/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_DEX_MIR_GRAPH_H_ #define ART_COMPILER_DEX_MIR_GRAPH_H_ #include "dex_file.h" #include "dex_instruction.h" #include "compiler_ir.h" #include "arena_bit_vector.h" #include "growable_array.h" namespace art { enum InstructionAnalysisAttributePos { kUninterestingOp = 0, kArithmeticOp, kFPOp, kSingleOp, kDoubleOp, kIntOp, kLongOp, kBranchOp, kInvokeOp, kArrayOp, kHeavyweightOp, kSimpleConstOp, kMoveOp, kSwitch }; #define AN_NONE (1 << kUninterestingOp) #define AN_MATH (1 << kArithmeticOp) #define AN_FP (1 << kFPOp) #define AN_LONG (1 << kLongOp) #define AN_INT (1 << kIntOp) #define AN_SINGLE (1 << kSingleOp) #define AN_DOUBLE (1 << kDoubleOp) #define AN_FLOATMATH (1 << kFPOp) #define AN_BRANCH (1 << kBranchOp) #define AN_INVOKE (1 << kInvokeOp) #define AN_ARRAYOP (1 << kArrayOp) #define AN_HEAVYWEIGHT (1 << kHeavyweightOp) #define AN_SIMPLECONST (1 << kSimpleConstOp) #define AN_MOVE (1 << kMoveOp) #define AN_SWITCH (1 << kSwitch) #define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST) enum DataFlowAttributePos { kUA = 0, kUB, kUC, kAWide, kBWide, kCWide, kDA, kIsMove, kSetsConst, kFormat35c, kFormat3rc, kNullCheckSrc0, // Null check of uses[0]. kNullCheckSrc1, // Null check of uses[1]. kNullCheckSrc2, // Null check of uses[2]. kNullCheckOut0, // Null check out outgoing arg0. kDstNonNull, // May assume dst is non-null. kRetNonNull, // May assume retval is non-null. kNullTransferSrc0, // Object copy src[0] -> dst. kNullTransferSrcN, // Phi null check state transfer. kRangeCheckSrc1, // Range check of uses[1]. kRangeCheckSrc2, // Range check of uses[2]. kRangeCheckSrc3, // Range check of uses[3]. kFPA, kFPB, kFPC, kCoreA, kCoreB, kCoreC, kRefA, kRefB, kRefC, kUsesMethodStar, // Implicit use of Method*. }; #define DF_NOP 0 #define DF_UA (1 << kUA) #define DF_UB (1 << kUB) #define DF_UC (1 << kUC) #define DF_A_WIDE (1 << kAWide) #define DF_B_WIDE (1 << kBWide) #define DF_C_WIDE (1 << kCWide) #define DF_DA (1 << kDA) #define DF_IS_MOVE (1 << kIsMove) #define DF_SETS_CONST (1 << kSetsConst) #define DF_FORMAT_35C (1 << kFormat35c) #define DF_FORMAT_3RC (1 << kFormat3rc) #define DF_NULL_CHK_0 (1 << kNullCheckSrc0) #define DF_NULL_CHK_1 (1 << kNullCheckSrc1) #define DF_NULL_CHK_2 (1 << kNullCheckSrc2) #define DF_NULL_CHK_OUT0 (1 << kNullCheckOut0) #define DF_NON_NULL_DST (1 << kDstNonNull) #define DF_NON_NULL_RET (1 << kRetNonNull) #define DF_NULL_TRANSFER_0 (1 << kNullTransferSrc0) #define DF_NULL_TRANSFER_N (1 << kNullTransferSrcN) #define DF_RANGE_CHK_1 (1 << kRangeCheckSrc1) #define DF_RANGE_CHK_2 (1 << kRangeCheckSrc2) #define DF_RANGE_CHK_3 (1 << kRangeCheckSrc3) #define DF_FP_A (1 << kFPA) #define DF_FP_B (1 << kFPB) #define DF_FP_C (1 << kFPC) #define DF_CORE_A (1 << kCoreA) #define DF_CORE_B (1 << kCoreB) #define DF_CORE_C (1 << kCoreC) #define DF_REF_A (1 << kRefA) #define DF_REF_B (1 << kRefB) #define DF_REF_C (1 << kRefC) #define DF_UMS (1 << kUsesMethodStar) #define DF_HAS_USES (DF_UA | DF_UB | DF_UC) #define DF_HAS_DEFS (DF_DA) #define DF_HAS_NULL_CHKS (DF_NULL_CHK_0 | \ DF_NULL_CHK_1 | \ DF_NULL_CHK_2 | \ DF_NULL_CHK_OUT0) #define DF_HAS_RANGE_CHKS (DF_RANGE_CHK_1 | \ DF_RANGE_CHK_2 | \ DF_RANGE_CHK_3) #define DF_HAS_NR_CHKS (DF_HAS_NULL_CHKS | \ DF_HAS_RANGE_CHKS) #define DF_A_IS_REG (DF_UA | DF_DA) #define DF_B_IS_REG (DF_UB) #define DF_C_IS_REG (DF_UC) #define DF_IS_GETTER_OR_SETTER (DF_IS_GETTER | DF_IS_SETTER) #define DF_USES_FP (DF_FP_A | DF_FP_B | DF_FP_C) enum OatMethodAttributes { kIsLeaf, // Method is leaf. kHasLoop, // Method contains simple loop. }; #define METHOD_IS_LEAF (1 << kIsLeaf) #define METHOD_HAS_LOOP (1 << kHasLoop) // Minimum field size to contain Dalvik v_reg number. #define VREG_NUM_WIDTH 16 #define INVALID_SREG (-1) #define INVALID_VREG (0xFFFFU) #define INVALID_REG (0xFF) #define INVALID_OFFSET (0xDEADF00FU) /* SSA encodings for special registers */ #define SSA_METHOD_BASEREG (-2) /* First compiler temp basereg, grows smaller */ #define SSA_CTEMP_BASEREG (SSA_METHOD_BASEREG - 1) #define MIR_IGNORE_NULL_CHECK (1 << kMIRIgnoreNullCheck) #define MIR_NULL_CHECK_ONLY (1 << kMIRNullCheckOnly) #define MIR_IGNORE_RANGE_CHECK (1 << kMIRIgnoreRangeCheck) #define MIR_RANGE_CHECK_ONLY (1 << kMIRRangeCheckOnly) #define MIR_INLINED (1 << kMIRInlined) #define MIR_INLINED_PRED (1 << kMIRInlinedPred) #define MIR_CALLEE (1 << kMIRCallee) #define MIR_IGNORE_SUSPEND_CHECK (1 << kMIRIgnoreSuspendCheck) #define MIR_DUP (1 << kMIRDup) #define BLOCK_NAME_LEN 80 /* * In general, vreg/sreg describe Dalvik registers that originated with dx. However, * it is useful to have compiler-generated temporary registers and have them treated * in the same manner as dx-generated virtual registers. This struct records the SSA * name of compiler-introduced temporaries. */ struct CompilerTemp { int s_reg; }; // When debug option enabled, records effectiveness of null and range check elimination. struct Checkstats { int null_checks; int null_checks_eliminated; int range_checks; int range_checks_eliminated; }; // Dataflow attributes of a basic block. struct BasicBlockDataFlow { ArenaBitVector* use_v; ArenaBitVector* def_v; ArenaBitVector* live_in_v; ArenaBitVector* phi_v; int* vreg_to_ssa_map; ArenaBitVector* ending_null_check_v; }; /* * Normalized use/def for a MIR operation using SSA names rather than vregs. Note that * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit * vregs. For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5). * Following SSA renaming, this is the primary struct used by code generators to locate * operand and result registers. This is a somewhat confusing and unhelpful convention that * we may want to revisit in the future. */ struct SSARepresentation { int num_uses; int* uses; bool* fp_use; int num_defs; int* defs; bool* fp_def; }; /* * The Midlevel Intermediate Representation node, which may be largely considered a * wrapper around a Dalvik byte code. */ struct MIR { DecodedInstruction dalvikInsn; uint32_t width; // NOTE: only need 16 bits for width. unsigned int offset; int m_unit_index; // From which method was this MIR included MIR* prev; MIR* next; SSARepresentation* ssa_rep; int optimization_flags; union { // Establish link between two halves of throwing instructions. MIR* throw_insn; // Saved opcode for NOP'd MIRs Instruction::Code original_opcode; } meta; }; struct SuccessorBlockInfo; struct BasicBlock { int id; int dfs_id; bool visited; bool hidden; bool catch_entry; bool explicit_throw; bool conditional_branch; bool terminated_by_return; // Block ends with a Dalvik return opcode. bool dominates_return; // Is a member of return extended basic block. uint16_t start_offset; uint16_t nesting_depth; BBType block_type; MIR* first_mir_insn; MIR* last_mir_insn; BasicBlock* fall_through; BasicBlock* taken; BasicBlock* i_dom; // Immediate dominator. BasicBlockDataFlow* data_flow_info; GrowableArray<BasicBlock*>* predecessors; ArenaBitVector* dominators; ArenaBitVector* i_dominated; // Set nodes being immediately dominated. ArenaBitVector* dom_frontier; // Dominance frontier. struct { // For one-to-many successors like. BlockListType block_list_type; // switch and exception handling. GrowableArray<SuccessorBlockInfo*>* blocks; } successor_block_list; }; /* * The "blocks" field in "successor_block_list" points to an array of elements with the type * "SuccessorBlockInfo". For catch blocks, key is type index for the exception. For swtich * blocks, key is the case value. */ // TODO: make class with placement new. struct SuccessorBlockInfo { BasicBlock* block; int key; }; /* * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes * the type of an SSA name (and, can also be used by code generators to record where the * value is located (i.e. - physical register, frame, spill, etc.). For each SSA name (SReg) * there is a RegLocation. * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation. With * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout. */ struct RegLocation { RegLocationType location:3; unsigned wide:1; unsigned defined:1; // Do we know the type? unsigned is_const:1; // Constant, value in mir_graph->constant_values[]. unsigned fp:1; // Floating point? unsigned core:1; // Non-floating point? unsigned ref:1; // Something GC cares about. unsigned high_word:1; // High word of pair? unsigned home:1; // Does this represent the home location? uint8_t low_reg; // First physical register. uint8_t high_reg; // 2nd physical register (if wide). int32_t s_reg_low; // SSA name for low Dalvik word. int32_t orig_sreg; // TODO: remove after Bitcode gen complete // and consolodate usage w/ s_reg_low. }; /* * Collection of information describing an invoke, and the destination of * the subsequent MOVE_RESULT (if applicable). Collected as a unit to enable * more efficient invoke code generation. */ struct CallInfo { int num_arg_words; // Note: word count, not arg count. RegLocation* args; // One for each word of arguments. RegLocation result; // Eventual target of MOVE_RESULT. int opt_flags; InvokeType type; uint32_t dex_idx; uint32_t index; // Method idx for invokes, type idx for FilledNewArray. uintptr_t direct_code; uintptr_t direct_method; RegLocation target; // Target of following move_result. bool skip_this; bool is_range; int offset; // Dalvik offset. }; const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG}; class MIRGraph { public: MIRGraph(CompilationUnit* cu, ArenaAllocator* arena); ~MIRGraph(); /* * Examine the graph to determine whether it's worthwile to spend the time compiling * this method. */ bool SkipCompilation(Runtime::CompilerFilter compiler_filter); /* * Parse dex method and add MIR at current insert point. Returns id (which is * actually the index of the method in the m_units_ array). */ void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const DexFile& dex_file); /* Find existing block */ BasicBlock* FindBlock(unsigned int code_offset) { return FindBlock(code_offset, false, false, NULL); } const uint16_t* GetCurrentInsns() const { return current_code_item_->insns_; } const uint16_t* GetInsns(int m_unit_index) const { return m_units_[m_unit_index]->GetCodeItem()->insns_; } int GetNumBlocks() const { return num_blocks_; } size_t GetNumDalvikInsns() const { return cu_->code_item->insns_size_in_code_units_; } ArenaBitVector* GetTryBlockAddr() const { return try_block_addr_; } BasicBlock* GetEntryBlock() const { return entry_block_; } BasicBlock* GetExitBlock() const { return exit_block_; } BasicBlock* GetBasicBlock(int block_id) const { return block_list_.Get(block_id); } size_t GetBasicBlockListCount() const { return block_list_.Size(); } GrowableArray<BasicBlock*>* GetBlockList() { return &block_list_; } GrowableArray<int>* GetDfsOrder() { return dfs_order_; } GrowableArray<int>* GetDfsPostOrder() { return dfs_post_order_; } GrowableArray<int>* GetDomPostOrder() { return dom_post_order_traversal_; } int GetDefCount() const { return def_count_; } ArenaAllocator* GetArena() { return arena_; } void EnableOpcodeCounting() { opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int), ArenaAllocator::kAllocMisc)); } void ShowOpcodeStats(); DexCompilationUnit* GetCurrentDexCompilationUnit() const { return m_units_[current_method_]; } void DumpCFG(const char* dir_prefix, bool all_blocks); void BuildRegLocations(); void DumpRegLocTable(RegLocation* table, int count); void BasicBlockOptimization(); bool IsConst(int32_t s_reg) const { return is_constant_v_->IsBitSet(s_reg); } bool IsConst(RegLocation loc) const { return (IsConst(loc.orig_sreg)); } int32_t ConstantValue(RegLocation loc) const { DCHECK(IsConst(loc)); return constant_values_[loc.orig_sreg]; } int32_t ConstantValue(int32_t s_reg) const { DCHECK(IsConst(s_reg)); return constant_values_[s_reg]; } int64_t ConstantValueWide(RegLocation loc) const { DCHECK(IsConst(loc)); return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) | Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg])); } bool IsConstantNullRef(RegLocation loc) const { return loc.ref && loc.is_const && (ConstantValue(loc) == 0); } int GetNumSSARegs() const { return num_ssa_regs_; } void SetNumSSARegs(int new_num) { num_ssa_regs_ = new_num; } unsigned int GetNumReachableBlocks() const { return num_reachable_blocks_; } int GetUseCount(int vreg) const { return use_counts_.Get(vreg); } int GetRawUseCount(int vreg) const { return raw_use_counts_.Get(vreg); } int GetSSASubscript(int ssa_reg) const { return ssa_subscripts_->Get(ssa_reg); } RegLocation GetRawSrc(MIR* mir, int num) { DCHECK(num < mir->ssa_rep->num_uses); RegLocation res = reg_location_[mir->ssa_rep->uses[num]]; return res; } RegLocation GetRawDest(MIR* mir) { DCHECK_GT(mir->ssa_rep->num_defs, 0); RegLocation res = reg_location_[mir->ssa_rep->defs[0]]; return res; } RegLocation GetDest(MIR* mir) { RegLocation res = GetRawDest(mir); DCHECK(!res.wide); return res; } RegLocation GetSrc(MIR* mir, int num) { RegLocation res = GetRawSrc(mir, num); DCHECK(!res.wide); return res; } RegLocation GetDestWide(MIR* mir) { RegLocation res = GetRawDest(mir); DCHECK(res.wide); return res; } RegLocation GetSrcWide(MIR* mir, int low) { RegLocation res = GetRawSrc(mir, low); DCHECK(res.wide); return res; } RegLocation GetBadLoc() { return bad_loc; } int GetMethodSReg() { return method_sreg_; } bool MethodIsLeaf() { return attributes_ & METHOD_IS_LEAF; } RegLocation GetRegLocation(int index) { DCHECK((index >= 0) && (index > num_ssa_regs_)); return reg_location_[index]; } RegLocation GetMethodLoc() { return reg_location_[method_sreg_]; } bool IsSpecialCase() { return special_case_ != kNoHandler; } SpecialCaseHandler GetSpecialCase() { return special_case_; } bool IsBackedge(BasicBlock* branch_bb, BasicBlock* target_bb) { return ((target_bb != NULL) && (target_bb->start_offset <= branch_bb->start_offset)); } bool IsBackwardsBranch(BasicBlock* branch_bb) { return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through); } void BasicBlockCombine(); void CodeLayout(); void DumpCheckStats(); void PropagateConstants(); MIR* FindMoveResult(BasicBlock* bb, MIR* mir); int SRegToVReg(int ssa_reg) const; void VerifyDataflow(); void MethodUseCount(); void SSATransformation(); void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb); void NullCheckElimination(); bool SetFp(int index, bool is_fp); bool SetCore(int index, bool is_core); bool SetRef(int index, bool is_ref); bool SetWide(int index, bool is_wide); bool SetHigh(int index, bool is_high); void AppendMIR(BasicBlock* bb, MIR* mir); void PrependMIR(BasicBlock* bb, MIR* mir); void InsertMIRAfter(BasicBlock* bb, MIR* current_mir, MIR* new_mir); char* GetDalvikDisassembly(const MIR* mir); void ReplaceSpecialChars(std::string& str); std::string GetSSAName(int ssa_reg); std::string GetSSANameWithConst(int ssa_reg, bool singles_only); void GetBlockName(BasicBlock* bb, char* name); const char* GetShortyFromTargetIdx(int); void DumpMIRGraph(); CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range); BasicBlock* NewMemBB(BBType block_type, int block_id); /* * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on * we can verify that all catch entries have native PC entries. */ std::set<uint32_t> catches_; // TODO: make these private. RegLocation* reg_location_; // Map SSA names to location. GrowableArray<CompilerTemp*> compiler_temps_; SafeMap<unsigned int, unsigned int> block_id_map_; // Block collapse lookup cache. static const int oat_data_flow_attributes_[kMirOpLast]; static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst]; static const uint32_t analysis_attributes_[kMirOpLast]; private: int FindCommonParent(int block1, int block2); void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1, const ArenaBitVector* src2); void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v, ArenaBitVector* live_in_v, int dalvik_reg_id); void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id); void CompilerInitializeSSAConversion(); bool DoSSAConversion(BasicBlock* bb); bool InvokeUsesMethodStar(MIR* mir); int ParseInsn(const uint16_t* code_ptr, DecodedInstruction* decoded_instruction); bool ContentIsInsn(const uint16_t* code_ptr); BasicBlock* SplitBlock(unsigned int code_offset, BasicBlock* orig_block, BasicBlock** immed_pred_block_p); BasicBlock* FindBlock(unsigned int code_offset, bool split, bool create, BasicBlock** immed_pred_block_p); void ProcessTryCatchBlocks(); BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, int cur_offset, int width, int flags, const uint16_t* code_ptr, const uint16_t* code_end); void ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, int cur_offset, int width, int flags); BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, int cur_offset, int width, int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr, const uint16_t* code_end); int AddNewSReg(int v_reg); void HandleSSAUse(int* uses, int dalvik_reg, int reg_index); void HandleSSADef(int* defs, int dalvik_reg, int reg_index); void DataFlowSSAFormat35C(MIR* mir); void DataFlowSSAFormat3RC(MIR* mir); bool FindLocalLiveIn(BasicBlock* bb); void ClearAllVisitedFlags(); bool CountUses(struct BasicBlock* bb); bool InferTypeAndSize(BasicBlock* bb); bool VerifyPredInfo(BasicBlock* bb); BasicBlock* NeedsVisit(BasicBlock* bb); BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb); void MarkPreOrder(BasicBlock* bb); void RecordDFSOrders(BasicBlock* bb); void ComputeDFSOrders(); void ComputeDefBlockMatrix(); void ComputeDomPostOrderTraversal(BasicBlock* bb); void ComputeDominators(); void InsertPhiNodes(); void DoDFSPreOrderSSARename(BasicBlock* block); void SetConstant(int32_t ssa_reg, int value); void SetConstantWide(int ssa_reg, int64_t value); int GetSSAUseCount(int s_reg); bool BasicBlockOpt(BasicBlock* bb); bool EliminateNullChecks(BasicBlock* bb); void NullCheckEliminationInit(BasicBlock* bb); bool BuildExtendedBBList(struct BasicBlock* bb); bool FillDefBlockMatrix(BasicBlock* bb); void InitializeDominationInfo(BasicBlock* bb); bool ComputeblockIDom(BasicBlock* bb); bool ComputeBlockDominators(BasicBlock* bb); bool SetDominators(BasicBlock* bb); bool ComputeBlockLiveIns(BasicBlock* bb); bool InsertPhiNodeOperands(BasicBlock* bb); bool ComputeDominanceFrontier(BasicBlock* bb); void DoConstantPropogation(BasicBlock* bb); void CountChecks(BasicBlock* bb); bool CombineBlocks(BasicBlock* bb); void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats); bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default); CompilationUnit* const cu_; GrowableArray<int>* ssa_base_vregs_; GrowableArray<int>* ssa_subscripts_; // Map original Dalvik virtual reg i to the current SSA name. int* vreg_to_ssa_map_; // length == method->registers_size int* ssa_last_defs_; // length == method->registers_size ArenaBitVector* is_constant_v_; // length == num_ssa_reg int* constant_values_; // length == num_ssa_reg // Use counts of ssa names. GrowableArray<uint32_t> use_counts_; // Weighted by nesting depth GrowableArray<uint32_t> raw_use_counts_; // Not weighted unsigned int num_reachable_blocks_; GrowableArray<int>* dfs_order_; GrowableArray<int>* dfs_post_order_; GrowableArray<int>* dom_post_order_traversal_; int* i_dom_list_; ArenaBitVector** def_block_matrix_; // num_dalvik_register x num_blocks. ArenaBitVector* temp_block_v_; ArenaBitVector* temp_dalvik_register_v_; ArenaBitVector* temp_ssa_register_v_; // num_ssa_regs. static const int kInvalidEntry = -1; GrowableArray<BasicBlock*> block_list_; ArenaBitVector* try_block_addr_; BasicBlock* entry_block_; BasicBlock* exit_block_; BasicBlock* cur_block_; int num_blocks_; const DexFile::CodeItem* current_code_item_; SafeMap<unsigned int, BasicBlock*> block_map_; // FindBlock lookup cache. std::vector<DexCompilationUnit*> m_units_; // List of methods included in this graph typedef std::pair<int, int> MIRLocation; // Insert point, (m_unit_ index, offset) std::vector<MIRLocation> method_stack_; // Include stack int current_method_; int current_offset_; int def_count_; // Used to estimate size of ssa name storage. int* opcode_count_; // Dex opcode coverage stats. int num_ssa_regs_; // Number of names following SSA transformation. std::vector<BasicBlock*> extended_basic_blocks_; // Heads of block "traces". int method_sreg_; unsigned int attributes_; Checkstats* checkstats_; SpecialCaseHandler special_case_; ArenaAllocator* arena_; }; } // namespace art #endif // ART_COMPILER_DEX_MIR_GRAPH_H_