// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_sent_packet_manager.h" #include "base/logging.h" #include "base/stl_util.h" #include "net/quic/congestion_control/pacing_sender.h" #include "net/quic/quic_ack_notifier_manager.h" using std::make_pair; using std::min; // TODO(rtenneti): Remove this. // Do not flip this flag until the flakiness of the // net/tools/quic/end_to_end_test is fixed. // If true, then QUIC connections will track the retransmission history of a // packet so that an ack of a previous transmission will ack the data of all // other transmissions. bool FLAGS_track_retransmission_history = false; // A test-only flag to prevent the RTO from backing off when multiple sequential // tail drops occur. bool FLAGS_limit_rto_increase_for_tests = false; // Do not remove this flag until the Finch-trials described in b/11706275 // are complete. // If true, QUIC connections will support the use of a pacing algorithm when // sending packets, in an attempt to reduce packet loss. The client must also // request pacing for the server to enable it. bool FLAGS_enable_quic_pacing = false; namespace net { namespace { static const int kBitrateSmoothingPeriodMs = 1000; static const int kHistoryPeriodMs = 5000; static const int kDefaultRetransmissionTimeMs = 500; // TCP RFC calls for 1 second RTO however Linux differs from this default and // define the minimum RTO to 200ms, we will use the same until we have data to // support a higher or lower value. static const int kMinRetransmissionTimeMs = 200; static const int kMaxRetransmissionTimeMs = 60000; static const size_t kMaxRetransmissions = 10; // We only retransmit 2 packets per ack. static const size_t kMaxRetransmissionsPerAck = 2; // TCP retransmits after 3 nacks. static const size_t kNumberOfNacksBeforeRetransmission = 3; COMPILE_ASSERT(kHistoryPeriodMs >= kBitrateSmoothingPeriodMs, history_must_be_longer_or_equal_to_the_smoothing_period); } // namespace #define ENDPOINT (is_server_ ? "Server: " : " Client: ") QuicSentPacketManager::HelperInterface::~HelperInterface() { } QuicSentPacketManager::QuicSentPacketManager(bool is_server, HelperInterface* helper, const QuicClock* clock, CongestionFeedbackType type) : is_server_(is_server), helper_(helper), clock_(clock), send_algorithm_(SendAlgorithmInterface::Create(clock, type)), rtt_sample_(QuicTime::Delta::Infinite()), consecutive_rto_count_(0), using_pacing_(false) { } QuicSentPacketManager::~QuicSentPacketManager() { for (UnackedPacketMap::iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it) { delete it->second.retransmittable_frames; // Only delete previous_transmissions once, for the newest packet. if (it->second.previous_transmissions != NULL && it->first == *it->second.previous_transmissions->rbegin()) { delete it->second.previous_transmissions; } } STLDeleteValues(&packet_history_map_); } void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) { if (config.initial_round_trip_time_us() > 0 && rtt_sample_.IsInfinite()) { // The initial rtt should already be set on the client side. DVLOG_IF(1, !is_server_) << "Client did not set an initial RTT, but did negotiate one."; rtt_sample_ = QuicTime::Delta::FromMicroseconds(config.initial_round_trip_time_us()); } if (config.congestion_control() == kPACE) { MaybeEnablePacing(); } send_algorithm_->SetFromConfig(config, is_server_); } void QuicSentPacketManager::SetMaxPacketSize(QuicByteCount max_packet_size) { send_algorithm_->SetMaxPacketSize(max_packet_size); } void QuicSentPacketManager::OnSerializedPacket( const SerializedPacket& serialized_packet) { if (serialized_packet.retransmittable_frames == NULL && !serialized_packet.packet->is_fec_packet()) { // Don't track ack/congestion feedback packets. return; } ack_notifier_manager_.OnSerializedPacket(serialized_packet); DCHECK(unacked_packets_.empty() || unacked_packets_.rbegin()->first < serialized_packet.sequence_number); unacked_packets_[serialized_packet.sequence_number] = TransmissionInfo(serialized_packet.retransmittable_frames, serialized_packet.sequence_number_length); } void QuicSentPacketManager::OnRetransmittedPacket( QuicPacketSequenceNumber old_sequence_number, QuicPacketSequenceNumber new_sequence_number) { DCHECK(ContainsKey(unacked_packets_, old_sequence_number)); DCHECK(ContainsKey(pending_retransmissions_, old_sequence_number)); DCHECK(unacked_packets_.empty() || unacked_packets_.rbegin()->first < new_sequence_number); pending_retransmissions_.erase(old_sequence_number); UnackedPacketMap::iterator unacked_it = unacked_packets_.find(old_sequence_number); RetransmittableFrames* frames = unacked_it->second.retransmittable_frames; DCHECK(frames); // A notifier may be waiting to hear about ACKs for the original sequence // number. Inform them that the sequence number has changed. ack_notifier_manager_.UpdateSequenceNumber(old_sequence_number, new_sequence_number); // We keep the old packet in the unacked packet list until it, or one of // the retransmissions of it are acked. unacked_it->second.retransmittable_frames = NULL; unacked_packets_[new_sequence_number] = TransmissionInfo(frames, GetSequenceNumberLength(old_sequence_number)); // Keep track of all sequence numbers that this packet // has been transmitted as. SequenceNumberSet* previous_transmissions = unacked_it->second.previous_transmissions; if (previous_transmissions == NULL) { // This is the first retransmission of this packet, so create a new entry. previous_transmissions = new SequenceNumberSet; unacked_it->second.previous_transmissions = previous_transmissions; previous_transmissions->insert(old_sequence_number); } previous_transmissions->insert(new_sequence_number); unacked_packets_[new_sequence_number].previous_transmissions = previous_transmissions; DCHECK(HasRetransmittableFrames(new_sequence_number)); } bool QuicSentPacketManager::OnIncomingAck( const ReceivedPacketInfo& received_info, QuicTime ack_receive_time) { // Determine if the least unacked sequence number is being acked. QuicPacketSequenceNumber least_unacked_sent_before = GetLeastUnackedSentPacket(); bool new_least_unacked = !IsAwaitingPacket(received_info, least_unacked_sent_before); HandleAckForSentPackets(received_info); SequenceNumberSet retransmission_packets = OnIncomingAckFrame(received_info, ack_receive_time); for (SequenceNumberSet::const_iterator it = retransmission_packets.begin(); it != retransmission_packets.end(); ++it) { DCHECK(!ContainsKey(pending_packets_, *it)); MarkForRetransmission(*it, NACK_RETRANSMISSION); } if (new_least_unacked) { consecutive_rto_count_ = 0; } return new_least_unacked; } void QuicSentPacketManager::DiscardUnackedPacket( QuicPacketSequenceNumber sequence_number) { MarkPacketReceivedByPeer(sequence_number); } void QuicSentPacketManager::HandleAckForSentPackets( const ReceivedPacketInfo& received_info) { // Go through the packets we have not received an ack for and see if this // incoming_ack shows they've been seen by the peer. UnackedPacketMap::iterator it = unacked_packets_.begin(); while (it != unacked_packets_.end()) { QuicPacketSequenceNumber sequence_number = it->first; if (sequence_number > received_info.largest_observed) { // These are very new sequence_numbers. break; } if (IsAwaitingPacket(received_info, sequence_number)) { ++it; continue; } // Packet was acked, so remove it from our unacked packet list. DVLOG(1) << ENDPOINT <<"Got an ack for packet " << sequence_number; // If data is associated with the most recent transmission of this // packet, then inform the caller. it = MarkPacketReceivedByPeer(sequence_number); // The AckNotifierManager is informed of every ACKed sequence number. ack_notifier_manager_.OnPacketAcked(sequence_number); } // If we have received a truncated ack, then we need to // clear out some previous transmissions to allow the peer // to actually ACK new packets. if (received_info.is_truncated) { ClearPreviousRetransmissions(received_info.missing_packets.size() / 2); } } void QuicSentPacketManager::ClearPreviousRetransmissions(size_t num_to_clear) { UnackedPacketMap::iterator it = unacked_packets_.begin(); while (it != unacked_packets_.end() && num_to_clear > 0) { QuicPacketSequenceNumber sequence_number = it->first; // If this is not a previous transmission then there is no point // in clearing out any further packets, because it will not affect // the high water mark. SequenceNumberSet* previous_transmissions = it->second.previous_transmissions; if (previous_transmissions == NULL) { break; } QuicPacketSequenceNumber newest_transmission = *previous_transmissions->rbegin(); if (sequence_number == newest_transmission) { break; } DCHECK(it->second.retransmittable_frames == NULL); previous_transmissions->erase(sequence_number); if (previous_transmissions->size() == 1) { unacked_packets_[newest_transmission].previous_transmissions = NULL; delete previous_transmissions; } unacked_packets_.erase(it++); --num_to_clear; } } bool QuicSentPacketManager::HasRetransmittableFrames( QuicPacketSequenceNumber sequence_number) const { if (!ContainsKey(unacked_packets_, sequence_number)) { return false; } return unacked_packets_.find( sequence_number)->second.retransmittable_frames != NULL; } void QuicSentPacketManager::RetransmitUnackedPackets( RetransmissionType retransmission_type) { if (unacked_packets_.empty()) { return; } for (UnackedPacketMap::const_iterator unacked_it = unacked_packets_.begin(); unacked_it != unacked_packets_.end(); ++unacked_it) { const RetransmittableFrames* frames = unacked_it->second.retransmittable_frames; if (frames == NULL) { continue; } if (retransmission_type == ALL_PACKETS || frames->encryption_level() == ENCRYPTION_INITIAL) { // TODO(satyamshekhar): Think about congestion control here. // Specifically, about the retransmission count of packets being sent // proactively to achieve 0 (minimal) RTT. OnPacketAbandoned(unacked_it->first); if (!MarkForRetransmission(unacked_it->first, NACK_RETRANSMISSION)) { DiscardUnackedPacket(unacked_it->first); } } } } bool QuicSentPacketManager::MarkForRetransmission( QuicPacketSequenceNumber sequence_number, TransmissionType transmission_type) { DCHECK(ContainsKey(unacked_packets_, sequence_number)); if (!HasRetransmittableFrames(sequence_number)) { return false; } // If it's already in the retransmission map, don't add it again, just let // the prior retransmission request win out. if (ContainsKey(pending_retransmissions_, sequence_number)) { return true; } pending_retransmissions_[sequence_number] = transmission_type; return true; } bool QuicSentPacketManager::HasPendingRetransmissions() const { return !pending_retransmissions_.empty(); } QuicSentPacketManager::PendingRetransmission QuicSentPacketManager::NextPendingRetransmission() { DCHECK(!pending_retransmissions_.empty()); QuicPacketSequenceNumber sequence_number = pending_retransmissions_.begin()->first; DCHECK(ContainsKey(unacked_packets_, sequence_number)); const RetransmittableFrames* retransmittable_frames = unacked_packets_[sequence_number].retransmittable_frames; DCHECK(retransmittable_frames); return PendingRetransmission(sequence_number, pending_retransmissions_.begin()->second, *retransmittable_frames, GetSequenceNumberLength(sequence_number)); } bool QuicSentPacketManager::IsPreviousTransmission( QuicPacketSequenceNumber sequence_number) const { DCHECK(ContainsKey(unacked_packets_, sequence_number)); UnackedPacketMap::const_iterator it = unacked_packets_.find(sequence_number); if (it->second.previous_transmissions == NULL) { return false; } SequenceNumberSet* previous_transmissions = it->second.previous_transmissions; DCHECK(!previous_transmissions->empty()); return *previous_transmissions->rbegin() != sequence_number; } QuicSentPacketManager::UnackedPacketMap::iterator QuicSentPacketManager::MarkPacketReceivedByPeer( QuicPacketSequenceNumber sequence_number) { DCHECK(ContainsKey(unacked_packets_, sequence_number)); // If this packet has never been retransmitted, then simply drop it. UnackedPacketMap::const_iterator previous_it = unacked_packets_.find(sequence_number); if (previous_it->second.previous_transmissions == NULL) { UnackedPacketMap::iterator next_unacked = unacked_packets_.find(sequence_number); ++next_unacked; DiscardPacket(sequence_number); return next_unacked; } SequenceNumberSet* previous_transmissions = previous_it->second.previous_transmissions; DCHECK(!previous_transmissions->empty()); SequenceNumberSet::reverse_iterator previous_transmissions_it = previous_transmissions->rbegin(); QuicPacketSequenceNumber newest_transmission = *previous_transmissions_it; if (newest_transmission == sequence_number) { DiscardPacket(newest_transmission); } else { // If we have received an ack for a previous transmission of a packet, // we want to keep the "new" transmission of the packet unacked, // but prevent the data from being retransmitted. delete unacked_packets_[newest_transmission].retransmittable_frames; unacked_packets_[newest_transmission].retransmittable_frames = NULL; unacked_packets_[newest_transmission].previous_transmissions = NULL; pending_retransmissions_.erase(newest_transmission); } // Clear out information all previous transmissions. ++previous_transmissions_it; while (previous_transmissions_it != previous_transmissions->rend()) { QuicPacketSequenceNumber previous_transmission = *previous_transmissions_it; ++previous_transmissions_it; DiscardPacket(previous_transmission); } delete previous_transmissions; UnackedPacketMap::iterator next_unacked = unacked_packets_.begin(); while (next_unacked != unacked_packets_.end() && next_unacked->first < sequence_number) { ++next_unacked; } return next_unacked; } void QuicSentPacketManager::DiscardPacket( QuicPacketSequenceNumber sequence_number) { UnackedPacketMap::iterator unacked_it = unacked_packets_.find(sequence_number); // Packet was not meant to be retransmitted. if (unacked_it == unacked_packets_.end()) { return; } // Delete the retransmittable frames. delete unacked_it->second.retransmittable_frames; unacked_packets_.erase(unacked_it); pending_retransmissions_.erase(sequence_number); return; } bool QuicSentPacketManager::IsUnacked( QuicPacketSequenceNumber sequence_number) const { return ContainsKey(unacked_packets_, sequence_number); } QuicSequenceNumberLength QuicSentPacketManager::GetSequenceNumberLength( QuicPacketSequenceNumber sequence_number) const { DCHECK(ContainsKey(unacked_packets_, sequence_number)); return unacked_packets_.find(sequence_number)->second.sequence_number_length; } bool QuicSentPacketManager::HasUnackedPackets() const { return !unacked_packets_.empty(); } size_t QuicSentPacketManager::GetNumRetransmittablePackets() const { size_t num_unacked_packets = 0; for (UnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it) { QuicPacketSequenceNumber sequence_number = it->first; if (HasRetransmittableFrames(sequence_number)) { ++num_unacked_packets; } } return num_unacked_packets; } QuicPacketSequenceNumber QuicSentPacketManager::GetLeastUnackedSentPacket() const { if (unacked_packets_.empty()) { // If there are no unacked packets, set the least unacked packet to // the sequence number of the next packet sent. return helper_->GetNextPacketSequenceNumber(); } return unacked_packets_.begin()->first; } SequenceNumberSet QuicSentPacketManager::GetUnackedPackets() const { SequenceNumberSet unacked_packets; for (UnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it) { unacked_packets.insert(it->first); } return unacked_packets; } void QuicSentPacketManager::OnPacketSent( QuicPacketSequenceNumber sequence_number, QuicTime sent_time, QuicByteCount bytes, TransmissionType transmission_type, HasRetransmittableData has_retransmittable_data) { DCHECK_LT(0u, sequence_number); DCHECK(!ContainsKey(pending_packets_, sequence_number)); if (ContainsKey(unacked_packets_, sequence_number)) { unacked_packets_[sequence_number].sent_time = sent_time; } // Only track packets the send algorithm wants us to track. if (!send_algorithm_->OnPacketSent(sent_time, sequence_number, bytes, transmission_type, has_retransmittable_data)) { return; } packet_history_map_[sequence_number] = new SendAlgorithmInterface::SentPacket( bytes, sent_time, has_retransmittable_data); pending_packets_.insert(sequence_number); CleanupPacketHistory(); } void QuicSentPacketManager::OnRetransmissionTimeout() { // Abandon all pending packets to ensure the congestion window // opens up before we attempt to retransmit packets. QuicTime::Delta retransmission_delay = GetRetransmissionDelay(); QuicTime max_send_time = clock_->ApproximateNow().Subtract(retransmission_delay); for (SequenceNumberSet::iterator it = pending_packets_.begin(); it != pending_packets_.end();) { QuicPacketSequenceNumber sequence_number = *it; DCHECK(ContainsKey(packet_history_map_, sequence_number)); DCHECK(ContainsKey(unacked_packets_, sequence_number)); const TransmissionInfo& transmission_info = unacked_packets_.find(sequence_number)->second; // Abandon retransmittable packet and old non-retransmittable packets. if (transmission_info.retransmittable_frames || transmission_info.sent_time <= max_send_time) { pending_packets_.erase(it++); send_algorithm_->OnPacketAbandoned( sequence_number, packet_history_map_[sequence_number]->bytes_sent()); } else { ++it; } } // Attempt to send all the unacked packets when the RTO fires, let the // congestion manager decide how many to send immediately and the remaining // packets will be queued for future sending. DVLOG(1) << "OnRetransmissionTimeout() fired with " << unacked_packets_.size() << " unacked packets."; // Retransmit any packet with retransmittable frames. bool packets_retransmitted = false; for (UnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it) { if (it->second.retransmittable_frames != NULL) { packets_retransmitted = true; MarkForRetransmission(it->first, RTO_RETRANSMISSION); } } // Only inform the sent packet manager of an RTO if data was retransmitted. if (packets_retransmitted) { ++consecutive_rto_count_; send_algorithm_->OnRetransmissionTimeout(); } } void QuicSentPacketManager::OnPacketAbandoned( QuicPacketSequenceNumber sequence_number) { SequenceNumberSet::iterator it = pending_packets_.find(sequence_number); if (it != pending_packets_.end()) { DCHECK(ContainsKey(packet_history_map_, sequence_number)); send_algorithm_->OnPacketAbandoned( sequence_number, packet_history_map_[sequence_number]->bytes_sent()); pending_packets_.erase(it); } } void QuicSentPacketManager::OnIncomingQuicCongestionFeedbackFrame( const QuicCongestionFeedbackFrame& frame, const QuicTime& feedback_receive_time) { send_algorithm_->OnIncomingQuicCongestionFeedbackFrame( frame, feedback_receive_time, packet_history_map_); } SequenceNumberSet QuicSentPacketManager::OnIncomingAckFrame( const ReceivedPacketInfo& received_info, const QuicTime& ack_receive_time) { MaybeUpdateRTT(received_info, ack_receive_time); // We want to. // * Get all packets lower(including) than largest_observed // from pending_packets_. // * Remove all packets no longer being waited for(ie: acked). // * Send each ACK in the list to send_algorithm_. SequenceNumberSet::iterator it = pending_packets_.begin(); SequenceNumberSet::iterator it_upper = pending_packets_.upper_bound(received_info.largest_observed); SequenceNumberSet retransmission_packets; SequenceNumberSet lost_packets; while (it != it_upper) { QuicPacketSequenceNumber sequence_number = *it; const SendAlgorithmInterface::SentPacket* sent_packet = packet_history_map_[sequence_number]; if (!IsAwaitingPacket(received_info, sequence_number)) { // Not missing, hence implicitly acked. size_t bytes_sent = sent_packet->bytes_sent(); send_algorithm_->OnPacketAcked(sequence_number, bytes_sent, rtt_sample_); pending_packets_.erase(it++); // Must be incremented post to work. continue; } // The peer got packets after this sequence number. This is an explicit // nack. DVLOG(1) << "still missing packet " << sequence_number; DCHECK(ContainsKey(packet_history_map_, sequence_number)); // Consider it multiple nacks when there is a gap between the missing packet // and the largest observed, since the purpose of a nack threshold is to // tolerate re-ordering. This handles both StretchAcks and Forward Acks. // TODO(ianswett): This relies heavily on sequential reception of packets, // and makes an assumption that the congestion control uses TCP style nacks. size_t min_nacks = received_info.largest_observed - sequence_number; packet_history_map_[sequence_number]->Nack(min_nacks); size_t num_nacks_needed = kNumberOfNacksBeforeRetransmission; // Check for early retransmit(RFC5827) when the last packet gets acked and // the there are fewer than 4 pending packets. if (pending_packets_.size() <= kNumberOfNacksBeforeRetransmission && sent_packet->has_retransmittable_data() == HAS_RETRANSMITTABLE_DATA && *pending_packets_.rbegin() == received_info.largest_observed) { num_nacks_needed = received_info.largest_observed - sequence_number; } if (sent_packet->nack_count() < num_nacks_needed) { ++it; continue; } // If the number of retransmissions has maxed out, don't lose or retransmit // any more packets. if (retransmission_packets.size() >= kMaxRetransmissionsPerAck) { ++it; continue; } lost_packets.insert(sequence_number); if (sent_packet->has_retransmittable_data() == HAS_RETRANSMITTABLE_DATA) { retransmission_packets.insert(sequence_number); } ++it; } // Abandon packets after the loop over pending packets, because otherwise it // changes the early retransmit logic and iteration. for (SequenceNumberSet::const_iterator it = lost_packets.begin(); it != lost_packets.end(); ++it) { // TODO(ianswett): OnPacketLost is also called from TCPCubicSender when // an FEC packet is lost, but FEC loss information should be shared among // congestion managers. Additionally, if it's expected the FEC packet may // repair the loss, it should be recorded as a loss to the congestion // manager, but not retransmitted until it's known whether the FEC packet // arrived. send_algorithm_->OnPacketLost(*it, ack_receive_time); OnPacketAbandoned(*it); } return retransmission_packets; } void QuicSentPacketManager::MaybeUpdateRTT( const ReceivedPacketInfo& received_info, const QuicTime& ack_receive_time) { // We calculate the RTT based on the highest ACKed sequence number, the lower // sequence numbers will include the ACK aggregation delay. SendAlgorithmInterface::SentPacketsMap::iterator history_it = packet_history_map_.find(received_info.largest_observed); // TODO(satyamshekhar): largest_observed might be missing. if (history_it == packet_history_map_.end()) { return; } QuicTime::Delta send_delta = ack_receive_time.Subtract( history_it->second->send_timestamp()); if (send_delta > received_info.delta_time_largest_observed) { rtt_sample_ = send_delta.Subtract( received_info.delta_time_largest_observed); } else if (rtt_sample_.IsInfinite()) { // Even though we received information from the peer suggesting // an invalid (negative) RTT, we can use the send delta as an // approximation until we get a better estimate. rtt_sample_ = send_delta; } } QuicTime::Delta QuicSentPacketManager::TimeUntilSend( QuicTime now, TransmissionType transmission_type, HasRetransmittableData retransmittable, IsHandshake handshake) { return send_algorithm_->TimeUntilSend(now, transmission_type, retransmittable, handshake); } // Ensures that the Delayed Ack timer is always set to a value lesser // than the retransmission timer's minimum value (MinRTO). We want the // delayed ack to get back to the QUIC peer before the sender's // retransmission timer triggers. Since we do not know the // reverse-path one-way delay, we assume equal delays for forward and // reverse paths, and ensure that the timer is set to less than half // of the MinRTO. // There may be a value in making this delay adaptive with the help of // the sender and a signaling mechanism -- if the sender uses a // different MinRTO, we may get spurious retransmissions. May not have // any benefits, but if the delayed ack becomes a significant source // of (likely, tail) latency, then consider such a mechanism. const QuicTime::Delta QuicSentPacketManager::DelayedAckTime() { return QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs/2); } const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay() const { size_t number_retransmissions = consecutive_rto_count_; if (FLAGS_limit_rto_increase_for_tests) { const size_t kTailDropWindowSize = 5; const size_t kTailDropMaxRetransmissions = 4; if (pending_packets_.size() <= kTailDropWindowSize) { // Avoid exponential backoff of RTO when there are only a few packets // outstanding. This helps avoid the situation where fake packet loss // causes a packet and it's retransmission to be dropped causing // test timouts. if (number_retransmissions <= kTailDropMaxRetransmissions) { number_retransmissions = 0; } else { number_retransmissions -= kTailDropMaxRetransmissions; } } } QuicTime::Delta retransmission_delay = send_algorithm_->RetransmissionDelay(); if (retransmission_delay.IsZero()) { // We are in the initial state, use default timeout values. retransmission_delay = QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); } // Calculate exponential back off. retransmission_delay = QuicTime::Delta::FromMilliseconds( retransmission_delay.ToMilliseconds() * static_cast<size_t>( (1 << min<size_t>(number_retransmissions, kMaxRetransmissions)))); // TODO(rch): This code should move to |send_algorithm_|. if (retransmission_delay.ToMilliseconds() < kMinRetransmissionTimeMs) { return QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs); } if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) { return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs); } return retransmission_delay; } const QuicTime::Delta QuicSentPacketManager::SmoothedRtt() const { return send_algorithm_->SmoothedRtt(); } QuicBandwidth QuicSentPacketManager::BandwidthEstimate() const { return send_algorithm_->BandwidthEstimate(); } QuicByteCount QuicSentPacketManager::GetCongestionWindow() const { return send_algorithm_->GetCongestionWindow(); } void QuicSentPacketManager::CleanupPacketHistory() { const QuicTime::Delta kHistoryPeriod = QuicTime::Delta::FromMilliseconds(kHistoryPeriodMs); QuicTime now = clock_->ApproximateNow(); SendAlgorithmInterface::SentPacketsMap::iterator history_it = packet_history_map_.begin(); for (; history_it != packet_history_map_.end(); ++history_it) { if (now.Subtract(history_it->second->send_timestamp()) <= kHistoryPeriod) { return; } // Don't remove packets which have not been acked. if (ContainsKey(pending_packets_, history_it->first)) { continue; } delete history_it->second; packet_history_map_.erase(history_it); history_it = packet_history_map_.begin(); } } void QuicSentPacketManager::MaybeEnablePacing() { if (!FLAGS_enable_quic_pacing) { return; } if (using_pacing_) { return; } using_pacing_ = true; send_algorithm_.reset( new PacingSender(send_algorithm_.release(), QuicTime::Delta::FromMicroseconds(1))); } } // namespace net