// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" // Some headers on Android are missing cdefs: crbug.com/172337. // (We can't use OS_ANDROID here since build_config.h is not included). #if defined(ANDROID) #include <sys/cdefs.h> #endif #include <errno.h> #include <fcntl.h> #include <string.h> #include <sys/prctl.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <time.h> #include <unistd.h> #include "base/compiler_specific.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/posix/eintr_wrapper.h" #include "sandbox/linux/seccomp-bpf/codegen.h" #include "sandbox/linux/seccomp-bpf/sandbox_bpf_policy.h" #include "sandbox/linux/seccomp-bpf/syscall.h" #include "sandbox/linux/seccomp-bpf/syscall_iterator.h" #include "sandbox/linux/seccomp-bpf/verifier.h" namespace sandbox { namespace { const int kExpectedExitCode = 100; int popcount(uint32_t x) { return __builtin_popcount(x); } #if !defined(NDEBUG) void WriteFailedStderrSetupMessage(int out_fd) { const char* error_string = strerror(errno); static const char msg[] = "You have reproduced a puzzling issue.\n" "Please, report to crbug.com/152530!\n" "Failed to set up stderr: "; if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg) - 1)) > 0 && error_string && HANDLE_EINTR(write(out_fd, error_string, strlen(error_string))) > 0 && HANDLE_EINTR(write(out_fd, "\n", 1))) { } } #endif // !defined(NDEBUG) // We define a really simple sandbox policy. It is just good enough for us // to tell that the sandbox has actually been activated. ErrorCode ProbeEvaluator(SandboxBPF*, int sysnum, void*) __attribute__((const)); ErrorCode ProbeEvaluator(SandboxBPF*, int sysnum, void*) { switch (sysnum) { case __NR_getpid: // Return EPERM so that we can check that the filter actually ran. return ErrorCode(EPERM); case __NR_exit_group: // Allow exit() with a non-default return code. return ErrorCode(ErrorCode::ERR_ALLOWED); default: // Make everything else fail in an easily recognizable way. return ErrorCode(EINVAL); } } void ProbeProcess(void) { if (syscall(__NR_getpid) < 0 && errno == EPERM) { syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); } } ErrorCode AllowAllEvaluator(SandboxBPF*, int sysnum, void*) { if (!SandboxBPF::IsValidSyscallNumber(sysnum)) { return ErrorCode(ENOSYS); } return ErrorCode(ErrorCode::ERR_ALLOWED); } void TryVsyscallProcess(void) { time_t current_time; // time() is implemented as a vsyscall. With an older glibc, with // vsyscall=emulate and some versions of the seccomp BPF patch // we may get SIGKILL-ed. Detect this! if (time(¤t_time) != static_cast<time_t>(-1)) { syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); } } bool IsSingleThreaded(int proc_fd) { if (proc_fd < 0) { // Cannot determine whether program is single-threaded. Hope for // the best... return true; } struct stat sb; int task = -1; if ((task = openat(proc_fd, "self/task", O_RDONLY | O_DIRECTORY)) < 0 || fstat(task, &sb) != 0 || sb.st_nlink != 3 || IGNORE_EINTR(close(task))) { if (task >= 0) { if (IGNORE_EINTR(close(task))) { } } return false; } return true; } bool IsDenied(const ErrorCode& code) { return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP || (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) && code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO)); } // Function that can be passed as a callback function to CodeGen::Traverse(). // Checks whether the "insn" returns an UnsafeTrap() ErrorCode. If so, it // sets the "bool" variable pointed to by "aux". void CheckForUnsafeErrorCodes(Instruction* insn, void* aux) { bool* is_unsafe = static_cast<bool*>(aux); if (!*is_unsafe) { if (BPF_CLASS(insn->code) == BPF_RET && insn->k > SECCOMP_RET_TRAP && insn->k - SECCOMP_RET_TRAP <= SECCOMP_RET_DATA) { const ErrorCode& err = Trap::ErrorCodeFromTrapId(insn->k & SECCOMP_RET_DATA); if (err.error_type() != ErrorCode::ET_INVALID && !err.safe()) { *is_unsafe = true; } } } } // A Trap() handler that returns an "errno" value. The value is encoded // in the "aux" parameter. intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) { // TrapFnc functions report error by following the native kernel convention // of returning an exit code in the range of -1..-4096. They do not try to // set errno themselves. The glibc wrapper that triggered the SIGSYS will // ultimately do so for us. int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA; return -err; } // Function that can be passed as a callback function to CodeGen::Traverse(). // Checks whether the "insn" returns an errno value from a BPF filter. If so, // it rewrites the instruction to instead call a Trap() handler that does // the same thing. "aux" is ignored. void RedirectToUserspace(Instruction* insn, void* aux) { // When inside an UnsafeTrap() callback, we want to allow all system calls. // This means, we must conditionally disable the sandbox -- and that's not // something that kernel-side BPF filters can do, as they cannot inspect // any state other than the syscall arguments. // But if we redirect all error handlers to user-space, then we can easily // make this decision. // The performance penalty for this extra round-trip to user-space is not // actually that bad, as we only ever pay it for denied system calls; and a // typical program has very few of these. SandboxBPF* sandbox = static_cast<SandboxBPF*>(aux); if (BPF_CLASS(insn->code) == BPF_RET && (insn->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) { insn->k = sandbox->Trap(ReturnErrno, reinterpret_cast<void*>(insn->k & SECCOMP_RET_DATA)).err(); } } // This wraps an existing policy and changes its behavior to match the changes // made by RedirectToUserspace(). This is part of the framework that allows BPF // evaluation in userland. // TODO(markus): document the code inside better. class RedirectToUserSpacePolicyWrapper : public SandboxBPFPolicy { public: explicit RedirectToUserSpacePolicyWrapper( const SandboxBPFPolicy* wrapped_policy) : wrapped_policy_(wrapped_policy) { DCHECK(wrapped_policy_); } virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox_compiler, int system_call_number) const OVERRIDE { ErrorCode err = wrapped_policy_->EvaluateSyscall(sandbox_compiler, system_call_number); if ((err.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) { return sandbox_compiler->Trap( ReturnErrno, reinterpret_cast<void*>(err.err() & SECCOMP_RET_DATA)); } return err; } private: const SandboxBPFPolicy* wrapped_policy_; DISALLOW_COPY_AND_ASSIGN(RedirectToUserSpacePolicyWrapper); }; intptr_t BPFFailure(const struct arch_seccomp_data&, void* aux) { SANDBOX_DIE(static_cast<char*>(aux)); } // This class allows compatibility with the old, deprecated SetSandboxPolicy. class CompatibilityPolicy : public SandboxBPFPolicy { public: CompatibilityPolicy(SandboxBPF::EvaluateSyscall syscall_evaluator, void* aux) : syscall_evaluator_(syscall_evaluator), aux_(aux) { DCHECK(syscall_evaluator_); } virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox_compiler, int system_call_number) const OVERRIDE { return syscall_evaluator_(sandbox_compiler, system_call_number, aux_); } private: SandboxBPF::EvaluateSyscall syscall_evaluator_; void* aux_; DISALLOW_COPY_AND_ASSIGN(CompatibilityPolicy); }; } // namespace SandboxBPF::SandboxBPF() : quiet_(false), proc_fd_(-1), conds_(new Conds), sandbox_has_started_(false) {} SandboxBPF::~SandboxBPF() { // It is generally unsafe to call any memory allocator operations or to even // call arbitrary destructors after having installed a new policy. We just // have no way to tell whether this policy would allow the system calls that // the constructors can trigger. // So, we normally destroy all of our complex state prior to starting the // sandbox. But this won't happen, if the Sandbox object was created and // never actually used to set up a sandbox. So, just in case, we are // destroying any remaining state. // The "if ()" statements are technically superfluous. But let's be explicit // that we really don't want to run any code, when we already destroyed // objects before setting up the sandbox. if (conds_) { delete conds_; } } bool SandboxBPF::IsValidSyscallNumber(int sysnum) { return SyscallIterator::IsValid(sysnum); } bool SandboxBPF::RunFunctionInPolicy(void (*code_in_sandbox)(), EvaluateSyscall syscall_evaluator, void* aux) { // Block all signals before forking a child process. This prevents an // attacker from manipulating our test by sending us an unexpected signal. sigset_t old_mask, new_mask; if (sigfillset(&new_mask) || sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) { SANDBOX_DIE("sigprocmask() failed"); } int fds[2]; if (pipe2(fds, O_NONBLOCK | O_CLOEXEC)) { SANDBOX_DIE("pipe() failed"); } if (fds[0] <= 2 || fds[1] <= 2) { SANDBOX_DIE("Process started without standard file descriptors"); } // This code is using fork() and should only ever run single-threaded. // Most of the code below is "async-signal-safe" and only minor changes // would be needed to support threads. DCHECK(IsSingleThreaded(proc_fd_)); pid_t pid = fork(); if (pid < 0) { // Die if we cannot fork(). We would probably fail a little later // anyway, as the machine is likely very close to running out of // memory. // But what we don't want to do is return "false", as a crafty // attacker might cause fork() to fail at will and could trick us // into running without a sandbox. sigprocmask(SIG_SETMASK, &old_mask, NULL); // OK, if it fails SANDBOX_DIE("fork() failed unexpectedly"); } // In the child process if (!pid) { // Test a very simple sandbox policy to verify that we can // successfully turn on sandboxing. Die::EnableSimpleExit(); errno = 0; if (IGNORE_EINTR(close(fds[0]))) { // This call to close() has been failing in strange ways. See // crbug.com/152530. So we only fail in debug mode now. #if !defined(NDEBUG) WriteFailedStderrSetupMessage(fds[1]); SANDBOX_DIE(NULL); #endif } if (HANDLE_EINTR(dup2(fds[1], 2)) != 2) { // Stderr could very well be a file descriptor to .xsession-errors, or // another file, which could be backed by a file system that could cause // dup2 to fail while trying to close stderr. It's important that we do // not fail on trying to close stderr. // If dup2 fails here, we will continue normally, this means that our // parent won't cause a fatal failure if something writes to stderr in // this child. #if !defined(NDEBUG) // In DEBUG builds, we still want to get a report. WriteFailedStderrSetupMessage(fds[1]); SANDBOX_DIE(NULL); #endif } if (IGNORE_EINTR(close(fds[1]))) { // This call to close() has been failing in strange ways. See // crbug.com/152530. So we only fail in debug mode now. #if !defined(NDEBUG) WriteFailedStderrSetupMessage(fds[1]); SANDBOX_DIE(NULL); #endif } SetSandboxPolicyDeprecated(syscall_evaluator, aux); StartSandbox(); // Run our code in the sandbox. code_in_sandbox(); // code_in_sandbox() is not supposed to return here. SANDBOX_DIE(NULL); } // In the parent process. if (IGNORE_EINTR(close(fds[1]))) { SANDBOX_DIE("close() failed"); } if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) { SANDBOX_DIE("sigprocmask() failed"); } int status; if (HANDLE_EINTR(waitpid(pid, &status, 0)) != pid) { SANDBOX_DIE("waitpid() failed unexpectedly"); } bool rc = WIFEXITED(status) && WEXITSTATUS(status) == kExpectedExitCode; // If we fail to support sandboxing, there might be an additional // error message. If so, this was an entirely unexpected and fatal // failure. We should report the failure and somebody must fix // things. This is probably a security-critical bug in the sandboxing // code. if (!rc) { char buf[4096]; ssize_t len = HANDLE_EINTR(read(fds[0], buf, sizeof(buf) - 1)); if (len > 0) { while (len > 1 && buf[len - 1] == '\n') { --len; } buf[len] = '\000'; SANDBOX_DIE(buf); } } if (IGNORE_EINTR(close(fds[0]))) { SANDBOX_DIE("close() failed"); } return rc; } bool SandboxBPF::KernelSupportSeccompBPF() { return RunFunctionInPolicy(ProbeProcess, ProbeEvaluator, 0) && RunFunctionInPolicy(TryVsyscallProcess, AllowAllEvaluator, 0); } SandboxBPF::SandboxStatus SandboxBPF::SupportsSeccompSandbox(int proc_fd) { // It the sandbox is currently active, we clearly must have support for // sandboxing. if (status_ == STATUS_ENABLED) { return status_; } // Even if the sandbox was previously available, something might have // changed in our run-time environment. Check one more time. if (status_ == STATUS_AVAILABLE) { if (!IsSingleThreaded(proc_fd)) { status_ = STATUS_UNAVAILABLE; } return status_; } if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) { // All state transitions resulting in STATUS_UNAVAILABLE are immediately // preceded by STATUS_AVAILABLE. Furthermore, these transitions all // happen, if and only if they are triggered by the process being multi- // threaded. // In other words, if a single-threaded process is currently in the // STATUS_UNAVAILABLE state, it is safe to assume that sandboxing is // actually available. status_ = STATUS_AVAILABLE; return status_; } // If we have not previously checked for availability of the sandbox or if // we otherwise don't believe to have a good cached value, we have to // perform a thorough check now. if (status_ == STATUS_UNKNOWN) { // We create our own private copy of a "Sandbox" object. This ensures that // the object does not have any policies configured, that might interfere // with the tests done by "KernelSupportSeccompBPF()". SandboxBPF sandbox; // By setting "quiet_ = true" we suppress messages for expected and benign // failures (e.g. if the current kernel lacks support for BPF filters). sandbox.quiet_ = true; sandbox.set_proc_fd(proc_fd); status_ = sandbox.KernelSupportSeccompBPF() ? STATUS_AVAILABLE : STATUS_UNSUPPORTED; // As we are performing our tests from a child process, the run-time // environment that is visible to the sandbox is always guaranteed to be // single-threaded. Let's check here whether the caller is single- // threaded. Otherwise, we mark the sandbox as temporarily unavailable. if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) { status_ = STATUS_UNAVAILABLE; } } return status_; } void SandboxBPF::set_proc_fd(int proc_fd) { proc_fd_ = proc_fd; } void SandboxBPF::StartSandbox() { if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) { SANDBOX_DIE( "Trying to start sandbox, even though it is known to be " "unavailable"); } else if (sandbox_has_started_ || !conds_) { SANDBOX_DIE( "Cannot repeatedly start sandbox. Create a separate Sandbox " "object instead."); } if (proc_fd_ < 0) { proc_fd_ = open("/proc", O_RDONLY | O_DIRECTORY); } if (proc_fd_ < 0) { // For now, continue in degraded mode, if we can't access /proc. // In the future, we might want to tighten this requirement. } if (!IsSingleThreaded(proc_fd_)) { SANDBOX_DIE("Cannot start sandbox, if process is already multi-threaded"); } // We no longer need access to any files in /proc. We want to do this // before installing the filters, just in case that our policy denies // close(). if (proc_fd_ >= 0) { if (IGNORE_EINTR(close(proc_fd_))) { SANDBOX_DIE("Failed to close file descriptor for /proc"); } proc_fd_ = -1; } // Install the filters. InstallFilter(); // We are now inside the sandbox. status_ = STATUS_ENABLED; } void SandboxBPF::PolicySanityChecks(SandboxBPFPolicy* policy) { for (SyscallIterator iter(true); !iter.Done();) { uint32_t sysnum = iter.Next(); if (!IsDenied(policy->EvaluateSyscall(this, sysnum))) { SANDBOX_DIE( "Policies should deny system calls that are outside the " "expected range (typically MIN_SYSCALL..MAX_SYSCALL)"); } } return; } // Deprecated API, supported with a wrapper to the new API. void SandboxBPF::SetSandboxPolicyDeprecated(EvaluateSyscall syscall_evaluator, void* aux) { if (sandbox_has_started_ || !conds_) { SANDBOX_DIE("Cannot change policy after sandbox has started"); } SetSandboxPolicy(new CompatibilityPolicy(syscall_evaluator, aux)); } // Don't take a scoped_ptr here, polymorphism make their use awkward. void SandboxBPF::SetSandboxPolicy(SandboxBPFPolicy* policy) { DCHECK(!policy_); if (sandbox_has_started_ || !conds_) { SANDBOX_DIE("Cannot change policy after sandbox has started"); } PolicySanityChecks(policy); policy_.reset(policy); } void SandboxBPF::InstallFilter() { // We want to be very careful in not imposing any requirements on the // policies that are set with SetSandboxPolicy(). This means, as soon as // the sandbox is active, we shouldn't be relying on libraries that could // be making system calls. This, for example, means we should avoid // using the heap and we should avoid using STL functions. // Temporarily copy the contents of the "program" vector into a // stack-allocated array; and then explicitly destroy that object. // This makes sure we don't ex- or implicitly call new/delete after we // installed the BPF filter program in the kernel. Depending on the // system memory allocator that is in effect, these operators can result // in system calls to things like munmap() or brk(). Program* program = AssembleFilter(false /* force_verification */); struct sock_filter bpf[program->size()]; const struct sock_fprog prog = {static_cast<unsigned short>(program->size()), bpf}; memcpy(bpf, &(*program)[0], sizeof(bpf)); delete program; // Make an attempt to release memory that is no longer needed here, rather // than in the destructor. Try to avoid as much as possible to presume of // what will be possible to do in the new (sandboxed) execution environment. delete conds_; conds_ = NULL; policy_.reset(); // Install BPF filter program if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to enable no-new-privs"); } else { if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) { SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to turn on BPF filters"); } } sandbox_has_started_ = true; return; } SandboxBPF::Program* SandboxBPF::AssembleFilter(bool force_verification) { #if !defined(NDEBUG) force_verification = true; #endif // Verify that the user pushed a policy. DCHECK(policy_); // Assemble the BPF filter program. CodeGen* gen = new CodeGen(); if (!gen) { SANDBOX_DIE("Out of memory"); } // If the architecture doesn't match SECCOMP_ARCH, disallow the // system call. Instruction* tail; Instruction* head = gen->MakeInstruction( BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARCH_IDX, tail = gen->MakeInstruction( BPF_JMP + BPF_JEQ + BPF_K, SECCOMP_ARCH, NULL, gen->MakeInstruction( BPF_RET + BPF_K, Kill("Invalid audit architecture in BPF filter")))); bool has_unsafe_traps = false; { // Evaluate all possible system calls and group their ErrorCodes into // ranges of identical codes. Ranges ranges; FindRanges(&ranges); // Compile the system call ranges to an optimized BPF jumptable Instruction* jumptable = AssembleJumpTable(gen, ranges.begin(), ranges.end()); // If there is at least one UnsafeTrap() in our program, the entire sandbox // is unsafe. We need to modify the program so that all non- // SECCOMP_RET_ALLOW ErrorCodes are handled in user-space. This will then // allow us to temporarily disable sandboxing rules inside of callbacks to // UnsafeTrap(). gen->Traverse(jumptable, CheckForUnsafeErrorCodes, &has_unsafe_traps); // Grab the system call number, so that we can implement jump tables. Instruction* load_nr = gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX); // If our BPF program has unsafe jumps, enable support for them. This // test happens very early in the BPF filter program. Even before we // consider looking at system call numbers. // As support for unsafe jumps essentially defeats all the security // measures that the sandbox provides, we print a big warning message -- // and of course, we make sure to only ever enable this feature if it // is actually requested by the sandbox policy. if (has_unsafe_traps) { if (SandboxSyscall(-1) == -1 && errno == ENOSYS) { SANDBOX_DIE( "Support for UnsafeTrap() has not yet been ported to this " "architecture"); } if (!policy_->EvaluateSyscall(this, __NR_rt_sigprocmask) .Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) || !policy_->EvaluateSyscall(this, __NR_rt_sigreturn) .Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) #if defined(__NR_sigprocmask) || !policy_->EvaluateSyscall(this, __NR_sigprocmask) .Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) #endif #if defined(__NR_sigreturn) || !policy_->EvaluateSyscall(this, __NR_sigreturn) .Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) #endif ) { SANDBOX_DIE( "Invalid seccomp policy; if using UnsafeTrap(), you must " "unconditionally allow sigreturn() and sigprocmask()"); } if (!Trap::EnableUnsafeTrapsInSigSysHandler()) { // We should never be able to get here, as UnsafeTrap() should never // actually return a valid ErrorCode object unless the user set the // CHROME_SANDBOX_DEBUGGING environment variable; and therefore, // "has_unsafe_traps" would always be false. But better double-check // than enabling dangerous code. SANDBOX_DIE("We'd rather die than enable unsafe traps"); } gen->Traverse(jumptable, RedirectToUserspace, this); // Allow system calls, if they originate from our magic return address // (which we can query by calling SandboxSyscall(-1)). uintptr_t syscall_entry_point = static_cast<uintptr_t>(SandboxSyscall(-1)); uint32_t low = static_cast<uint32_t>(syscall_entry_point); #if __SIZEOF_POINTER__ > 4 uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32); #endif // BPF cannot do native 64bit comparisons. On 64bit architectures, we // have to compare both 32bit halves of the instruction pointer. If they // match what we expect, we return ERR_ALLOWED. If either or both don't // match, we continue evalutating the rest of the sandbox policy. Instruction* escape_hatch = gen->MakeInstruction( BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_LSB_IDX, gen->MakeInstruction( BPF_JMP + BPF_JEQ + BPF_K, low, #if __SIZEOF_POINTER__ > 4 gen->MakeInstruction( BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_MSB_IDX, gen->MakeInstruction( BPF_JMP + BPF_JEQ + BPF_K, hi, #endif gen->MakeInstruction(BPF_RET + BPF_K, ErrorCode(ErrorCode::ERR_ALLOWED)), #if __SIZEOF_POINTER__ > 4 load_nr)), #endif load_nr)); gen->JoinInstructions(tail, escape_hatch); } else { gen->JoinInstructions(tail, load_nr); } tail = load_nr; // On Intel architectures, verify that system call numbers are in the // expected number range. The older i386 and x86-64 APIs clear bit 30 // on all system calls. The newer x32 API always sets bit 30. #if defined(__i386__) || defined(__x86_64__) Instruction* invalidX32 = gen->MakeInstruction( BPF_RET + BPF_K, Kill("Illegal mixing of system call ABIs").err_); Instruction* checkX32 = #if defined(__x86_64__) && defined(__ILP32__) gen->MakeInstruction( BPF_JMP + BPF_JSET + BPF_K, 0x40000000, 0, invalidX32); #else gen->MakeInstruction( BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, 0); #endif gen->JoinInstructions(tail, checkX32); tail = checkX32; #endif // Append jump table to our pre-amble gen->JoinInstructions(tail, jumptable); } // Turn the DAG into a vector of instructions. Program* program = new Program(); gen->Compile(head, program); delete gen; // Make sure compilation resulted in BPF program that executes // correctly. Otherwise, there is an internal error in our BPF compiler. // There is really nothing the caller can do until the bug is fixed. if (force_verification) { // Verification is expensive. We only perform this step, if we are // compiled in debug mode, or if the caller explicitly requested // verification. VerifyProgram(*program, has_unsafe_traps); } return program; } void SandboxBPF::VerifyProgram(const Program& program, bool has_unsafe_traps) { // If we previously rewrote the BPF program so that it calls user-space // whenever we return an "errno" value from the filter, then we have to // wrap our system call evaluator to perform the same operation. Otherwise, // the verifier would also report a mismatch in return codes. scoped_ptr<const RedirectToUserSpacePolicyWrapper> redirected_policy( new RedirectToUserSpacePolicyWrapper(policy_.get())); const char* err = NULL; if (!Verifier::VerifyBPF(this, program, has_unsafe_traps ? *redirected_policy : *policy_, &err)) { CodeGen::PrintProgram(program); SANDBOX_DIE(err); } } void SandboxBPF::FindRanges(Ranges* ranges) { // Please note that "struct seccomp_data" defines system calls as a signed // int32_t, but BPF instructions always operate on unsigned quantities. We // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL, // and then verifying that the rest of the number range (both positive and // negative) all return the same ErrorCode. uint32_t old_sysnum = 0; ErrorCode old_err = policy_->EvaluateSyscall(this, old_sysnum); ErrorCode invalid_err = policy_->EvaluateSyscall(this, MIN_SYSCALL - 1); for (SyscallIterator iter(false); !iter.Done();) { uint32_t sysnum = iter.Next(); ErrorCode err = policy_->EvaluateSyscall(this, static_cast<int>(sysnum)); if (!iter.IsValid(sysnum) && !invalid_err.Equals(err)) { // A proper sandbox policy should always treat system calls outside of // the range MIN_SYSCALL..MAX_SYSCALL (i.e. anything that returns // "false" for SyscallIterator::IsValid()) identically. Typically, all // of these system calls would be denied with the same ErrorCode. SANDBOX_DIE("Invalid seccomp policy"); } if (!err.Equals(old_err) || iter.Done()) { ranges->push_back(Range(old_sysnum, sysnum - 1, old_err)); old_sysnum = sysnum; old_err = err; } } } Instruction* SandboxBPF::AssembleJumpTable(CodeGen* gen, Ranges::const_iterator start, Ranges::const_iterator stop) { // We convert the list of system call ranges into jump table that performs // a binary search over the ranges. // As a sanity check, we need to have at least one distinct ranges for us // to be able to build a jump table. if (stop - start <= 0) { SANDBOX_DIE("Invalid set of system call ranges"); } else if (stop - start == 1) { // If we have narrowed things down to a single range object, we can // return from the BPF filter program. return RetExpression(gen, start->err); } // Pick the range object that is located at the mid point of our list. // We compare our system call number against the lowest valid system call // number in this range object. If our number is lower, it is outside of // this range object. If it is greater or equal, it might be inside. Ranges::const_iterator mid = start + (stop - start) / 2; // Sub-divide the list of ranges and continue recursively. Instruction* jf = AssembleJumpTable(gen, start, mid); Instruction* jt = AssembleJumpTable(gen, mid, stop); return gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf); } Instruction* SandboxBPF::RetExpression(CodeGen* gen, const ErrorCode& err) { if (err.error_type_ == ErrorCode::ET_COND) { return CondExpression(gen, err); } else { return gen->MakeInstruction(BPF_RET + BPF_K, err); } } Instruction* SandboxBPF::CondExpression(CodeGen* gen, const ErrorCode& cond) { // We can only inspect the six system call arguments that are passed in // CPU registers. if (cond.argno_ < 0 || cond.argno_ >= 6) { SANDBOX_DIE( "Internal compiler error; invalid argument number " "encountered"); } // BPF programs operate on 32bit entities. Load both halfs of the 64bit // system call argument and then generate suitable conditional statements. Instruction* msb_head = gen->MakeInstruction( BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_MSB_IDX(cond.argno_)); Instruction* msb_tail = msb_head; Instruction* lsb_head = gen->MakeInstruction( BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_LSB_IDX(cond.argno_)); Instruction* lsb_tail = lsb_head; // Emit a suitable comparison statement. switch (cond.op_) { case ErrorCode::OP_EQUAL: // Compare the least significant bits for equality lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, static_cast<uint32_t>(cond.value_), RetExpression(gen, *cond.passed_), RetExpression(gen, *cond.failed_)); gen->JoinInstructions(lsb_head, lsb_tail); // If we are looking at a 64bit argument, we need to also compare the // most significant bits. if (cond.width_ == ErrorCode::TP_64BIT) { msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, static_cast<uint32_t>(cond.value_ >> 32), lsb_head, RetExpression(gen, *cond.failed_)); gen->JoinInstructions(msb_head, msb_tail); } break; case ErrorCode::OP_HAS_ALL_BITS: // Check the bits in the LSB half of the system call argument. Our // OP_HAS_ALL_BITS operator passes, iff all of the bits are set. This is // different from the kernel's BPF_JSET operation which passes, if any of // the bits are set. // Of course, if there is only a single set bit (or none at all), then // things get easier. { uint32_t lsb_bits = static_cast<uint32_t>(cond.value_); int lsb_bit_count = popcount(lsb_bits); if (lsb_bit_count == 0) { // No bits are set in the LSB half. The test will always pass. lsb_head = RetExpression(gen, *cond.passed_); lsb_tail = NULL; } else if (lsb_bit_count == 1) { // Exactly one bit is set in the LSB half. We can use the BPF_JSET // operator. lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, lsb_bits, RetExpression(gen, *cond.passed_), RetExpression(gen, *cond.failed_)); gen->JoinInstructions(lsb_head, lsb_tail); } else { // More than one bit is set in the LSB half. We need to combine // BPF_AND and BPF_JEQ to test whether all of these bits are in fact // set in the system call argument. gen->JoinInstructions( lsb_head, gen->MakeInstruction(BPF_ALU + BPF_AND + BPF_K, lsb_bits, lsb_tail = gen->MakeInstruction( BPF_JMP + BPF_JEQ + BPF_K, lsb_bits, RetExpression(gen, *cond.passed_), RetExpression(gen, *cond.failed_)))); } } // If we are looking at a 64bit argument, we need to also check the bits // in the MSB half of the system call argument. if (cond.width_ == ErrorCode::TP_64BIT) { uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32); int msb_bit_count = popcount(msb_bits); if (msb_bit_count == 0) { // No bits are set in the MSB half. The test will always pass. msb_head = lsb_head; } else if (msb_bit_count == 1) { // Exactly one bit is set in the MSB half. We can use the BPF_JSET // operator. msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, msb_bits, lsb_head, RetExpression(gen, *cond.failed_)); gen->JoinInstructions(msb_head, msb_tail); } else { // More than one bit is set in the MSB half. We need to combine // BPF_AND and BPF_JEQ to test whether all of these bits are in fact // set in the system call argument. gen->JoinInstructions( msb_head, gen->MakeInstruction( BPF_ALU + BPF_AND + BPF_K, msb_bits, gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, msb_bits, lsb_head, RetExpression(gen, *cond.failed_)))); } } break; case ErrorCode::OP_HAS_ANY_BITS: // Check the bits in the LSB half of the system call argument. Our // OP_HAS_ANY_BITS operator passes, iff any of the bits are set. This maps // nicely to the kernel's BPF_JSET operation. { uint32_t lsb_bits = static_cast<uint32_t>(cond.value_); if (!lsb_bits) { // No bits are set in the LSB half. The test will always fail. lsb_head = RetExpression(gen, *cond.failed_); lsb_tail = NULL; } else { lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, lsb_bits, RetExpression(gen, *cond.passed_), RetExpression(gen, *cond.failed_)); gen->JoinInstructions(lsb_head, lsb_tail); } } // If we are looking at a 64bit argument, we need to also check the bits // in the MSB half of the system call argument. if (cond.width_ == ErrorCode::TP_64BIT) { uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32); if (!msb_bits) { // No bits are set in the MSB half. The test will always fail. msb_head = lsb_head; } else { msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, msb_bits, RetExpression(gen, *cond.passed_), lsb_head); gen->JoinInstructions(msb_head, msb_tail); } } break; default: // TODO(markus): Need to add support for OP_GREATER SANDBOX_DIE("Not implemented"); break; } // Ensure that we never pass a 64bit value, when we only expect a 32bit // value. This is somewhat complicated by the fact that on 64bit systems, // callers could legitimately pass in a non-zero value in the MSB, iff the // LSB has been sign-extended into the MSB. if (cond.width_ == ErrorCode::TP_32BIT) { if (cond.value_ >> 32) { SANDBOX_DIE( "Invalid comparison of a 32bit system call argument " "against a 64bit constant; this test is always false."); } Instruction* invalid_64bit = RetExpression(gen, Unexpected64bitArgument()); #if __SIZEOF_POINTER__ > 4 invalid_64bit = gen->MakeInstruction( BPF_JMP + BPF_JEQ + BPF_K, 0xFFFFFFFF, gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_LSB_IDX(cond.argno_), gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, 0x80000000, lsb_head, invalid_64bit)), invalid_64bit); #endif gen->JoinInstructions( msb_tail, gen->MakeInstruction( BPF_JMP + BPF_JEQ + BPF_K, 0, lsb_head, invalid_64bit)); } return msb_head; } ErrorCode SandboxBPF::Unexpected64bitArgument() { return Kill("Unexpected 64bit argument detected"); } ErrorCode SandboxBPF::Trap(Trap::TrapFnc fnc, const void* aux) { return Trap::MakeTrap(fnc, aux, true /* Safe Trap */); } ErrorCode SandboxBPF::UnsafeTrap(Trap::TrapFnc fnc, const void* aux) { return Trap::MakeTrap(fnc, aux, false /* Unsafe Trap */); } intptr_t SandboxBPF::ForwardSyscall(const struct arch_seccomp_data& args) { return SandboxSyscall(args.nr, static_cast<intptr_t>(args.args[0]), static_cast<intptr_t>(args.args[1]), static_cast<intptr_t>(args.args[2]), static_cast<intptr_t>(args.args[3]), static_cast<intptr_t>(args.args[4]), static_cast<intptr_t>(args.args[5])); } ErrorCode SandboxBPF::Cond(int argno, ErrorCode::ArgType width, ErrorCode::Operation op, uint64_t value, const ErrorCode& passed, const ErrorCode& failed) { return ErrorCode(argno, width, op, value, &*conds_->insert(passed).first, &*conds_->insert(failed).first); } ErrorCode SandboxBPF::Kill(const char* msg) { return Trap(BPFFailure, const_cast<char*>(msg)); } SandboxBPF::SandboxStatus SandboxBPF::status_ = STATUS_UNKNOWN; } // namespace sandbox