/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "large_object_space.h" #include "base/logging.h" #include "base/stl_util.h" #include "UniquePtr.h" #include "image.h" #include "os.h" #include "thread.h" #include "utils.h" namespace art { namespace gc { namespace space { void LargeObjectSpace::SwapBitmaps() { live_objects_.swap(mark_objects_); // Swap names to get more descriptive diagnostics. std::string temp_name = live_objects_->GetName(); live_objects_->SetName(mark_objects_->GetName()); mark_objects_->SetName(temp_name); } LargeObjectSpace::LargeObjectSpace(const std::string& name) : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect), num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0), total_objects_allocated_(0) { } void LargeObjectSpace::CopyLiveToMarked() { mark_objects_->CopyFrom(*live_objects_.get()); } LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name) : LargeObjectSpace(name), lock_("large object map space lock", kAllocSpaceLock) {} LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) { return new LargeObjectMapSpace(name); } mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) { MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", NULL, num_bytes, PROT_READ | PROT_WRITE); if (mem_map == NULL) { return NULL; } MutexLock mu(self, lock_); mirror::Object* obj = reinterpret_cast<mirror::Object*>(mem_map->Begin()); large_objects_.push_back(obj); mem_maps_.Put(obj, mem_map); size_t allocation_size = mem_map->Size(); DCHECK(bytes_allocated != NULL); *bytes_allocated = allocation_size; num_bytes_allocated_ += allocation_size; total_bytes_allocated_ += allocation_size; ++num_objects_allocated_; ++total_objects_allocated_; return obj; } size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) { MutexLock mu(self, lock_); MemMaps::iterator found = mem_maps_.find(ptr); CHECK(found != mem_maps_.end()) << "Attempted to free large object which was not live"; DCHECK_GE(num_bytes_allocated_, found->second->Size()); size_t allocation_size = found->second->Size(); num_bytes_allocated_ -= allocation_size; --num_objects_allocated_; delete found->second; mem_maps_.erase(found); return allocation_size; } size_t LargeObjectMapSpace::AllocationSize(const mirror::Object* obj) { MutexLock mu(Thread::Current(), lock_); MemMaps::iterator found = mem_maps_.find(const_cast<mirror::Object*>(obj)); CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live"; return found->second->Size(); } size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) { size_t total = 0; for (size_t i = 0; i < num_ptrs; ++i) { if (kDebugSpaces) { CHECK(Contains(ptrs[i])); } total += Free(self, ptrs[i]); } return total; } void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) { MutexLock mu(Thread::Current(), lock_); for (MemMaps::iterator it = mem_maps_.begin(); it != mem_maps_.end(); ++it) { MemMap* mem_map = it->second; callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg); callback(NULL, NULL, 0, arg); } } bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const { Thread* self = Thread::Current(); if (lock_.IsExclusiveHeld(self)) { // We hold lock_ so do the check. return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end(); } else { MutexLock mu(self, lock_); return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end(); } } FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) { CHECK_EQ(size % kAlignment, 0U); MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size, PROT_READ | PROT_WRITE); CHECK(mem_map != NULL) << "Failed to allocate large object space mem map"; return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End()); } FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end) : LargeObjectSpace(name), begin_(begin), end_(end), mem_map_(mem_map), lock_("free list space lock", kAllocSpaceLock) { free_end_ = end - begin; } FreeListSpace::~FreeListSpace() {} void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) { MutexLock mu(Thread::Current(), lock_); uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin()); while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) { cur_header = cur_header->GetNextNonFree(); size_t alloc_size = cur_header->AllocationSize(); byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress()); byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader); callback(byte_start, byte_end, alloc_size, arg); callback(NULL, NULL, 0, arg); cur_header = reinterpret_cast<AllocationHeader*>(byte_end); } } void FreeListSpace::RemoveFreePrev(AllocationHeader* header) { CHECK(!header->IsFree()); CHECK_GT(header->GetPrevFree(), size_t(0)); FreeBlocks::iterator found = free_blocks_.lower_bound(header); CHECK(found != free_blocks_.end()); CHECK_EQ(*found, header); free_blocks_.erase(found); } FreeListSpace::AllocationHeader* FreeListSpace::GetAllocationHeader(const mirror::Object* obj) { DCHECK(Contains(obj)); return reinterpret_cast<AllocationHeader*>(reinterpret_cast<uintptr_t>(obj) - sizeof(AllocationHeader)); } FreeListSpace::AllocationHeader* FreeListSpace::AllocationHeader::GetNextNonFree() { // We know that there has to be at least one object after us or else we would have // coalesced with the free end region. May be worth investigating a better way to do this // as it may be expensive for large allocations. for (uintptr_t pos = reinterpret_cast<uintptr_t>(this);; pos += kAlignment) { AllocationHeader* cur = reinterpret_cast<AllocationHeader*>(pos); if (!cur->IsFree()) return cur; } } size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) { MutexLock mu(self, lock_); DCHECK(Contains(obj)); AllocationHeader* header = GetAllocationHeader(obj); CHECK(IsAligned<kAlignment>(header)); size_t allocation_size = header->AllocationSize(); DCHECK_GT(allocation_size, size_t(0)); DCHECK(IsAligned<kAlignment>(allocation_size)); // Look at the next chunk. AllocationHeader* next_header = header->GetNextAllocationHeader(); // Calculate the start of the end free block. uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; size_t header_prev_free = header->GetPrevFree(); size_t new_free_size = allocation_size; if (header_prev_free) { new_free_size += header_prev_free; RemoveFreePrev(header); } if (reinterpret_cast<uintptr_t>(next_header) >= free_end_start) { // Easy case, the next chunk is the end free region. CHECK_EQ(reinterpret_cast<uintptr_t>(next_header), free_end_start); free_end_ += new_free_size; } else { AllocationHeader* new_free_header; DCHECK(IsAligned<kAlignment>(next_header)); if (next_header->IsFree()) { // Find the next chunk by reading each page until we hit one with non-zero chunk. AllocationHeader* next_next_header = next_header->GetNextNonFree(); DCHECK(IsAligned<kAlignment>(next_next_header)); DCHECK(IsAligned<kAlignment>(next_next_header->AllocationSize())); RemoveFreePrev(next_next_header); new_free_header = next_next_header; new_free_size += next_next_header->GetPrevFree(); } else { new_free_header = next_header; } new_free_header->prev_free_ = new_free_size; free_blocks_.insert(new_free_header); } --num_objects_allocated_; DCHECK_LE(allocation_size, num_bytes_allocated_); num_bytes_allocated_ -= allocation_size; madvise(header, allocation_size, MADV_DONTNEED); if (kIsDebugBuild) { // Can't disallow reads since we use them to find next chunks during coalescing. mprotect(header, allocation_size, PROT_READ); } return allocation_size; } bool FreeListSpace::Contains(const mirror::Object* obj) const { return mem_map_->HasAddress(obj); } size_t FreeListSpace::AllocationSize(const mirror::Object* obj) { AllocationHeader* header = GetAllocationHeader(obj); DCHECK(Contains(obj)); DCHECK(!header->IsFree()); return header->AllocationSize(); } mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) { MutexLock mu(self, lock_); size_t allocation_size = RoundUp(num_bytes + sizeof(AllocationHeader), kAlignment); AllocationHeader temp; temp.SetPrevFree(allocation_size); temp.SetAllocationSize(0); AllocationHeader* new_header; // Find the smallest chunk at least num_bytes in size. FreeBlocks::iterator found = free_blocks_.lower_bound(&temp); if (found != free_blocks_.end()) { AllocationHeader* header = *found; free_blocks_.erase(found); // Fit our object in the previous free header space. new_header = header->GetPrevFreeAllocationHeader(); // Remove the newly allocated block from the header and update the prev_free_. header->prev_free_ -= allocation_size; if (header->prev_free_ > 0) { // If there is remaining space, insert back into the free set. free_blocks_.insert(header); } } else { // Try to steal some memory from the free space at the end of the space. if (LIKELY(free_end_ >= allocation_size)) { // Fit our object at the start of the end free block. new_header = reinterpret_cast<AllocationHeader*>(end_ - free_end_); free_end_ -= allocation_size; } else { return NULL; } } DCHECK(bytes_allocated != NULL); *bytes_allocated = allocation_size; // Need to do these inside of the lock. ++num_objects_allocated_; ++total_objects_allocated_; num_bytes_allocated_ += allocation_size; total_bytes_allocated_ += allocation_size; // We always put our object at the start of the free block, there can not be another free block // before it. if (kIsDebugBuild) { mprotect(new_header, allocation_size, PROT_READ | PROT_WRITE); } new_header->SetPrevFree(0); new_header->SetAllocationSize(allocation_size); return new_header->GetObjectAddress(); } void FreeListSpace::Dump(std::ostream& os) const { MutexLock mu(Thread::Current(), const_cast<Mutex&>(lock_)); os << GetName() << " -" << " begin: " << reinterpret_cast<void*>(Begin()) << " end: " << reinterpret_cast<void*>(End()) << "\n"; uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin()); while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) { byte* free_start = reinterpret_cast<byte*>(cur_header); cur_header = cur_header->GetNextNonFree(); byte* free_end = reinterpret_cast<byte*>(cur_header); if (free_start != free_end) { os << "Free block at address: " << reinterpret_cast<const void*>(free_start) << " of length " << free_end - free_start << " bytes\n"; } size_t alloc_size = cur_header->AllocationSize(); byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress()); byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader); os << "Large object at address: " << reinterpret_cast<const void*>(free_start) << " of length " << byte_end - byte_start << " bytes\n"; cur_header = reinterpret_cast<AllocationHeader*>(byte_end); } if (free_end_) { os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start) << " of length " << free_end_ << " bytes\n"; } } } // namespace space } // namespace gc } // namespace art