// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #ifndef CERES_PUBLIC_COVARIANCE_H_ #define CERES_PUBLIC_COVARIANCE_H_ #include <utility> #include <vector> #include "ceres/internal/port.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/types.h" namespace ceres { class Problem; namespace internal { class CovarianceImpl; } // namespace internal // WARNING // ======= // It is very easy to use this class incorrectly without understanding // the underlying mathematics. Please read and understand the // documentation completely before attempting to use this class. // // // This class allows the user to evaluate the covariance for a // non-linear least squares problem and provides random access to its // blocks // // Background // ========== // One way to assess the quality of the solution returned by a // non-linear least squares solve is to analyze the covariance of the // solution. // // Let us consider the non-linear regression problem // // y = f(x) + N(0, I) // // i.e., the observation y is a random non-linear function of the // independent variable x with mean f(x) and identity covariance. Then // the maximum likelihood estimate of x given observations y is the // solution to the non-linear least squares problem: // // x* = arg min_x |f(x)|^2 // // And the covariance of x* is given by // // C(x*) = inverse[J'(x*)J(x*)] // // Here J(x*) is the Jacobian of f at x*. The above formula assumes // that J(x*) has full column rank. // // If J(x*) is rank deficient, then the covariance matrix C(x*) is // also rank deficient and is given by // // C(x*) = pseudoinverse[J'(x*)J(x*)] // // Note that in the above, we assumed that the covariance // matrix for y was identity. This is an important assumption. If this // is not the case and we have // // y = f(x) + N(0, S) // // Where S is a positive semi-definite matrix denoting the covariance // of y, then the maximum likelihood problem to be solved is // // x* = arg min_x f'(x) inverse[S] f(x) // // and the corresponding covariance estimate of x* is given by // // C(x*) = inverse[J'(x*) inverse[S] J(x*)] // // So, if it is the case that the observations being fitted to have a // covariance matrix not equal to identity, then it is the user's // responsibility that the corresponding cost functions are correctly // scaled, e.g. in the above case the cost function for this problem // should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2} // is the inverse square root of the covariance matrix S. // // This class allows the user to evaluate the covariance for a // non-linear least squares problem and provides random access to its // blocks. The computation assumes that the CostFunctions compute // residuals such that their covariance is identity. // // Since the computation of the covariance matrix requires computing // the inverse of a potentially large matrix, this can involve a // rather large amount of time and memory. However, it is usually the // case that the user is only interested in a small part of the // covariance matrix. Quite often just the block diagonal. This class // allows the user to specify the parts of the covariance matrix that // she is interested in and then uses this information to only compute // and store those parts of the covariance matrix. // // Rank of the Jacobian // -------------------- // As we noted above, if the jacobian is rank deficient, then the // inverse of J'J is not defined and instead a pseudo inverse needs to // be computed. // // The rank deficiency in J can be structural -- columns which are // always known to be zero or numerical -- depending on the exact // values in the Jacobian. // // Structural rank deficiency occurs when the problem contains // parameter blocks that are constant. This class correctly handles // structural rank deficiency like that. // // Numerical rank deficiency, where the rank of the matrix cannot be // predicted by its sparsity structure and requires looking at its // numerical values is more complicated. Here again there are two // cases. // // a. The rank deficiency arises from overparameterization. e.g., a // four dimensional quaternion used to parameterize SO(3), which is // a three dimensional manifold. In cases like this, the user should // use an appropriate LocalParameterization. Not only will this lead // to better numerical behaviour of the Solver, it will also expose // the rank deficiency to the Covariance object so that it can // handle it correctly. // // b. More general numerical rank deficiency in the Jacobian // requires the computation of the so called Singular Value // Decomposition (SVD) of J'J. We do not know how to do this for // large sparse matrices efficiently. For small and moderate sized // problems this is done using dense linear algebra. // // Gauge Invariance // ---------------- // In structure from motion (3D reconstruction) problems, the // reconstruction is ambiguous upto a similarity transform. This is // known as a Gauge Ambiguity. Handling Gauges correctly requires the // use of SVD or custom inversion algorithms. For small problems the // user can use the dense algorithm. For more details see // // Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge // transformations for uncertainty description of geometric structure // with indeterminacy. IEEE Transactions on Information Theory 47(5): // 2017-2028 (2001) // // Example Usage // ============= // // double x[3]; // double y[2]; // // Problem problem; // problem.AddParameterBlock(x, 3); // problem.AddParameterBlock(y, 2); // <Build Problem> // <Solve Problem> // // Covariance::Options options; // Covariance covariance(options); // // vector<pair<const double*, const double*> > covariance_blocks; // covariance_blocks.push_back(make_pair(x, x)); // covariance_blocks.push_back(make_pair(y, y)); // covariance_blocks.push_back(make_pair(x, y)); // // CHECK(covariance.Compute(covariance_blocks, &problem)); // // double covariance_xx[3 * 3]; // double covariance_yy[2 * 2]; // double covariance_xy[3 * 2]; // covariance.GetCovarianceBlock(x, x, covariance_xx) // covariance.GetCovarianceBlock(y, y, covariance_yy) // covariance.GetCovarianceBlock(x, y, covariance_xy) // class Covariance { public: struct Options { Options() #ifndef CERES_NO_SUITESPARSE : algorithm_type(SPARSE_QR), #else : algorithm_type(DENSE_SVD), #endif min_reciprocal_condition_number(1e-14), null_space_rank(0), num_threads(1), apply_loss_function(true) { } // Ceres supports three different algorithms for covariance // estimation, which represent different tradeoffs in speed, // accuracy and reliability. // // 1. DENSE_SVD uses Eigen's JacobiSVD to perform the // computations. It computes the singular value decomposition // // U * S * V' = J // // and then uses it to compute the pseudo inverse of J'J as // // pseudoinverse[J'J]^ = V * pseudoinverse[S] * V' // // It is an accurate but slow method and should only be used // for small to moderate sized problems. It can handle // full-rank as well as rank deficient Jacobians. // // 2. SPARSE_CHOLESKY uses the CHOLMOD sparse Cholesky // factorization library to compute the decomposition : // // R'R = J'J // // and then // // [J'J]^-1 = [R'R]^-1 // // It a fast algorithm for sparse matrices that should be used // when the Jacobian matrix J is well conditioned. For // ill-conditioned matrices, this algorithm can fail // unpredictabily. This is because Cholesky factorization is // not a rank-revealing factorization, i.e., it cannot reliably // detect when the matrix being factorized is not of full // rank. SuiteSparse/CHOLMOD supplies a heuristic for checking // if the matrix is rank deficient (cholmod_rcond), but it is // only a heuristic and can have both false positive and false // negatives. // // Recent versions of SuiteSparse (>= 4.2.0) provide a much // more efficient method for solving for rows of the covariance // matrix. Therefore, if you are doing SPARSE_CHOLESKY, we // strongly recommend using a recent version of SuiteSparse. // // 3. SPARSE_QR uses the SuiteSparseQR sparse QR factorization // library to compute the decomposition // // Q * R = J // // [J'J]^-1 = [R*R']^-1 // // It is a moderately fast algorithm for sparse matrices, which // at the price of more time and memory than the // SPARSE_CHOLESKY algorithm is numerically better behaved and // is rank revealing, i.e., it can reliably detect when the // Jacobian matrix is rank deficient. // // Neither SPARSE_CHOLESKY or SPARSE_QR are capable of computing // the covariance if the Jacobian is rank deficient. CovarianceAlgorithmType algorithm_type; // If the Jacobian matrix is near singular, then inverting J'J // will result in unreliable results, e.g, if // // J = [1.0 1.0 ] // [1.0 1.0000001 ] // // which is essentially a rank deficient matrix, we have // // inv(J'J) = [ 2.0471e+14 -2.0471e+14] // [-2.0471e+14 2.0471e+14] // // This is not a useful result. Therefore, by default // Covariance::Compute will return false if a rank deficient // Jacobian is encountered. How rank deficiency is detected // depends on the algorithm being used. // // 1. DENSE_SVD // // min_sigma / max_sigma < sqrt(min_reciprocal_condition_number) // // where min_sigma and max_sigma are the minimum and maxiumum // singular values of J respectively. // // 2. SPARSE_CHOLESKY // // cholmod_rcond < min_reciprocal_conditioner_number // // Here cholmod_rcond is a crude estimate of the reciprocal // condition number of J'J by using the maximum and minimum // diagonal entries of the Cholesky factor R. There are no // theoretical guarantees associated with this test. It can // give false positives and negatives. Use at your own // risk. The default value of min_reciprocal_condition_number // has been set to a conservative value, and sometimes the // Covariance::Compute may return false even if it is possible // to estimate the covariance reliably. In such cases, the user // should exercise their judgement before lowering the value of // min_reciprocal_condition_number. // // 3. SPARSE_QR // // rank(J) < num_col(J) // // Here rank(J) is the estimate of the rank of J returned by the // SuiteSparseQR algorithm. It is a fairly reliable indication // of rank deficiency. // double min_reciprocal_condition_number; // When using DENSE_SVD, the user has more control in dealing with // singular and near singular covariance matrices. // // As mentioned above, when the covariance matrix is near // singular, instead of computing the inverse of J'J, the // Moore-Penrose pseudoinverse of J'J should be computed. // // If J'J has the eigen decomposition (lambda_i, e_i), where // lambda_i is the i^th eigenvalue and e_i is the corresponding // eigenvector, then the inverse of J'J is // // inverse[J'J] = sum_i e_i e_i' / lambda_i // // and computing the pseudo inverse involves dropping terms from // this sum that correspond to small eigenvalues. // // How terms are dropped is controlled by // min_reciprocal_condition_number and null_space_rank. // // If null_space_rank is non-negative, then the smallest // null_space_rank eigenvalue/eigenvectors are dropped // irrespective of the magnitude of lambda_i. If the ratio of the // smallest non-zero eigenvalue to the largest eigenvalue in the // truncated matrix is still below // min_reciprocal_condition_number, then the Covariance::Compute() // will fail and return false. // // Setting null_space_rank = -1 drops all terms for which // // lambda_i / lambda_max < min_reciprocal_condition_number. // // This option has no effect on the SPARSE_CHOLESKY or SPARSE_QR // algorithms. int null_space_rank; int num_threads; // Even though the residual blocks in the problem may contain loss // functions, setting apply_loss_function to false will turn off // the application of the loss function to the output of the cost // function and in turn its effect on the covariance. // // TODO(sameergaarwal): Expand this based on Jim's experiments. bool apply_loss_function; }; explicit Covariance(const Options& options); ~Covariance(); // Compute a part of the covariance matrix. // // The vector covariance_blocks, indexes into the covariance matrix // block-wise using pairs of parameter blocks. This allows the // covariance estimation algorithm to only compute and store these // blocks. // // Since the covariance matrix is symmetric, if the user passes // (block1, block2), then GetCovarianceBlock can be called with // block1, block2 as well as block2, block1. // // covariance_blocks cannot contain duplicates. Bad things will // happen if they do. // // Note that the list of covariance_blocks is only used to determine // what parts of the covariance matrix are computed. The full // Jacobian is used to do the computation, i.e. they do not have an // impact on what part of the Jacobian is used for computation. // // The return value indicates the success or failure of the // covariance computation. Please see the documentation for // Covariance::Options for more on the conditions under which this // function returns false. bool Compute( const vector<pair<const double*, const double*> >& covariance_blocks, Problem* problem); // Return the block of the covariance matrix corresponding to // parameter_block1 and parameter_block2. // // Compute must be called before the first call to // GetCovarianceBlock and the pair <parameter_block1, // parameter_block2> OR the pair <parameter_block2, // parameter_block1> must have been present in the vector // covariance_blocks when Compute was called. Otherwise // GetCovarianceBlock will return false. // // covariance_block must point to a memory location that can store a // parameter_block1_size x parameter_block2_size matrix. The // returned covariance will be a row-major matrix. bool GetCovarianceBlock(const double* parameter_block1, const double* parameter_block2, double* covariance_block) const; private: internal::scoped_ptr<internal::CovarianceImpl> impl_; }; } // namespace ceres #endif // CERES_PUBLIC_COVARIANCE_H_