUint(16, field_offset)) { VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) << " to " << Instruction::Name(new_opcode) << " by replacing field index " << field_idx << " by field offset " << field_offset << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); // We are modifying 4 consecutive bytes. inst->SetOpcode(new_opcode); // Replace field index by field offset. inst->SetVRegC_22c(static_cast<uint16_t>(field_offset)); } } void DexCompiler::CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, Instruction::Code new_opcode, bool is_range) { if (!kEnableQuickening || !PerformOptimizations()) { return; } uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); MethodReference target_method(&GetDexFile(), method_idx); InvokeType invoke_type = kVirtual; InvokeType original_invoke_type = invoke_type; int vtable_idx; uintptr_t direct_code; uintptr_t direct_method; bool fast_path = driver_.ComputeInvokeInfo(&unit_, dex_pc, invoke_type, target_method, vtable_idx, direct_code, direct_method, false); // TODO: support devirtualization. if (fast_path && original_invoke_type == invoke_type) { if (vtable_idx >= 0 && IsUint(16, vtable_idx)) { VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) << "(" << PrettyMethod(method_idx, GetDexFile(), true) << ")" << " to " << Instruction::Name(new_opcode) << " by replacing method index " << method_idx << " by vtable index " << vtable_idx << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); // We are modifying 4 consecutive bytes. inst->SetOpcode(new_opcode); // Replace method index by vtable index. if (is_range) { inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx)); } else { inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx)); } } } } } // namespace optimizer } // namespace art extern "C" void ArtCompileDEX(art::CompilerDriver& compiler, const art::DexFile::CodeItem* code_item, uint32_t access_flags, art::InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const art::DexFile& dex_file, art::DexToDexCompilationLevel dex_to_dex_compilation_level) { if (dex_to_dex_compilation_level != art::kDontDexToDexCompile) { art::DexCompilationUnit unit(NULL, class_loader, art::Runtime::Current()->GetClassLinker(), dex_file, code_item, class_def_idx, method_idx, access_flags); art::optimizer::DexCompiler dex_compiler(compiler, unit, dex_to_dex_compilation_level); dex_compiler.Compile(); } }