/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex/compiler_internals.h" #include "dex_file-inl.h" #include "gc_map.h" #include "mapping_table.h" #include "mir_to_lir-inl.h" #include "verifier/dex_gc_map.h" #include "verifier/method_verifier.h" namespace art { bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) { bool res = false; if (rl_src.is_const) { if (rl_src.wide) { if (rl_src.fp) { res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src)); } else { res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src)); } } else { if (rl_src.fp) { res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src)); } else { res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src)); } } } return res; } void Mir2Lir::MarkSafepointPC(LIR* inst) { inst->def_mask = ENCODE_ALL; LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC); DCHECK_EQ(safepoint_pc->def_mask, ENCODE_ALL); } bool Mir2Lir::FastInstance(uint32_t field_idx, int& field_offset, bool& is_volatile, bool is_put) { return cu_->compiler_driver->ComputeInstanceFieldInfo( field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, is_volatile, is_put); } /* Convert an instruction to a NOP */ void Mir2Lir::NopLIR(LIR* lir) { lir->flags.is_nop = true; } void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) { uint64_t *mask_ptr; uint64_t mask = ENCODE_MEM; DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE)); if (is_load) { mask_ptr = &lir->use_mask; } else { mask_ptr = &lir->def_mask; } /* Clear out the memref flags */ *mask_ptr &= ~mask; /* ..and then add back the one we need */ switch (mem_type) { case kLiteral: DCHECK(is_load); *mask_ptr |= ENCODE_LITERAL; break; case kDalvikReg: *mask_ptr |= ENCODE_DALVIK_REG; break; case kHeapRef: *mask_ptr |= ENCODE_HEAP_REF; break; case kMustNotAlias: /* Currently only loads can be marked as kMustNotAlias */ DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE)); *mask_ptr |= ENCODE_MUST_NOT_ALIAS; break; default: LOG(FATAL) << "Oat: invalid memref kind - " << mem_type; } } /* * Mark load/store instructions that access Dalvik registers through the stack. */ void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit) { SetMemRefType(lir, is_load, kDalvikReg); /* * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit * access. */ lir->alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit); } /* * Debugging macros */ #define DUMP_RESOURCE_MASK(X) /* Pretty-print a LIR instruction */ void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) { int offset = lir->offset; int dest = lir->operands[0]; const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops)); /* Handle pseudo-ops individually, and all regular insns as a group */ switch (lir->opcode) { case kPseudoMethodEntry: LOG(INFO) << "-------- method entry " << PrettyMethod(cu_->method_idx, *cu_->dex_file); break; case kPseudoMethodExit: LOG(INFO) << "-------- Method_Exit"; break; case kPseudoBarrier: LOG(INFO) << "-------- BARRIER"; break; case kPseudoEntryBlock: LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest; break; case kPseudoDalvikByteCodeBoundary: if (lir->operands[0] == 0) { lir->operands[0] = reinterpret_cast<uintptr_t>("No instruction string"); } LOG(INFO) << "-------- dalvik offset: 0x" << std::hex << lir->dalvik_offset << " @ " << reinterpret_cast<char*>(lir->operands[0]); break; case kPseudoExitBlock: LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest; break; case kPseudoPseudoAlign4: LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex << offset << "): .align4"; break; case kPseudoEHBlockLabel: LOG(INFO) << "Exception_Handling:"; break; case kPseudoTargetLabel: case kPseudoNormalBlockLabel: LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":"; break; case kPseudoThrowTarget: LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":"; break; case kPseudoIntrinsicRetry: LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":"; break; case kPseudoSuspendTarget: LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":"; break; case kPseudoSafepointPC: LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; break; case kPseudoExportedPC: LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; break; case kPseudoCaseLabel: LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x" << std::hex << lir->operands[0] << "|" << std::dec << lir->operands[0]; break; default: if (lir->flags.is_nop && !dump_nop) { break; } else { std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode), lir, base_addr)); std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode), lir, base_addr)); LOG(INFO) << StringPrintf("%05x: %-9s%s%s", reinterpret_cast<unsigned int>(base_addr + offset), op_name.c_str(), op_operands.c_str(), lir->flags.is_nop ? "(nop)" : ""); } break; } if (lir->use_mask && (!lir->flags.is_nop || dump_nop)) { DUMP_RESOURCE_MASK(DumpResourceMask(lir, lir->use_mask, "use")); } if (lir->def_mask && (!lir->flags.is_nop || dump_nop)) { DUMP_RESOURCE_MASK(DumpResourceMask(lir, lir->def_mask, "def")); } } void Mir2Lir::DumpPromotionMap() { int num_regs = cu_->num_dalvik_registers + cu_->num_compiler_temps + 1; for (int i = 0; i < num_regs; i++) { PromotionMap v_reg_map = promotion_map_[i]; std::string buf; if (v_reg_map.fp_location == kLocPhysReg) { StringAppendF(&buf, " : s%d", v_reg_map.FpReg & FpRegMask()); } std::string buf3; if (i < cu_->num_dalvik_registers) { StringAppendF(&buf3, "%02d", i); } else if (i == mir_graph_->GetMethodSReg()) { buf3 = "Method*"; } else { StringAppendF(&buf3, "ct%d", i - cu_->num_dalvik_registers); } LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(), v_reg_map.core_location == kLocPhysReg ? "r" : "SP+", v_reg_map.core_location == kLocPhysReg ? v_reg_map.core_reg : SRegOffset(i), buf.c_str()); } } /* Dump a mapping table */ void Mir2Lir::DumpMappingTable(const char* table_name, const std::string& descriptor, const std::string& name, const std::string& signature, const std::vector<uint32_t>& v) { if (v.size() > 0) { std::string line(StringPrintf("\n %s %s%s_%s_table[%zu] = {", table_name, descriptor.c_str(), name.c_str(), signature.c_str(), v.size())); std::replace(line.begin(), line.end(), ';', '_'); LOG(INFO) << line; for (uint32_t i = 0; i < v.size(); i+=2) { line = StringPrintf(" {0x%05x, 0x%04x},", v[i], v[i+1]); LOG(INFO) << line; } LOG(INFO) <<" };\n\n"; } } /* Dump instructions and constant pool contents */ void Mir2Lir::CodegenDump() { LOG(INFO) << "Dumping LIR insns for " << PrettyMethod(cu_->method_idx, *cu_->dex_file); LIR* lir_insn; int insns_size = cu_->code_item->insns_size_in_code_units_; LOG(INFO) << "Regs (excluding ins) : " << cu_->num_regs; LOG(INFO) << "Ins : " << cu_->num_ins; LOG(INFO) << "Outs : " << cu_->num_outs; LOG(INFO) << "CoreSpills : " << num_core_spills_; LOG(INFO) << "FPSpills : " << num_fp_spills_; LOG(INFO) << "CompilerTemps : " << cu_->num_compiler_temps; LOG(INFO) << "Frame size : " << frame_size_; LOG(INFO) << "code size is " << total_size_ << " bytes, Dalvik size is " << insns_size * 2; LOG(INFO) << "expansion factor: " << static_cast<float>(total_size_) / static_cast<float>(insns_size * 2); DumpPromotionMap(); for (lir_insn = first_lir_insn_; lir_insn != NULL; lir_insn = lir_insn->next) { DumpLIRInsn(lir_insn, 0); } for (lir_insn = literal_list_; lir_insn != NULL; lir_insn = lir_insn->next) { LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset, lir_insn->operands[0]); } const DexFile::MethodId& method_id = cu_->dex_file->GetMethodId(cu_->method_idx); std::string signature(cu_->dex_file->GetMethodSignature(method_id)); std::string name(cu_->dex_file->GetMethodName(method_id)); std::string descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id)); // Dump mapping tables DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, pc2dex_mapping_table_); DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, dex2pc_mapping_table_); } /* * Search the existing constants in the literal pool for an exact or close match * within specified delta (greater or equal to 0). */ LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) { while (data_target) { if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta) return data_target; data_target = data_target->next; } return NULL; } /* Search the existing constants in the literal pool for an exact wide match */ LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) { bool lo_match = false; LIR* lo_target = NULL; while (data_target) { if (lo_match && (data_target->operands[0] == val_hi)) { // Record high word in case we need to expand this later. lo_target->operands[1] = val_hi; return lo_target; } lo_match = false; if (data_target->operands[0] == val_lo) { lo_match = true; lo_target = data_target; } data_target = data_target->next; } return NULL; } /* * The following are building blocks to insert constants into the pool or * instruction streams. */ /* Add a 32-bit constant to the constant pool */ LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) { /* Add the constant to the literal pool */ if (constant_list_p) { LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), ArenaAllocator::kAllocData)); new_value->operands[0] = value; new_value->next = *constant_list_p; *constant_list_p = new_value; return new_value; } return NULL; } /* Add a 64-bit constant to the constant pool or mixed with code */ LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) { AddWordData(constant_list_p, val_hi); return AddWordData(constant_list_p, val_lo); } static void PushWord(std::vector<uint8_t>&buf, int data) { buf.push_back(data & 0xff); buf.push_back((data >> 8) & 0xff); buf.push_back((data >> 16) & 0xff); buf.push_back((data >> 24) & 0xff); } static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) { while (buf.size() < offset) { buf.push_back(0); } } /* Write the literal pool to the output stream */ void Mir2Lir::InstallLiteralPools() { AlignBuffer(code_buffer_, data_offset_); LIR* data_lir = literal_list_; while (data_lir != NULL) { PushWord(code_buffer_, data_lir->operands[0]); data_lir = NEXT_LIR(data_lir); } // Push code and method literals, record offsets for the compiler to patch. data_lir = code_literal_list_; while (data_lir != NULL) { uint32_t target = data_lir->operands[0]; cu_->compiler_driver->AddCodePatch(cu_->dex_file, cu_->class_def_idx, cu_->method_idx, cu_->invoke_type, target, static_cast<InvokeType>(data_lir->operands[1]), code_buffer_.size()); const DexFile::MethodId& id = cu_->dex_file->GetMethodId(target); // unique based on target to ensure code deduplication works uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id); PushWord(code_buffer_, unique_patch_value); data_lir = NEXT_LIR(data_lir); } data_lir = method_literal_list_; while (data_lir != NULL) { uint32_t target = data_lir->operands[0]; cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx, cu_->method_idx, cu_->invoke_type, target, static_cast<InvokeType>(data_lir->operands[1]), code_buffer_.size()); const DexFile::MethodId& id = cu_->dex_file->GetMethodId(target); // unique based on target to ensure code deduplication works uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id); PushWord(code_buffer_, unique_patch_value); data_lir = NEXT_LIR(data_lir); } } /* Write the switch tables to the output stream */ void Mir2Lir::InstallSwitchTables() { GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); while (true) { Mir2Lir::SwitchTable* tab_rec = iterator.Next(); if (tab_rec == NULL) break; AlignBuffer(code_buffer_, tab_rec->offset); /* * For Arm, our reference point is the address of the bx * instruction that does the launch, so we have to subtract * the auto pc-advance. For other targets the reference point * is a label, so we can use the offset as-is. */ int bx_offset = INVALID_OFFSET; switch (cu_->instruction_set) { case kThumb2: bx_offset = tab_rec->anchor->offset + 4; break; case kX86: bx_offset = 0; break; case kMips: bx_offset = tab_rec->anchor->offset; break; default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; } if (cu_->verbose) { LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset; } if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { const int* keys = reinterpret_cast<const int*>(&(tab_rec->table[2])); for (int elems = 0; elems < tab_rec->table[1]; elems++) { int disp = tab_rec->targets[elems]->offset - bx_offset; if (cu_->verbose) { LOG(INFO) << " Case[" << elems << "] key: 0x" << std::hex << keys[elems] << ", disp: 0x" << std::hex << disp; } PushWord(code_buffer_, keys[elems]); PushWord(code_buffer_, tab_rec->targets[elems]->offset - bx_offset); } } else { DCHECK_EQ(static_cast<int>(tab_rec->table[0]), static_cast<int>(Instruction::kPackedSwitchSignature)); for (int elems = 0; elems < tab_rec->table[1]; elems++) { int disp = tab_rec->targets[elems]->offset - bx_offset; if (cu_->verbose) { LOG(INFO) << " Case[" << elems << "] disp: 0x" << std::hex << disp; } PushWord(code_buffer_, tab_rec->targets[elems]->offset - bx_offset); } } } } /* Write the fill array dta to the output stream */ void Mir2Lir::InstallFillArrayData() { GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_); while (true) { Mir2Lir::FillArrayData *tab_rec = iterator.Next(); if (tab_rec == NULL) break; AlignBuffer(code_buffer_, tab_rec->offset); for (int i = 0; i < (tab_rec->size + 1) / 2; i++) { code_buffer_.push_back(tab_rec->table[i] & 0xFF); code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF); } } } static int AssignLiteralOffsetCommon(LIR* lir, int offset) { for (; lir != NULL; lir = lir->next) { lir->offset = offset; offset += 4; } return offset; } // Make sure we have a code address for every declared catch entry bool Mir2Lir::VerifyCatchEntries() { bool success = true; for (std::set<uint32_t>::const_iterator it = mir_graph_->catches_.begin(); it != mir_graph_->catches_.end(); ++it) { uint32_t dex_pc = *it; bool found = false; for (size_t i = 0; i < dex2pc_mapping_table_.size(); i += 2) { if (dex_pc == dex2pc_mapping_table_[i+1]) { found = true; break; } } if (!found) { LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc; success = false; } } // Now, try in the other direction for (size_t i = 0; i < dex2pc_mapping_table_.size(); i += 2) { uint32_t dex_pc = dex2pc_mapping_table_[i+1]; if (mir_graph_->catches_.find(dex_pc) == mir_graph_->catches_.end()) { LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << dex_pc; success = false; } } if (!success) { LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: " << dex2pc_mapping_table_.size()/2; } return success; } void Mir2Lir::CreateMappingTables() { for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) { if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { pc2dex_mapping_table_.push_back(tgt_lir->offset); pc2dex_mapping_table_.push_back(tgt_lir->dalvik_offset); } if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { dex2pc_mapping_table_.push_back(tgt_lir->offset); dex2pc_mapping_table_.push_back(tgt_lir->dalvik_offset); } } if (kIsDebugBuild) { CHECK(VerifyCatchEntries()); } CHECK_EQ(pc2dex_mapping_table_.size() & 1, 0U); CHECK_EQ(dex2pc_mapping_table_.size() & 1, 0U); uint32_t total_entries = (pc2dex_mapping_table_.size() + dex2pc_mapping_table_.size()) / 2; uint32_t pc2dex_entries = pc2dex_mapping_table_.size() / 2; encoded_mapping_table_.PushBack(total_entries); encoded_mapping_table_.PushBack(pc2dex_entries); encoded_mapping_table_.InsertBack(pc2dex_mapping_table_.begin(), pc2dex_mapping_table_.end()); encoded_mapping_table_.InsertBack(dex2pc_mapping_table_.begin(), dex2pc_mapping_table_.end()); if (kIsDebugBuild) { // Verify the encoded table holds the expected data. MappingTable table(&encoded_mapping_table_.GetData()[0]); CHECK_EQ(table.TotalSize(), total_entries); CHECK_EQ(table.PcToDexSize(), pc2dex_entries); CHECK_EQ(table.DexToPcSize(), dex2pc_mapping_table_.size() / 2); MappingTable::PcToDexIterator it = table.PcToDexBegin(); for (uint32_t i = 0; i < pc2dex_mapping_table_.size(); ++i, ++it) { CHECK_EQ(pc2dex_mapping_table_.at(i), it.NativePcOffset()); ++i; CHECK_EQ(pc2dex_mapping_table_.at(i), it.DexPc()); } MappingTable::DexToPcIterator it2 = table.DexToPcBegin(); for (uint32_t i = 0; i < dex2pc_mapping_table_.size(); ++i, ++it2) { CHECK_EQ(dex2pc_mapping_table_.at(i), it2.NativePcOffset()); ++i; CHECK_EQ(dex2pc_mapping_table_.at(i), it2.DexPc()); } } } class NativePcToReferenceMapBuilder { public: NativePcToReferenceMapBuilder(std::vector<uint8_t>* table, size_t entries, uint32_t max_native_offset, size_t references_width) : entries_(entries), references_width_(references_width), in_use_(entries), table_(table) { // Compute width in bytes needed to hold max_native_offset. native_offset_width_ = 0; while (max_native_offset != 0) { native_offset_width_++; max_native_offset >>= 8; } // Resize table and set up header. table->resize((EntryWidth() * entries) + sizeof(uint32_t)); CHECK_LT(native_offset_width_, 1U << 3); (*table)[0] = native_offset_width_ & 7; CHECK_LT(references_width_, 1U << 13); (*table)[0] |= (references_width_ << 3) & 0xFF; (*table)[1] = (references_width_ >> 5) & 0xFF; CHECK_LT(entries, 1U << 16); (*table)[2] = entries & 0xFF; (*table)[3] = (entries >> 8) & 0xFF; } void AddEntry(uint32_t native_offset, const uint8_t* references) { size_t table_index = TableIndex(native_offset); while (in_use_[table_index]) { table_index = (table_index + 1) % entries_; } in_use_[table_index] = true; SetNativeOffset(table_index, native_offset); DCHECK_EQ(native_offset, GetNativeOffset(table_index)); SetReferences(table_index, references); } private: size_t TableIndex(uint32_t native_offset) { return NativePcOffsetToReferenceMap::Hash(native_offset) % entries_; } uint32_t GetNativeOffset(size_t table_index) { uint32_t native_offset = 0; size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); for (size_t i = 0; i < native_offset_width_; i++) { native_offset |= (*table_)[table_offset + i] << (i * 8); } return native_offset; } void SetNativeOffset(size_t table_index, uint32_t native_offset) { size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); for (size_t i = 0; i < native_offset_width_; i++) { (*table_)[table_offset + i] = (native_offset >> (i * 8)) & 0xFF; } } void SetReferences(size_t table_index, const uint8_t* references) { size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); memcpy(&(*table_)[table_offset + native_offset_width_], references, references_width_); } size_t EntryWidth() const { return native_offset_width_ + references_width_; } // Number of entries in the table. const size_t entries_; // Number of bytes used to encode the reference bitmap. const size_t references_width_; // Number of bytes used to encode a native offset. size_t native_offset_width_; // Entries that are in use. std::vector<bool> in_use_; // The table we're building. std::vector<uint8_t>* const table_; }; void Mir2Lir::CreateNativeGcMap() { const std::vector<uint32_t>& mapping_table = pc2dex_mapping_table_; uint32_t max_native_offset = 0; for (size_t i = 0; i < mapping_table.size(); i += 2) { uint32_t native_offset = mapping_table[i + 0]; if (native_offset > max_native_offset) { max_native_offset = native_offset; } } MethodReference method_ref(cu_->dex_file, cu_->method_idx); const std::vector<uint8_t>* gc_map_raw = verifier::MethodVerifier::GetDexGcMap(method_ref); verifier::DexPcToReferenceMap dex_gc_map(&(*gc_map_raw)[4], gc_map_raw->size() - 4); // Compute native offset to references size. NativePcToReferenceMapBuilder native_gc_map_builder(&native_gc_map_, mapping_table.size() / 2, max_native_offset, dex_gc_map.RegWidth()); for (size_t i = 0; i < mapping_table.size(); i += 2) { uint32_t native_offset = mapping_table[i + 0]; uint32_t dex_pc = mapping_table[i + 1]; const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc; native_gc_map_builder.AddEntry(native_offset, references); } } /* Determine the offset of each literal field */ int Mir2Lir::AssignLiteralOffset(int offset) { offset = AssignLiteralOffsetCommon(literal_list_, offset); offset = AssignLiteralOffsetCommon(code_literal_list_, offset); offset = AssignLiteralOffsetCommon(method_literal_list_, offset); return offset; } int Mir2Lir::AssignSwitchTablesOffset(int offset) { GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); while (true) { Mir2Lir::SwitchTable *tab_rec = iterator.Next(); if (tab_rec == NULL) break; tab_rec->offset = offset; if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { offset += tab_rec->table[1] * (sizeof(int) * 2); } else { DCHECK_EQ(static_cast<int>(tab_rec->table[0]), static_cast<int>(Instruction::kPackedSwitchSignature)); offset += tab_rec->table[1] * sizeof(int); } } return offset; } int Mir2Lir::AssignFillArrayDataOffset(int offset) { GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_); while (true) { Mir2Lir::FillArrayData *tab_rec = iterator.Next(); if (tab_rec == NULL) break; tab_rec->offset = offset; offset += tab_rec->size; // word align offset = (offset + 3) & ~3; } return offset; } // LIR offset assignment. int Mir2Lir::AssignInsnOffsets() { LIR* lir; int offset = 0; for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) { lir->offset = offset; if (lir->opcode >= 0) { if (!lir->flags.is_nop) { offset += lir->flags.size; } } else if (lir->opcode == kPseudoPseudoAlign4) { if (offset & 0x2) { offset += 2; lir->operands[0] = 1; } else { lir->operands[0] = 0; } } /* Pseudo opcodes don't consume space */ } return offset; } /* * Walk the compilation unit and assign offsets to instructions * and literals and compute the total size of the compiled unit. */ void Mir2Lir::AssignOffsets() { int offset = AssignInsnOffsets(); /* Const values have to be word aligned */ offset = (offset + 3) & ~3; /* Set up offsets for literals */ data_offset_ = offset; offset = AssignLiteralOffset(offset); offset = AssignSwitchTablesOffset(offset); offset = AssignFillArrayDataOffset(offset); total_size_ = offset; } /* * Go over each instruction in the list and calculate the offset from the top * before sending them off to the assembler. If out-of-range branch distance is * seen rearrange the instructions a bit to correct it. */ void Mir2Lir::AssembleLIR() { AssignOffsets(); int assembler_retries = 0; /* * Assemble here. Note that we generate code with optimistic assumptions * and if found now to work, we'll have to redo the sequence and retry. */ while (true) { AssemblerStatus res = AssembleInstructions(0); if (res == kSuccess) { break; } else { assembler_retries++; if (assembler_retries > MAX_ASSEMBLER_RETRIES) { CodegenDump(); LOG(FATAL) << "Assembler error - too many retries"; } // Redo offsets and try again AssignOffsets(); code_buffer_.clear(); } } // Install literals InstallLiteralPools(); // Install switch tables InstallSwitchTables(); // Install fill array data InstallFillArrayData(); // Create the mapping table and native offset to reference map. CreateMappingTables(); CreateNativeGcMap(); } /* * Insert a kPseudoCaseLabel at the beginning of the Dalvik * offset vaddr. This label will be used to fix up the case * branch table during the assembly phase. Be sure to set * all resource flags on this to prevent code motion across * target boundaries. KeyVal is just there for debugging. */ LIR* Mir2Lir::InsertCaseLabel(int vaddr, int keyVal) { SafeMap<unsigned int, LIR*>::iterator it; it = boundary_map_.find(vaddr); if (it == boundary_map_.end()) { LOG(FATAL) << "Error: didn't find vaddr 0x" << std::hex << vaddr; } LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), ArenaAllocator::kAllocLIR)); new_label->dalvik_offset = vaddr; new_label->opcode = kPseudoCaseLabel; new_label->operands[0] = keyVal; InsertLIRAfter(it->second, new_label); return new_label; } void Mir2Lir::MarkPackedCaseLabels(Mir2Lir::SwitchTable *tab_rec) { const uint16_t* table = tab_rec->table; int base_vaddr = tab_rec->vaddr; const int *targets = reinterpret_cast<const int*>(&table[4]); int entries = table[1]; int low_key = s4FromSwitchData(&table[2]); for (int i = 0; i < entries; i++) { tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], i + low_key); } } void Mir2Lir::MarkSparseCaseLabels(Mir2Lir::SwitchTable *tab_rec) { const uint16_t* table = tab_rec->table; int base_vaddr = tab_rec->vaddr; int entries = table[1]; const int* keys = reinterpret_cast<const int*>(&table[2]); const int* targets = &keys[entries]; for (int i = 0; i < entries; i++) { tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], keys[i]); } } void Mir2Lir::ProcessSwitchTables() { GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); while (true) { Mir2Lir::SwitchTable *tab_rec = iterator.Next(); if (tab_rec == NULL) break; if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) { MarkPackedCaseLabels(tab_rec); } else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { MarkSparseCaseLabels(tab_rec); } else { LOG(FATAL) << "Invalid switch table"; } } } void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) { /* * Sparse switch data format: * ushort ident = 0x0200 magic value * ushort size number of entries in the table; > 0 * int keys[size] keys, sorted low-to-high; 32-bit aligned * int targets[size] branch targets, relative to switch opcode * * Total size is (2+size*4) 16-bit code units. */ uint16_t ident = table[0]; int entries = table[1]; const int* keys = reinterpret_cast<const int*>(&table[2]); const int* targets = &keys[entries]; LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident << ", entries: " << std::dec << entries; for (int i = 0; i < entries; i++) { LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i]; } } void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) { /* * Packed switch data format: * ushort ident = 0x0100 magic value * ushort size number of entries in the table * int first_key first (and lowest) switch case value * int targets[size] branch targets, relative to switch opcode * * Total size is (4+size*2) 16-bit code units. */ uint16_t ident = table[0]; const int* targets = reinterpret_cast<const int*>(&table[4]); int entries = table[1]; int low_key = s4FromSwitchData(&table[2]); LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident << ", entries: " << std::dec << entries << ", low_key: " << low_key; for (int i = 0; i < entries; i++) { LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex << targets[i]; } } /* * Set up special LIR to mark a Dalvik byte-code instruction start and * record it in the boundary_map. NOTE: in cases such as kMirOpCheck in * which we split a single Dalvik instruction, only the first MIR op * associated with a Dalvik PC should be entered into the map. */ LIR* Mir2Lir::MarkBoundary(int offset, const char* inst_str) { LIR* res = NewLIR1(kPseudoDalvikByteCodeBoundary, reinterpret_cast<uintptr_t>(inst_str)); if (boundary_map_.find(offset) == boundary_map_.end()) { boundary_map_.Put(offset, res); } return res; } bool Mir2Lir::EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) { bool is_taken; switch (opcode) { case Instruction::IF_EQ: is_taken = (src1 == src2); break; case Instruction::IF_NE: is_taken = (src1 != src2); break; case Instruction::IF_LT: is_taken = (src1 < src2); break; case Instruction::IF_GE: is_taken = (src1 >= src2); break; case Instruction::IF_GT: is_taken = (src1 > src2); break; case Instruction::IF_LE: is_taken = (src1 <= src2); break; case Instruction::IF_EQZ: is_taken = (src1 == 0); break; case Instruction::IF_NEZ: is_taken = (src1 != 0); break; case Instruction::IF_LTZ: is_taken = (src1 < 0); break; case Instruction::IF_GEZ: is_taken = (src1 >= 0); break; case Instruction::IF_GTZ: is_taken = (src1 > 0); break; case Instruction::IF_LEZ: is_taken = (src1 <= 0); break; default: LOG(FATAL) << "Unexpected opcode " << opcode; is_taken = false; } return is_taken; } // Convert relation of src1/src2 to src2/src1 ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) { ConditionCode res; switch (before) { case kCondEq: res = kCondEq; break; case kCondNe: res = kCondNe; break; case kCondLt: res = kCondGt; break; case kCondGt: res = kCondLt; break; case kCondLe: res = kCondGe; break; case kCondGe: res = kCondLe; break; default: res = static_cast<ConditionCode>(0); LOG(FATAL) << "Unexpected ccode " << before; } return res; } // TODO: move to mir_to_lir.cc Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) : Backend(arena), literal_list_(NULL), method_literal_list_(NULL), code_literal_list_(NULL), cu_(cu), mir_graph_(mir_graph), switch_tables_(arena, 4, kGrowableArraySwitchTables), fill_array_data_(arena, 4, kGrowableArrayFillArrayData), throw_launchpads_(arena, 2048, kGrowableArrayThrowLaunchPads), suspend_launchpads_(arena, 4, kGrowableArraySuspendLaunchPads), intrinsic_launchpads_(arena, 2048, kGrowableArrayMisc), data_offset_(0), total_size_(0), block_label_list_(NULL), current_dalvik_offset_(0), reg_pool_(NULL), live_sreg_(0), num_core_spills_(0), num_fp_spills_(0), frame_size_(0), core_spill_mask_(0), fp_spill_mask_(0), first_lir_insn_(NULL), last_lir_insn_(NULL) { promotion_map_ = static_cast<PromotionMap*> (arena_->Alloc((cu_->num_dalvik_registers + cu_->num_compiler_temps + 1) * sizeof(promotion_map_[0]), ArenaAllocator::kAllocRegAlloc)); } void Mir2Lir::Materialize() { CompilerInitializeRegAlloc(); // Needs to happen after SSA naming /* Allocate Registers using simple local allocation scheme */ SimpleRegAlloc(); if (mir_graph_->IsSpecialCase()) { /* * Custom codegen for special cases. If for any reason the * special codegen doesn't succeed, first_lir_insn_ will * set to NULL; */ SpecialMIR2LIR(mir_graph_->GetSpecialCase()); } /* Convert MIR to LIR, etc. */ if (first_lir_insn_ == NULL) { MethodMIR2LIR(); } /* Method is not empty */ if (first_lir_insn_) { // mark the targets of switch statement case labels ProcessSwitchTables(); /* Convert LIR into machine code. */ AssembleLIR(); if (cu_->verbose) { CodegenDump(); } } } CompiledMethod* Mir2Lir::GetCompiledMethod() { // Combine vmap tables - core regs, then fp regs - into vmap_table std::vector<uint16_t> raw_vmap_table; // Core regs may have been inserted out of order - sort first std::sort(core_vmap_table_.begin(), core_vmap_table_.end()); for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) { // Copy, stripping out the phys register sort key raw_vmap_table.push_back(~(-1 << VREG_NUM_WIDTH) & core_vmap_table_[i]); } // If we have a frame, push a marker to take place of lr if (frame_size_ > 0) { raw_vmap_table.push_back(INVALID_VREG); } else { DCHECK_EQ(__builtin_popcount(core_spill_mask_), 0); DCHECK_EQ(__builtin_popcount(fp_spill_mask_), 0); } // Combine vmap tables - core regs, then fp regs. fp regs already sorted for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) { raw_vmap_table.push_back(fp_vmap_table_[i]); } UnsignedLeb128EncodingVector vmap_encoder; // Prefix the encoded data with its size. vmap_encoder.PushBack(raw_vmap_table.size()); for (uint16_t cur : raw_vmap_table) { vmap_encoder.PushBack(cur); } CompiledMethod* result = new CompiledMethod(*cu_->compiler_driver, cu_->instruction_set, code_buffer_, frame_size_, core_spill_mask_, fp_spill_mask_, encoded_mapping_table_.GetData(), vmap_encoder.GetData(), native_gc_map_); return result; } int Mir2Lir::ComputeFrameSize() { /* Figure out the frame size */ static const uint32_t kAlignMask = kStackAlignment - 1; uint32_t size = (num_core_spills_ + num_fp_spills_ + 1 /* filler word */ + cu_->num_regs + cu_->num_outs + cu_->num_compiler_temps + 1 /* cur_method* */) * sizeof(uint32_t); /* Align and set */ return (size + kAlignMask) & ~(kAlignMask); } /* * Append an LIR instruction to the LIR list maintained by a compilation * unit */ void Mir2Lir::AppendLIR(LIR* lir) { if (first_lir_insn_ == NULL) { DCHECK(last_lir_insn_ == NULL); last_lir_insn_ = first_lir_insn_ = lir; lir->prev = lir->next = NULL; } else { last_lir_insn_->next = lir; lir->prev = last_lir_insn_; lir->next = NULL; last_lir_insn_ = lir; } } /* * Insert an LIR instruction before the current instruction, which cannot be the * first instruction. * * prev_lir <-> new_lir <-> current_lir */ void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) { DCHECK(current_lir->prev != NULL); LIR *prev_lir = current_lir->prev; prev_lir->next = new_lir; new_lir->prev = prev_lir; new_lir->next = current_lir; current_lir->prev = new_lir; } /* * Insert an LIR instruction after the current instruction, which cannot be the * first instruction. * * current_lir -> new_lir -> old_next */ void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) { new_lir->prev = current_lir; new_lir->next = current_lir->next; current_lir->next = new_lir; new_lir->next->prev = new_lir; } } // namespace art