/* * Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef WTF_HashTraits_h #define WTF_HashTraits_h #include "wtf/HashFunctions.h" #include "wtf/HashTableDeletedValueType.h" #include "wtf/StdLibExtras.h" #include "wtf/TypeTraits.h" #include <utility> #include <limits> namespace WTF { class String; template<typename T> class OwnPtr; template<typename T> class PassOwnPtr; template<typename T> struct HashTraits; template<bool isInteger, typename T> struct GenericHashTraitsBase; template<typename T> struct GenericHashTraitsBase<false, T> { // The emptyValueIsZero flag is used to optimize allocation of empty hash tables with zeroed memory. static const bool emptyValueIsZero = false; // The hasIsEmptyValueFunction flag allows the hash table to automatically generate code to check // for the empty value when it can be done with the equality operator, but allows custom functions // for cases like String that need them. static const bool hasIsEmptyValueFunction = false; // The needsDestruction flag is used to optimize destruction and rehashing. static const bool needsDestruction = true; // The starting table size. Can be overridden when we know beforehand that // a hash table will have at least N entries. #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR) static const unsigned minimumTableSize = 1; #else static const unsigned minimumTableSize = 8; #endif }; // Default integer traits disallow both 0 and -1 as keys (max value instead of -1 for unsigned). template<typename T> struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> { static const bool emptyValueIsZero = true; static const bool needsDestruction = false; static void constructDeletedValue(T& slot) { slot = static_cast<T>(-1); } static bool isDeletedValue(T value) { return value == static_cast<T>(-1); } }; template<typename T> struct GenericHashTraits : GenericHashTraitsBase<IsInteger<T>::value, T> { typedef T TraitType; typedef T EmptyValueType; static T emptyValue() { return T(); } // Type for functions that take ownership, such as add. // The store function either not be called or called once to store something passed in. // The value passed to the store function will be either PassInType or PassInType&. typedef const T& PassInType; static void store(const T& value, T& storage) { storage = value; } // Type for return value of functions that transfer ownership, such as take. typedef T PassOutType; static PassOutType passOut(const T& value) { return value; } static T& passOut(T& value) { return value; } // Overloaded to avoid copying of non-temporary values. // Type for return value of functions that do not transfer ownership, such as get. // FIXME: We could change this type to const T& for better performance if we figured out // a way to handle the return value from emptyValue, which is a temporary. typedef T PeekType; static PeekType peek(const T& value) { return value; } static T& peek(T& value) { return value; } // Overloaded to avoid copying of non-temporary values. }; template<typename T> struct HashTraits : GenericHashTraits<T> { }; template<typename T> struct FloatHashTraits : GenericHashTraits<T> { static const bool needsDestruction = false; static T emptyValue() { return std::numeric_limits<T>::infinity(); } static void constructDeletedValue(T& slot) { slot = -std::numeric_limits<T>::infinity(); } static bool isDeletedValue(T value) { return value == -std::numeric_limits<T>::infinity(); } }; template<> struct HashTraits<float> : FloatHashTraits<float> { }; template<> struct HashTraits<double> : FloatHashTraits<double> { }; // Default unsigned traits disallow both 0 and max as keys -- use these traits to allow zero and disallow max - 1. template<typename T> struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> { static const bool emptyValueIsZero = false; static const bool needsDestruction = false; static T emptyValue() { return std::numeric_limits<T>::max(); } static void constructDeletedValue(T& slot) { slot = std::numeric_limits<T>::max() - 1; } static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max() - 1; } }; template<typename P> struct HashTraits<P*> : GenericHashTraits<P*> { static const bool emptyValueIsZero = true; static const bool needsDestruction = false; static void constructDeletedValue(P*& slot) { slot = reinterpret_cast<P*>(-1); } static bool isDeletedValue(P* value) { return value == reinterpret_cast<P*>(-1); } }; template<typename T> struct SimpleClassHashTraits : GenericHashTraits<T> { static const bool emptyValueIsZero = true; static void constructDeletedValue(T& slot) { new (NotNull, &slot) T(HashTableDeletedValue); } static bool isDeletedValue(const T& value) { return value.isHashTableDeletedValue(); } }; template<typename P> struct HashTraits<OwnPtr<P> > : SimpleClassHashTraits<OwnPtr<P> > { typedef std::nullptr_t EmptyValueType; static EmptyValueType emptyValue() { return nullptr; } typedef PassOwnPtr<P> PassInType; static void store(PassOwnPtr<P> value, OwnPtr<P>& storage) { storage = value; } typedef PassOwnPtr<P> PassOutType; static PassOwnPtr<P> passOut(OwnPtr<P>& value) { return value.release(); } static PassOwnPtr<P> passOut(std::nullptr_t) { return nullptr; } typedef typename OwnPtr<P>::PtrType PeekType; static PeekType peek(const OwnPtr<P>& value) { return value.get(); } static PeekType peek(std::nullptr_t) { return 0; } }; template<typename P> struct HashTraits<RefPtr<P> > : SimpleClassHashTraits<RefPtr<P> > { static P* emptyValue() { return 0; } typedef PassRefPtr<P> PassInType; static void store(PassRefPtr<P> value, RefPtr<P>& storage) { storage = value; } typedef PassRefPtr<P> PassOutType; static PassRefPtr<P> passOut(RefPtr<P>& value) { return value.release(); } static PassRefPtr<P> passOut(P* value) { return value; } typedef P* PeekType; static PeekType peek(const RefPtr<P>& value) { return value.get(); } static PeekType peek(P* value) { return value; } }; template<> struct HashTraits<String> : SimpleClassHashTraits<String> { static const bool hasIsEmptyValueFunction = true; static bool isEmptyValue(const String&); }; // This struct template is an implementation detail of the isHashTraitsEmptyValue function, // which selects either the emptyValue function or the isEmptyValue function to check for empty values. template<typename Traits, bool hasEmptyValueFunction> struct HashTraitsEmptyValueChecker; template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, true> { template<typename T> static bool isEmptyValue(const T& value) { return Traits::isEmptyValue(value); } }; template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, false> { template<typename T> static bool isEmptyValue(const T& value) { return value == Traits::emptyValue(); } }; template<typename Traits, typename T> inline bool isHashTraitsEmptyValue(const T& value) { return HashTraitsEmptyValueChecker<Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value); } template<typename FirstTraitsArg, typename SecondTraitsArg> struct PairHashTraits : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType, typename SecondTraitsArg::TraitType> > { typedef FirstTraitsArg FirstTraits; typedef SecondTraitsArg SecondTraits; typedef std::pair<typename FirstTraits::TraitType, typename SecondTraits::TraitType> TraitType; typedef std::pair<typename FirstTraits::EmptyValueType, typename SecondTraits::EmptyValueType> EmptyValueType; static const bool emptyValueIsZero = FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero; static EmptyValueType emptyValue() { return std::make_pair(FirstTraits::emptyValue(), SecondTraits::emptyValue()); } static const bool needsDestruction = FirstTraits::needsDestruction || SecondTraits::needsDestruction; static const unsigned minimumTableSize = FirstTraits::minimumTableSize; static void constructDeletedValue(TraitType& slot) { FirstTraits::constructDeletedValue(slot.first); } static bool isDeletedValue(const TraitType& value) { return FirstTraits::isDeletedValue(value.first); } }; template<typename First, typename Second> struct HashTraits<std::pair<First, Second> > : public PairHashTraits<HashTraits<First>, HashTraits<Second> > { }; template<typename KeyTypeArg, typename ValueTypeArg> struct KeyValuePair { typedef KeyTypeArg KeyType; KeyValuePair() { } KeyValuePair(const KeyTypeArg& _key, const ValueTypeArg& _value) : key(_key) , value(_value) { } template <typename OtherKeyType, typename OtherValueType> KeyValuePair(const KeyValuePair<OtherKeyType, OtherValueType>& other) : key(other.key) , value(other.value) { } KeyTypeArg key; ValueTypeArg value; }; template<typename KeyTraitsArg, typename ValueTraitsArg> struct KeyValuePairHashTraits : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType, typename ValueTraitsArg::TraitType> > { typedef KeyTraitsArg KeyTraits; typedef ValueTraitsArg ValueTraits; typedef KeyValuePair<typename KeyTraits::TraitType, typename ValueTraits::TraitType> TraitType; typedef KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType> EmptyValueType; static const bool emptyValueIsZero = KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero; static EmptyValueType emptyValue() { return KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType>(KeyTraits::emptyValue(), ValueTraits::emptyValue()); } static const bool needsDestruction = KeyTraits::needsDestruction || ValueTraits::needsDestruction; static const unsigned minimumTableSize = KeyTraits::minimumTableSize; static void constructDeletedValue(TraitType& slot) { KeyTraits::constructDeletedValue(slot.key); } static bool isDeletedValue(const TraitType& value) { return KeyTraits::isDeletedValue(value.key); } }; template<typename Key, typename Value> struct HashTraits<KeyValuePair<Key, Value> > : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value> > { }; template<typename T> struct NullableHashTraits : public HashTraits<T> { static const bool emptyValueIsZero = false; static T emptyValue() { return reinterpret_cast<T>(1); } }; } // namespace WTF using WTF::HashTraits; using WTF::PairHashTraits; using WTF::NullableHashTraits; using WTF::SimpleClassHashTraits; #endif // WTF_HashTraits_h