/* * Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved. * Copyright (C) 2008 David Levin <levin@chromium.org> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef WTF_HashTable_h #define WTF_HashTable_h #include "wtf/Alignment.h" #include "wtf/Assertions.h" #include "wtf/HashTraits.h" #include "wtf/PartitionAlloc.h" #include "wtf/WTF.h" #include <string.h> #define DUMP_HASHTABLE_STATS 0 #define DUMP_HASHTABLE_STATS_PER_TABLE 0 #if DUMP_HASHTABLE_STATS_PER_TABLE #include "wtf/DataLog.h" #endif namespace WTF { #if DUMP_HASHTABLE_STATS struct HashTableStats { // The following variables are all atomically incremented when modified. static int numAccesses; static int numRehashes; static int numRemoves; static int numReinserts; // The following variables are only modified in the recordCollisionAtCount method within a mutex. static int maxCollisions; static int numCollisions; static int collisionGraph[4096]; static void recordCollisionAtCount(int count); static void dumpStats(); }; #endif template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTable; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTableIterator; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTableConstIterator; typedef enum { HashItemKnownGood } HashItemKnownGoodTag; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTableConstIterator { private: typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> HashTableType; typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> iterator; typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> const_iterator; typedef Value ValueType; typedef const ValueType& ReferenceType; typedef const ValueType* PointerType; friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>; friend class HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>; void skipEmptyBuckets() { while (m_position != m_endPosition && HashTableType::isEmptyOrDeletedBucket(*m_position)) ++m_position; } HashTableConstIterator(const HashTableType* table, PointerType position, PointerType endPosition) : m_position(position), m_endPosition(endPosition) { skipEmptyBuckets(); } HashTableConstIterator(const HashTableType* table, PointerType position, PointerType endPosition, HashItemKnownGoodTag) : m_position(position), m_endPosition(endPosition) { } public: HashTableConstIterator() { } PointerType get() const { return m_position; } ReferenceType operator*() const { return *get(); } PointerType operator->() const { return get(); } const_iterator& operator++() { ASSERT(m_position != m_endPosition); ++m_position; skipEmptyBuckets(); return *this; } // postfix ++ intentionally omitted // Comparison. bool operator==(const const_iterator& other) const { return m_position == other.m_position; } bool operator!=(const const_iterator& other) const { return m_position != other.m_position; } bool operator==(const iterator& other) const { return *this == static_cast<const_iterator>(other); } bool operator!=(const iterator& other) const { return *this != static_cast<const_iterator>(other); } private: PointerType m_position; PointerType m_endPosition; }; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTableIterator { private: typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> HashTableType; typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> iterator; typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> const_iterator; typedef Value ValueType; typedef ValueType& ReferenceType; typedef ValueType* PointerType; friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>; HashTableIterator(HashTableType* table, PointerType pos, PointerType end) : m_iterator(table, pos, end) { } HashTableIterator(HashTableType* table, PointerType pos, PointerType end, HashItemKnownGoodTag tag) : m_iterator(table, pos, end, tag) { } public: HashTableIterator() { } // default copy, assignment and destructor are OK PointerType get() const { return const_cast<PointerType>(m_iterator.get()); } ReferenceType operator*() const { return *get(); } PointerType operator->() const { return get(); } iterator& operator++() { ++m_iterator; return *this; } // postfix ++ intentionally omitted // Comparison. bool operator==(const iterator& other) const { return m_iterator == other.m_iterator; } bool operator!=(const iterator& other) const { return m_iterator != other.m_iterator; } bool operator==(const const_iterator& other) const { return m_iterator == other; } bool operator!=(const const_iterator& other) const { return m_iterator != other; } operator const_iterator() const { return m_iterator; } private: const_iterator m_iterator; }; using std::swap; // Work around MSVC's standard library, whose swap for pairs does not swap by component. template<typename T> inline void hashTableSwap(T& a, T& b) { swap(a, b); } template<typename T, typename U> inline void hashTableSwap(KeyValuePair<T, U>& a, KeyValuePair<T, U>& b) { swap(a.key, b.key); swap(a.value, b.value); } template<typename T, bool useSwap> struct Mover; template<typename T> struct Mover<T, true> { static void move(T& from, T& to) { hashTableSwap(from, to); } }; template<typename T> struct Mover<T, false> { static void move(T& from, T& to) { to = from; } }; template<typename HashFunctions> class IdentityHashTranslator { public: template<typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); } template<typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a, b); } template<typename T, typename U> static void translate(T& location, const U&, const T& value) { location = value; } }; template<typename IteratorType> struct HashTableAddResult { HashTableAddResult(IteratorType iter, bool isNewEntry) : iterator(iter), isNewEntry(isNewEntry) { } IteratorType iterator; bool isNewEntry; }; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTable { public: typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> iterator; typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> const_iterator; typedef Traits ValueTraits; typedef Key KeyType; typedef Value ValueType; typedef IdentityHashTranslator<HashFunctions> IdentityTranslatorType; typedef HashTableAddResult<iterator> AddResult; #if DUMP_HASHTABLE_STATS_PER_TABLE struct Stats { Stats() : numAccesses(0) , numRehashes(0) , numRemoves(0) , numReinserts(0) , maxCollisions(0) , numCollisions(0) , collisionGraph() { } int numAccesses; int numRehashes; int numRemoves; int numReinserts; int maxCollisions; int numCollisions; int collisionGraph[4096]; void recordCollisionAtCount(int count) { if (count > maxCollisions) maxCollisions = count; numCollisions++; collisionGraph[count]++; } void dumpStats() { dataLogF("\nWTF::HashTable::Stats dump\n\n"); dataLogF("%d accesses\n", numAccesses); dataLogF("%d total collisions, average %.2f probes per access\n", numCollisions, 1.0 * (numAccesses + numCollisions) / numAccesses); dataLogF("longest collision chain: %d\n", maxCollisions); for (int i = 1; i <= maxCollisions; i++) { dataLogF(" %d lookups with exactly %d collisions (%.2f%% , %.2f%% with this many or more)\n", collisionGraph[i], i, 100.0 * (collisionGraph[i] - collisionGraph[i+1]) / numAccesses, 100.0 * collisionGraph[i] / numAccesses); } dataLogF("%d rehashes\n", numRehashes); dataLogF("%d reinserts\n", numReinserts); } }; #endif HashTable(); ~HashTable() { if (LIKELY(!m_table)) return; deallocateTable(m_table, m_tableSize); m_table = 0; } HashTable(const HashTable&); void swap(HashTable&); HashTable& operator=(const HashTable&); // When the hash table is empty, just return the same iterator for end as for begin. // This is more efficient because we don't have to skip all the empty and deleted // buckets, and iterating an empty table is a common case that's worth optimizing. iterator begin() { return isEmpty() ? end() : makeIterator(m_table); } iterator end() { return makeKnownGoodIterator(m_table + m_tableSize); } const_iterator begin() const { return isEmpty() ? end() : makeConstIterator(m_table); } const_iterator end() const { return makeKnownGoodConstIterator(m_table + m_tableSize); } unsigned size() const { return m_keyCount; } unsigned capacity() const { return m_tableSize; } bool isEmpty() const { return !m_keyCount; } AddResult add(const ValueType& value) { return add<IdentityTranslatorType>(Extractor::extract(value), value); } // A special version of add() that finds the object by hashing and comparing // with some other type, to avoid the cost of type conversion if the object is already // in the table. template<typename HashTranslator, typename T, typename Extra> AddResult add(const T& key, const Extra&); template<typename HashTranslator, typename T, typename Extra> AddResult addPassingHashCode(const T& key, const Extra&); iterator find(const KeyType& key) { return find<IdentityTranslatorType>(key); } const_iterator find(const KeyType& key) const { return find<IdentityTranslatorType>(key); } bool contains(const KeyType& key) const { return contains<IdentityTranslatorType>(key); } template<typename HashTranslator, typename T> iterator find(const T&); template<typename HashTranslator, typename T> const_iterator find(const T&) const; template<typename HashTranslator, typename T> bool contains(const T&) const; void remove(const KeyType&); void remove(iterator); void remove(const_iterator); void clear(); static bool isEmptyBucket(const ValueType& value) { return isHashTraitsEmptyValue<KeyTraits>(Extractor::extract(value)); } static bool isDeletedBucket(const ValueType& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); } static bool isEmptyOrDeletedBucket(const ValueType& value) { return isEmptyBucket(value) || isDeletedBucket(value); } ValueType* lookup(const Key& key) { return lookup<IdentityTranslatorType>(key); } template<typename HashTranslator, typename T> ValueType* lookup(const T&); private: static ValueType* allocateTable(unsigned size); static void deallocateTable(ValueType* table, unsigned size); typedef std::pair<ValueType*, bool> LookupType; typedef std::pair<LookupType, unsigned> FullLookupType; LookupType lookupForWriting(const Key& key) { return lookupForWriting<IdentityTranslatorType>(key); }; template<typename HashTranslator, typename T> FullLookupType fullLookupForWriting(const T&); template<typename HashTranslator, typename T> LookupType lookupForWriting(const T&); void remove(ValueType*); bool shouldExpand() const { return (m_keyCount + m_deletedCount) * m_maxLoad >= m_tableSize; } bool mustRehashInPlace() const { return m_keyCount * m_minLoad < m_tableSize * 2; } bool shouldShrink() const { return m_keyCount * m_minLoad < m_tableSize && m_tableSize > KeyTraits::minimumTableSize; } void expand(); void shrink() { rehash(m_tableSize / 2); } void rehash(unsigned newTableSize); void reinsert(ValueType&); static void initializeBucket(ValueType& bucket); static void deleteBucket(ValueType& bucket) { bucket.~ValueType(); Traits::constructDeletedValue(bucket); } FullLookupType makeLookupResult(ValueType* position, bool found, unsigned hash) { return FullLookupType(LookupType(position, found), hash); } iterator makeIterator(ValueType* pos) { return iterator(this, pos, m_table + m_tableSize); } const_iterator makeConstIterator(ValueType* pos) const { return const_iterator(this, pos, m_table + m_tableSize); } iterator makeKnownGoodIterator(ValueType* pos) { return iterator(this, pos, m_table + m_tableSize, HashItemKnownGood); } const_iterator makeKnownGoodConstIterator(ValueType* pos) const { return const_iterator(this, pos, m_table + m_tableSize, HashItemKnownGood); } static const unsigned m_maxLoad = 2; static const unsigned m_minLoad = 6; ValueType* m_table; unsigned m_tableSize; unsigned m_tableSizeMask; unsigned m_keyCount; unsigned m_deletedCount; #if DUMP_HASHTABLE_STATS_PER_TABLE public: mutable OwnPtr<Stats> m_stats; #endif }; // Set all the bits to one after the most significant bit: 00110101010 -> 00111111111. template<unsigned size> struct OneifyLowBits; template<> struct OneifyLowBits<0> { static const unsigned value = 0; }; template<unsigned number> struct OneifyLowBits { static const unsigned value = number | OneifyLowBits<(number >> 1)>::value; }; // Compute the first power of two integer that is an upper bound of the parameter 'number'. template<unsigned number> struct UpperPowerOfTwoBound { static const unsigned value = (OneifyLowBits<number - 1>::value + 1) * 2; }; // Because power of two numbers are the limit of maxLoad, their capacity is twice the // UpperPowerOfTwoBound, or 4 times their values. template<unsigned size, bool isPowerOfTwo> struct HashTableCapacityForSizeSplitter; template<unsigned size> struct HashTableCapacityForSizeSplitter<size, true> { static const unsigned value = size * 4; }; template<unsigned size> struct HashTableCapacityForSizeSplitter<size, false> { static const unsigned value = UpperPowerOfTwoBound<size>::value; }; // HashTableCapacityForSize computes the upper power of two capacity to hold the size parameter. // This is done at compile time to initialize the HashTraits. template<unsigned size> struct HashTableCapacityForSize { static const unsigned value = HashTableCapacityForSizeSplitter<size, !(size & (size - 1))>::value; COMPILE_ASSERT(size > 0, HashTableNonZeroMinimumCapacity); COMPILE_ASSERT(!static_cast<int>(value >> 31), HashTableNoCapacityOverflow); COMPILE_ASSERT(value > (2 * size), HashTableCapacityHoldsContentSize); }; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::HashTable() : m_table(0) , m_tableSize(0) , m_tableSizeMask(0) , m_keyCount(0) , m_deletedCount(0) #if DUMP_HASHTABLE_STATS_PER_TABLE , m_stats(adoptPtr(new Stats)) #endif { } inline unsigned doubleHash(unsigned key) { key = ~key + (key >> 23); key ^= (key << 12); key ^= (key >> 7); key ^= (key << 2); key ^= (key >> 20); return key; } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename HashTranslator, typename T> inline Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::lookup(const T& key) { int k = 0; int sizeMask = m_tableSizeMask; ValueType* table = m_table; unsigned h = HashTranslator::hash(key); int i = h & sizeMask; if (!table) return 0; #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numAccesses); int probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; int perTableProbeCount = 0; #endif while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (HashTranslator::equal(Extractor::extract(*entry), key)) return entry; if (isEmptyBucket(*entry)) return 0; } else { if (isEmptyBucket(*entry)) return 0; if (!isDeletedBucket(*entry) && HashTranslator::equal(Extractor::extract(*entry), key)) return entry; } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++perTableProbeCount; m_stats->recordCollisionAtCount(perTableProbeCount); #endif if (!k) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename HashTranslator, typename T> inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::LookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::lookupForWriting(const T& key) { ASSERT(m_table); int k = 0; ValueType* table = m_table; int sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); int i = h & sizeMask; #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numAccesses); int probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; int perTableProbeCount = 0; #endif ValueType* deletedEntry = 0; while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) return LookupType(deletedEntry ? deletedEntry : entry, false); if (HashTranslator::equal(Extractor::extract(*entry), key)) return LookupType(entry, true); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) return LookupType(deletedEntry ? deletedEntry : entry, false); if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return LookupType(entry, true); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++perTableProbeCount; m_stats->recordCollisionAtCount(perTableProbeCount); #endif if (!k) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename HashTranslator, typename T> inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::FullLookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::fullLookupForWriting(const T& key) { ASSERT(m_table); int k = 0; ValueType* table = m_table; int sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); int i = h & sizeMask; #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numAccesses); int probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; int perTableProbeCount = 0; #endif ValueType* deletedEntry = 0; while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h); if (HashTranslator::equal(Extractor::extract(*entry), key)) return makeLookupResult(entry, true, h); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h); if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return makeLookupResult(entry, true, h); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++perTableProbeCount; m_stats->recordCollisionAtCount(perTableProbeCount); #endif if (!k) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template<bool emptyValueIsZero> struct HashTableBucketInitializer; template<> struct HashTableBucketInitializer<false> { template<typename Traits, typename Value> static void initialize(Value& bucket) { new (NotNull, &bucket) Value(Traits::emptyValue()); } }; template<> struct HashTableBucketInitializer<true> { template<typename Traits, typename Value> static void initialize(Value& bucket) { // This initializes the bucket without copying the empty value. // That makes it possible to use this with types that don't support copying. // The memset to 0 looks like a slow operation but is optimized by the compilers. memset(&bucket, 0, sizeof(bucket)); } }; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::initializeBucket(ValueType& bucket) { HashTableBucketInitializer<Traits::emptyValueIsZero>::template initialize<Traits>(bucket); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename HashTranslator, typename T, typename Extra> typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::AddResult HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::add(const T& key, const Extra& extra) { if (!m_table) expand(); ASSERT(m_table); int k = 0; ValueType* table = m_table; int sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); int i = h & sizeMask; #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numAccesses); int probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; int perTableProbeCount = 0; #endif ValueType* deletedEntry = 0; ValueType* entry; while (1) { entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) break; if (HashTranslator::equal(Extractor::extract(*entry), key)) return AddResult(makeKnownGoodIterator(entry), false); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) break; if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return AddResult(makeKnownGoodIterator(entry), false); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++perTableProbeCount; m_stats->recordCollisionAtCount(perTableProbeCount); #endif if (!k) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } if (deletedEntry) { initializeBucket(*deletedEntry); entry = deletedEntry; --m_deletedCount; } HashTranslator::translate(*entry, key, extra); ++m_keyCount; if (shouldExpand()) { // FIXME: This makes an extra copy on expand. Probably not that bad since // expand is rare, but would be better to have a version of expand that can // follow a pivot entry and return the new position. KeyType enteredKey = Extractor::extract(*entry); expand(); AddResult result(find(enteredKey), true); ASSERT(result.iterator != end()); return result; } return AddResult(makeKnownGoodIterator(entry), true); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename HashTranslator, typename T, typename Extra> typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::AddResult HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::addPassingHashCode(const T& key, const Extra& extra) { if (!m_table) expand(); FullLookupType lookupResult = fullLookupForWriting<HashTranslator>(key); ValueType* entry = lookupResult.first.first; bool found = lookupResult.first.second; unsigned h = lookupResult.second; if (found) return AddResult(makeKnownGoodIterator(entry), false); if (isDeletedBucket(*entry)) { initializeBucket(*entry); --m_deletedCount; } HashTranslator::translate(*entry, key, extra, h); ++m_keyCount; if (shouldExpand()) { // FIXME: This makes an extra copy on expand. Probably not that bad since // expand is rare, but would be better to have a version of expand that can // follow a pivot entry and return the new position. KeyType enteredKey = Extractor::extract(*entry); expand(); AddResult result(find(enteredKey), true); ASSERT(result.iterator != end()); return result; } return AddResult(makeKnownGoodIterator(entry), true); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::reinsert(ValueType& entry) { ASSERT(m_table); ASSERT(!lookupForWriting(Extractor::extract(entry)).second); ASSERT(!isDeletedBucket(*(lookupForWriting(Extractor::extract(entry)).first))); #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numReinserts); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numReinserts; #endif Mover<ValueType, Traits::needsDestruction>::move(entry, *lookupForWriting(Extractor::extract(entry)).first); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template <typename HashTranslator, typename T> typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::find(const T& key) { if (!m_table) return end(); ValueType* entry = lookup<HashTranslator>(key); if (!entry) return end(); return makeKnownGoodIterator(entry); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template <typename HashTranslator, typename T> typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::const_iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::find(const T& key) const { if (!m_table) return end(); ValueType* entry = const_cast<HashTable*>(this)->lookup<HashTranslator>(key); if (!entry) return end(); return makeKnownGoodConstIterator(entry); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template <typename HashTranslator, typename T> bool HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::contains(const T& key) const { if (!m_table) return false; return const_cast<HashTable*>(this)->lookup<HashTranslator>(key); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::remove(ValueType* pos) { #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numRemoves); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numRemoves; #endif deleteBucket(*pos); ++m_deletedCount; --m_keyCount; if (shouldShrink()) shrink(); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::remove(iterator it) { if (it == end()) return; remove(const_cast<ValueType*>(it.m_iterator.m_position)); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::remove(const_iterator it) { if (it == end()) return; remove(const_cast<ValueType*>(it.m_position)); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::remove(const KeyType& key) { remove(find(key)); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::allocateTable(unsigned size) { size_t allocSize = size * sizeof(ValueType); ValueType* result = static_cast<ValueType*>(partitionAllocGeneric(WTF::Partitions::getBufferPartition(), allocSize)); if (Traits::emptyValueIsZero) { memset(result, '\0', allocSize); } else { for (unsigned i = 0; i < size; i++) initializeBucket(result[i]); } return result; } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::deallocateTable(ValueType* table, unsigned size) { if (Traits::needsDestruction) { for (unsigned i = 0; i < size; ++i) { if (!isDeletedBucket(table[i])) table[i].~ValueType(); } } partitionFreeGeneric(WTF::Partitions::getBufferPartition(), table); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::expand() { unsigned newSize; if (!m_tableSize) { newSize = KeyTraits::minimumTableSize; } else if (mustRehashInPlace()) { newSize = m_tableSize; } else { newSize = m_tableSize * 2; RELEASE_ASSERT(newSize > m_tableSize); } rehash(newSize); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::rehash(unsigned newTableSize) { unsigned oldTableSize = m_tableSize; ValueType* oldTable = m_table; #if DUMP_HASHTABLE_STATS if (oldTableSize != 0) atomicIncrement(&HashTableStats::numRehashes); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE if (oldTableSize != 0) ++m_stats->numRehashes; #endif m_tableSize = newTableSize; m_tableSizeMask = newTableSize - 1; m_table = allocateTable(newTableSize); for (unsigned i = 0; i != oldTableSize; ++i) if (!isEmptyOrDeletedBucket(oldTable[i])) reinsert(oldTable[i]); m_deletedCount = 0; deallocateTable(oldTable, oldTableSize); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::clear() { if (!m_table) return; deallocateTable(m_table, m_tableSize); m_table = 0; m_tableSize = 0; m_tableSizeMask = 0; m_keyCount = 0; } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::HashTable(const HashTable& other) : m_table(0) , m_tableSize(0) , m_tableSizeMask(0) , m_keyCount(0) , m_deletedCount(0) #if DUMP_HASHTABLE_STATS_PER_TABLE , m_stats(adoptPtr(new Stats(*other.m_stats))) #endif { // Copy the hash table the dumb way, by adding each element to the new table. // It might be more efficient to copy the table slots, but it's not clear that efficiency is needed. const_iterator end = other.end(); for (const_iterator it = other.begin(); it != end; ++it) add(*it); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::swap(HashTable& other) { ValueType* tmp_table = m_table; m_table = other.m_table; other.m_table = tmp_table; int tmp_tableSize = m_tableSize; m_tableSize = other.m_tableSize; other.m_tableSize = tmp_tableSize; int tmp_tableSizeMask = m_tableSizeMask; m_tableSizeMask = other.m_tableSizeMask; other.m_tableSizeMask = tmp_tableSizeMask; int tmp_keyCount = m_keyCount; m_keyCount = other.m_keyCount; other.m_keyCount = tmp_keyCount; int tmp_deletedCount = m_deletedCount; m_deletedCount = other.m_deletedCount; other.m_deletedCount = tmp_deletedCount; #if DUMP_HASHTABLE_STATS_PER_TABLE m_stats.swap(other.m_stats); #endif } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>& HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::operator=(const HashTable& other) { HashTable tmp(other); swap(tmp); return *this; } // iterator adapters template<typename HashTableType, typename ValueType> struct HashTableConstIteratorAdapter { HashTableConstIteratorAdapter() {} HashTableConstIteratorAdapter(const typename HashTableType::const_iterator& impl) : m_impl(impl) {} const ValueType* get() const { return (const ValueType*)m_impl.get(); } const ValueType& operator*() const { return *get(); } const ValueType* operator->() const { return get(); } HashTableConstIteratorAdapter& operator++() { ++m_impl; return *this; } // postfix ++ intentionally omitted typename HashTableType::const_iterator m_impl; }; template<typename HashTableType, typename ValueType> struct HashTableIteratorAdapter { HashTableIteratorAdapter() {} HashTableIteratorAdapter(const typename HashTableType::iterator& impl) : m_impl(impl) {} ValueType* get() const { return (ValueType*)m_impl.get(); } ValueType& operator*() const { return *get(); } ValueType* operator->() const { return get(); } HashTableIteratorAdapter& operator++() { ++m_impl; return *this; } // postfix ++ intentionally omitted operator HashTableConstIteratorAdapter<HashTableType, ValueType>() { typename HashTableType::const_iterator i = m_impl; return i; } typename HashTableType::iterator m_impl; }; template<typename T, typename U> inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b) { return a.m_impl == b.m_impl; } template<typename T, typename U> inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b) { return a.m_impl != b.m_impl; } template<typename T, typename U> inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b) { return a.m_impl == b.m_impl; } template<typename T, typename U> inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b) { return a.m_impl != b.m_impl; } // All 4 combinations of ==, != and Const,non const. template<typename T, typename U> inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b) { return a.m_impl == b.m_impl; } template<typename T, typename U> inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b) { return a.m_impl != b.m_impl; } template<typename T, typename U> inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b) { return a.m_impl == b.m_impl; } template<typename T, typename U> inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b) { return a.m_impl != b.m_impl; } } // namespace WTF #include "wtf/HashIterators.h" #endif // WTF_HashTable_h