// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef MEDIA_CAST_CAST_DEFINES_H_ #define MEDIA_CAST_CAST_DEFINES_H_ #include <map> #include <set> #include "base/basictypes.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/time/time.h" namespace media { namespace cast { const int64 kDontShowTimeoutMs = 33; const float kDefaultCongestionControlBackOff = 0.875f; const uint32 kVideoFrequency = 90000; const int64 kSkippedFramesCheckPeriodkMs = 10000; const uint32 kStartFrameId = GG_UINT32_C(0xffffffff); // Number of skipped frames threshold in fps (as configured) per period above. const int kSkippedFramesThreshold = 3; const size_t kIpPacketSize = 1500; const int kStartRttMs = 20; const int64 kCastMessageUpdateIntervalMs = 33; const int64 kNackRepeatIntervalMs = 30; enum DefaultSettings { kDefaultAudioEncoderBitrate = 0, // This means "auto," and may mean VBR. kDefaultAudioSamplingRate = 48000, kDefaultMaxQp = 56, kDefaultMinQp = 4, kDefaultMaxFrameRate = 30, kDefaultNumberOfVideoBuffers = 1, kDefaultRtcpIntervalMs = 500, kDefaultRtpHistoryMs = 1000, kDefaultRtpMaxDelayMs = 100, }; const uint16 kRtcpCastAllPacketsLost = 0xffff; const size_t kMinLengthOfRtcp = 8; // Basic RTP header + cast header. const size_t kMinLengthOfRtp = 12 + 6; const size_t kAesBlockSize = 16; const size_t kAesKeySize = 16; // Each uint16 represents one packet id within a cast frame. typedef std::set<uint16> PacketIdSet; // Each uint8 represents one cast frame. typedef std::map<uint8, PacketIdSet> MissingFramesAndPacketsMap; // TODO(pwestin): Re-factor the functions bellow into a class with static // methods. // January 1970, in NTP seconds. // Network Time Protocol (NTP), which is in seconds relative to 0h UTC on // 1 January 1900. static const int64 kUnixEpochInNtpSeconds = GG_INT64_C(2208988800); // Magic fractional unit. Used to convert time (in microseconds) to/from // fractional NTP seconds. static const double kMagicFractionalUnit = 4.294967296E3; inline bool IsNewerFrameId(uint32 frame_id, uint32 prev_frame_id) { return (frame_id != prev_frame_id) && static_cast<uint32>(frame_id - prev_frame_id) < 0x80000000; } inline bool IsNewerRtpTimestamp(uint32 timestamp, uint32 prev_timestamp) { return (timestamp != prev_timestamp) && static_cast<uint32>(timestamp - prev_timestamp) < 0x80000000; } inline bool IsOlderFrameId(uint32 frame_id, uint32 prev_frame_id) { return (frame_id == prev_frame_id) || IsNewerFrameId(prev_frame_id, frame_id); } inline bool IsNewerPacketId(uint16 packet_id, uint16 prev_packet_id) { return (packet_id != prev_packet_id) && static_cast<uint16>(packet_id - prev_packet_id) < 0x8000; } inline bool IsNewerSequenceNumber(uint16 sequence_number, uint16 prev_sequence_number) { // Same function as IsNewerPacketId just different data and name. return IsNewerPacketId(sequence_number, prev_sequence_number); } // Create a NTP diff from seconds and fractions of seconds; delay_fraction is // fractions of a second where 0x80000000 is half a second. inline uint32 ConvertToNtpDiff(uint32 delay_seconds, uint32 delay_fraction) { return ((delay_seconds & 0x0000FFFF) << 16) + ((delay_fraction & 0xFFFF0000) >> 16); } inline base::TimeDelta ConvertFromNtpDiff(uint32 ntp_delay) { uint32 delay_ms = (ntp_delay & 0x0000ffff) * 1000; delay_ms >>= 16; delay_ms += ((ntp_delay & 0xffff0000) >> 16) * 1000; return base::TimeDelta::FromMilliseconds(delay_ms); } inline void ConvertTimeToFractions(int64 time_us, uint32* seconds, uint32* fractions) { DCHECK_GE(time_us, 0) << "Time must NOT be negative"; *seconds = static_cast<uint32>(time_us / base::Time::kMicrosecondsPerSecond); *fractions = static_cast<uint32>( (time_us % base::Time::kMicrosecondsPerSecond) * kMagicFractionalUnit); } inline void ConvertTimeTicksToNtp(const base::TimeTicks& time, uint32* ntp_seconds, uint32* ntp_fractions) { base::TimeDelta elapsed_since_unix_epoch = time - base::TimeTicks::UnixEpoch(); int64 ntp_time_us = elapsed_since_unix_epoch.InMicroseconds() + (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond); ConvertTimeToFractions(ntp_time_us, ntp_seconds, ntp_fractions); } inline base::TimeTicks ConvertNtpToTimeTicks(uint32 ntp_seconds, uint32 ntp_fractions) { int64 ntp_time_us = static_cast<int64>(ntp_seconds) * base::Time::kMicrosecondsPerSecond + static_cast<int64>(ntp_fractions) / kMagicFractionalUnit; base::TimeDelta elapsed_since_unix_epoch = base::TimeDelta::FromMicroseconds(ntp_time_us - (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond)); return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch; } inline std::string GetAesNonce(uint32 frame_id, const std::string& iv_mask) { std::string aes_nonce(kAesBlockSize, 0); // Serializing frame_id in big-endian order (aes_nonce[8] is the most // significant byte of frame_id). aes_nonce[11] = frame_id & 0xff; aes_nonce[10] = (frame_id >> 8) & 0xff; aes_nonce[9] = (frame_id >> 16) & 0xff; aes_nonce[8] = (frame_id >> 24) & 0xff; for (size_t i = 0; i < kAesBlockSize; ++i) { aes_nonce[i] ^= iv_mask[i]; } return aes_nonce; } inline uint32 GetVideoRtpTimestamp(const base::TimeTicks& time_ticks) { base::TimeTicks zero_time; base::TimeDelta recorded_delta = time_ticks - zero_time; // Timestamp is in 90 KHz for video. return static_cast<uint32>(recorded_delta.InMilliseconds() * 90); } } // namespace cast } // namespace media #endif // MEDIA_CAST_CAST_DEFINES_H_