// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This is the implementation of decompression of the proposed WOFF Ultra // Condensed file format. #include <cassert> #include <cstdlib> #include <vector> #include <zlib.h> #include "third_party/lzma_sdk/LzmaLib.h" #include "opentype-sanitiser.h" #include "ots-memory-stream.h" #include "ots.h" #include "woff2.h" namespace { // simple glyph flags const int kGlyfOnCurve = 1 << 0; const int kGlyfXShort = 1 << 1; const int kGlyfYShort = 1 << 2; const int kGlyfRepeat = 1 << 3; const int kGlyfThisXIsSame = 1 << 4; const int kGlyfThisYIsSame = 1 << 5; // composite glyph flags const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0; const int FLAG_WE_HAVE_A_SCALE = 1 << 3; const int FLAG_MORE_COMPONENTS = 1 << 5; const int FLAG_WE_HAVE_AN_X_AND_Y_SCALE = 1 << 6; const int FLAG_WE_HAVE_A_TWO_BY_TWO = 1 << 7; const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8; const size_t kSfntHeaderSize = 12; const size_t kSfntEntrySize = 16; const size_t kCheckSumAdjustmentOffset = 8; const size_t kEndPtsOfContoursOffset = 10; const size_t kCompositeGlyphBegin = 10; // Note that the byte order is big-endian, not the same as ots.cc #define TAG(a, b, c, d) ((a << 24) | (b << 16) | (c << 8) | d) const unsigned int kWoff2FlagsContinueStream = 1 << 4; const unsigned int kWoff2FlagsTransform = 1 << 5; const size_t kLzmaHeaderSize = 13; // Compression type values common to both short and long formats const uint32_t kCompressionTypeMask = 0xf; const uint32_t kCompressionTypeNone = 0; const uint32_t kCompressionTypeGzip = 1; const uint32_t kCompressionTypeLzma = 2; // This is a special value for the short format only, as described in // "Design for compressed header format" in draft doc. const uint32_t kShortFlagsContinue = 3; const uint32_t kKnownTags[] = { TAG('c', 'm', 'a', 'p'), // 0 TAG('h', 'e', 'a', 'd'), // 1 TAG('h', 'h', 'e', 'a'), // 2 TAG('h', 'm', 't', 'x'), // 3 TAG('m', 'a', 'x', 'p'), // 4 TAG('n', 'a', 'm', 'e'), // 5 TAG('O', 'S', '/', '2'), // 6 TAG('p', 'o', 's', 't'), // 7 TAG('c', 'v', 't', ' '), // 8 TAG('f', 'p', 'g', 'm'), // 9 TAG('g', 'l', 'y', 'f'), // 10 TAG('l', 'o', 'c', 'a'), // 11 TAG('p', 'r', 'e', 'p'), // 12 TAG('C', 'F', 'F', ' '), // 13 TAG('V', 'O', 'R', 'G'), // 14 TAG('E', 'B', 'D', 'T'), // 15 TAG('E', 'B', 'L', 'C'), // 16 TAG('g', 'a', 's', 'p'), // 17 TAG('h', 'd', 'm', 'x'), // 18 TAG('k', 'e', 'r', 'n'), // 19 TAG('L', 'T', 'S', 'H'), // 20 TAG('P', 'C', 'L', 'T'), // 21 TAG('V', 'D', 'M', 'X'), // 22 TAG('v', 'h', 'e', 'a'), // 23 TAG('v', 'm', 't', 'x'), // 24 TAG('B', 'A', 'S', 'E'), // 25 TAG('G', 'D', 'E', 'F'), // 26 TAG('G', 'P', 'O', 'S'), // 27 TAG('G', 'S', 'U', 'B'), // 28 }; struct Point { int x; int y; bool on_curve; }; struct Table { uint32_t tag; uint32_t flags; uint32_t src_offset; uint32_t src_length; uint32_t transform_length; uint32_t dst_offset; uint32_t dst_length; Table() : tag(0), flags(0), src_offset(0), src_length(0), transform_length(0), dst_offset(0), dst_length(0) {} }; // Based on section 6.1.1 of MicroType Express draft spec bool Read255UShort(ots::Buffer* buf, unsigned int* value) { static const int kWordCode = 253; static const int kOneMoreByteCode2 = 254; static const int kOneMoreByteCode1 = 255; static const int kLowestUCode = 253; uint8_t code = 0; if (!buf->ReadU8(&code)) { return OTS_FAILURE(); } if (code == kWordCode) { uint16_t result = 0; if (!buf->ReadU16(&result)) { return OTS_FAILURE(); } *value = result; return true; } else if (code == kOneMoreByteCode1) { uint8_t result = 0; if (!buf->ReadU8(&result)) { return OTS_FAILURE(); } *value = result + kLowestUCode; return true; } else if (code == kOneMoreByteCode2) { uint8_t result = 0; if (!buf->ReadU8(&result)) { return OTS_FAILURE(); } *value = result + kLowestUCode * 2; return true; } else { *value = code; return true; } } bool ReadBase128(ots::Buffer* buf, uint32_t* value) { uint32_t result = 0; for (size_t i = 0; i < 5; ++i) { uint8_t code = 0; if (!buf->ReadU8(&code)) { return OTS_FAILURE(); } // If any of the top seven bits are set then we're about to overflow. if (result & 0xe0000000U) { return OTS_FAILURE(); } result = (result << 7) | (code & 0x7f); if ((code & 0x80) == 0) { *value = result; return true; } } // Make sure not to exceed the size bound return OTS_FAILURE(); } // Caller must ensure that buffer overrun won't happen. // TODO(ksakamaoto): Consider creating 'writer' version of the Buffer class // and use it across the code. size_t StoreU32(uint8_t* dst, size_t offset, uint32_t x) { dst[offset] = x >> 24; dst[offset + 1] = x >> 16; dst[offset + 2] = x >> 8; dst[offset + 3] = x; return offset + 4; } size_t Store16(uint8_t* dst, size_t offset, int x) { dst[offset] = x >> 8; dst[offset + 1] = x; return offset + 2; } int WithSign(int flag, int baseval) { assert(0 <= baseval && baseval < 65536); return (flag & 1) ? baseval : -baseval; } bool TripletDecode(const uint8_t* flags_in, const uint8_t* in, size_t in_size, unsigned int n_points, std::vector<Point>* result, size_t* in_bytes_consumed) { int x = 0; int y = 0; // Early return if |in| buffer is too small. Each point consumes 1-4 bytes. if (n_points > in_size) { return OTS_FAILURE(); } unsigned int triplet_index = 0; for (unsigned int i = 0; i < n_points; ++i) { uint8_t flag = flags_in[i]; bool on_curve = !(flag >> 7); flag &= 0x7f; unsigned int n_data_bytes; if (flag < 84) { n_data_bytes = 1; } else if (flag < 120) { n_data_bytes = 2; } else if (flag < 124) { n_data_bytes = 3; } else { n_data_bytes = 4; } if (triplet_index + n_data_bytes > in_size || triplet_index + n_data_bytes < triplet_index) { return OTS_FAILURE(); } int dx, dy; if (flag < 10) { dx = 0; dy = WithSign(flag, ((flag & 14) << 7) + in[triplet_index]); } else if (flag < 20) { dx = WithSign(flag, (((flag - 10) & 14) << 7) + in[triplet_index]); dy = 0; } else if (flag < 84) { int b0 = flag - 20; int b1 = in[triplet_index]; dx = WithSign(flag, 1 + (b0 & 0x30) + (b1 >> 4)); dy = WithSign(flag >> 1, 1 + ((b0 & 0x0c) << 2) + (b1 & 0x0f)); } else if (flag < 120) { int b0 = flag - 84; dx = WithSign(flag, 1 + ((b0 / 12) << 8) + in[triplet_index]); dy = WithSign(flag >> 1, 1 + (((b0 % 12) >> 2) << 8) + in[triplet_index + 1]); } else if (flag < 124) { int b2 = in[triplet_index + 1]; dx = WithSign(flag, (in[triplet_index] << 4) + (b2 >> 4)); dy = WithSign(flag >> 1, ((b2 & 0x0f) << 8) + in[triplet_index + 2]); } else { dx = WithSign(flag, (in[triplet_index] << 8) + in[triplet_index + 1]); dy = WithSign(flag >> 1, (in[triplet_index + 2] << 8) + in[triplet_index + 3]); } triplet_index += n_data_bytes; // Possible overflow but coordinate values are not security sensitive x += dx; y += dy; result->push_back(Point()); Point& back = result->back(); back.x = x; back.y = y; back.on_curve = on_curve; } *in_bytes_consumed = triplet_index; return true; } // This function stores just the point data. On entry, dst points to the // beginning of a simple glyph. Returns true on success. bool StorePoints(const std::vector<Point>& points, unsigned int n_contours, unsigned int instruction_length, uint8_t* dst, size_t dst_size, size_t* glyph_size) { // I believe that n_contours < 65536, in which case this is safe. However, a // comment and/or an assert would be good. unsigned int flag_offset = kEndPtsOfContoursOffset + 2 * n_contours + 2 + instruction_length; int last_flag = -1; int repeat_count = 0; int last_x = 0; int last_y = 0; unsigned int x_bytes = 0; unsigned int y_bytes = 0; for (size_t i = 0; i < points.size(); ++i) { const Point& point = points.at(i); int flag = point.on_curve ? kGlyfOnCurve : 0; int dx = point.x - last_x; int dy = point.y - last_y; if (dx == 0) { flag |= kGlyfThisXIsSame; } else if (dx > -256 && dx < 256) { flag |= kGlyfXShort | (dx > 0 ? kGlyfThisXIsSame : 0); x_bytes += 1; } else { x_bytes += 2; } if (dy == 0) { flag |= kGlyfThisYIsSame; } else if (dy > -256 && dy < 256) { flag |= kGlyfYShort | (dy > 0 ? kGlyfThisYIsSame : 0); y_bytes += 1; } else { y_bytes += 2; } if (flag == last_flag && repeat_count != 255) { dst[flag_offset - 1] |= kGlyfRepeat; repeat_count++; } else { if (repeat_count != 0) { if (flag_offset >= dst_size) { return OTS_FAILURE(); } dst[flag_offset++] = repeat_count; } if (flag_offset >= dst_size) { return OTS_FAILURE(); } dst[flag_offset++] = flag; repeat_count = 0; } last_x = point.x; last_y = point.y; last_flag = flag; } if (repeat_count != 0) { if (flag_offset >= dst_size) { return OTS_FAILURE(); } dst[flag_offset++] = repeat_count; } unsigned int xy_bytes = x_bytes + y_bytes; if (xy_bytes < x_bytes || flag_offset + xy_bytes < flag_offset || flag_offset + xy_bytes > dst_size) { return OTS_FAILURE(); } int x_offset = flag_offset; int y_offset = flag_offset + x_bytes; last_x = 0; last_y = 0; for (size_t i = 0; i < points.size(); ++i) { int dx = points.at(i).x - last_x; if (dx == 0) { // pass } else if (dx > -256 && dx < 256) { dst[x_offset++] = std::abs(dx); } else { // will always fit for valid input, but overflow is harmless x_offset = Store16(dst, x_offset, dx); } last_x += dx; int dy = points.at(i).y - last_y; if (dy == 0) { // pass } else if (dy > -256 && dy < 256) { dst[y_offset++] = std::abs(dy); } else { y_offset = Store16(dst, y_offset, dy); } last_y += dy; } *glyph_size = y_offset; return true; } // Compute the bounding box of the coordinates, and store into a glyf buffer. // A precondition is that there are at least 10 bytes available. void ComputeBbox(const std::vector<Point>& points, uint8_t* dst) { int x_min = 0; int y_min = 0; int x_max = 0; int y_max = 0; for (size_t i = 0; i < points.size(); ++i) { int x = points.at(i).x; int y = points.at(i).y; if (i == 0 || x < x_min) x_min = x; if (i == 0 || x > x_max) x_max = x; if (i == 0 || y < y_min) y_min = y; if (i == 0 || y > y_max) y_max = y; } size_t offset = 2; offset = Store16(dst, offset, x_min); offset = Store16(dst, offset, y_min); offset = Store16(dst, offset, x_max); offset = Store16(dst, offset, y_max); } // Process entire bbox stream. This is done as a separate pass to allow for // composite bbox computations (an optional more aggressive transform). bool ProcessBboxStream(ots::Buffer* bbox_stream, unsigned int n_glyphs, const std::vector<uint32_t>& loca_values, uint8_t* glyf_buf, size_t glyf_buf_length) { const uint8_t* buf = bbox_stream->buffer(); if (n_glyphs >= 65536 || loca_values.size() != n_glyphs + 1) { return OTS_FAILURE(); } // Safe because n_glyphs is bounded unsigned int bitmap_length = ((n_glyphs + 31) >> 5) << 2; if (!bbox_stream->Skip(bitmap_length)) { return OTS_FAILURE(); } for (unsigned int i = 0; i < n_glyphs; ++i) { if (buf[i >> 3] & (0x80 >> (i & 7))) { uint32_t loca_offset = loca_values.at(i); if (loca_values.at(i + 1) - loca_offset < kEndPtsOfContoursOffset) { return OTS_FAILURE(); } if (glyf_buf_length < 2 + 10 || loca_offset > glyf_buf_length - 2 - 10) { return OTS_FAILURE(); } if (!bbox_stream->Read(glyf_buf + loca_offset + 2, 8)) { return OTS_FAILURE(); } } } return true; } bool ProcessComposite(ots::Buffer* composite_stream, uint8_t* dst, size_t dst_size, size_t* glyph_size, bool* have_instructions) { size_t start_offset = composite_stream->offset(); bool we_have_instructions = false; uint16_t flags = FLAG_MORE_COMPONENTS; while (flags & FLAG_MORE_COMPONENTS) { if (!composite_stream->ReadU16(&flags)) { return OTS_FAILURE(); } we_have_instructions |= (flags & FLAG_WE_HAVE_INSTRUCTIONS) != 0; size_t arg_size = 2; // glyph index if (flags & FLAG_ARG_1_AND_2_ARE_WORDS) { arg_size += 4; } else { arg_size += 2; } if (flags & FLAG_WE_HAVE_A_SCALE) { arg_size += 2; } else if (flags & FLAG_WE_HAVE_AN_X_AND_Y_SCALE) { arg_size += 4; } else if (flags & FLAG_WE_HAVE_A_TWO_BY_TWO) { arg_size += 8; } if (!composite_stream->Skip(arg_size)) { return OTS_FAILURE(); } } size_t composite_glyph_size = composite_stream->offset() - start_offset; if (composite_glyph_size + kCompositeGlyphBegin > dst_size) { return OTS_FAILURE(); } Store16(dst, 0, 0xffff); // nContours = -1 for composite glyph std::memcpy(dst + kCompositeGlyphBegin, composite_stream->buffer() + start_offset, composite_glyph_size); *glyph_size = kCompositeGlyphBegin + composite_glyph_size; *have_instructions = we_have_instructions; return true; } // Build TrueType loca table bool StoreLoca(const std::vector<uint32_t>& loca_values, int index_format, uint8_t* dst, size_t dst_size) { const uint64_t loca_size = loca_values.size(); const uint64_t offset_size = index_format ? 4 : 2; if ((loca_size << 2) >> 2 != loca_size) { return OTS_FAILURE(); } // No integer overflow here (loca_size <= 2^16). if (offset_size * loca_size > dst_size) { return OTS_FAILURE(); } size_t offset = 0; for (size_t i = 0; i < loca_values.size(); ++i) { uint32_t value = loca_values.at(i); if (index_format) { offset = StoreU32(dst, offset, value); } else { offset = Store16(dst, offset, value >> 1); } } return true; } // Reconstruct entire glyf table based on transformed original bool ReconstructGlyf(const uint8_t* data, size_t data_size, uint8_t* dst, size_t dst_size, uint8_t* loca_buf, size_t loca_size) { static const int kNumSubStreams = 7; ots::Buffer file(data, data_size); uint32_t version; std::vector<std::pair<const uint8_t*, size_t> > substreams(kNumSubStreams); if (!file.ReadU32(&version)) { return OTS_FAILURE(); } uint16_t num_glyphs; uint16_t index_format; if (!file.ReadU16(&num_glyphs) || !file.ReadU16(&index_format)) { return OTS_FAILURE(); } unsigned int offset = (2 + kNumSubStreams) * 4; if (offset > data_size) { return OTS_FAILURE(); } // Invariant from here on: data_size >= offset for (int i = 0; i < kNumSubStreams; ++i) { uint32_t substream_size; if (!file.ReadU32(&substream_size)) { return OTS_FAILURE(); } if (substream_size > data_size - offset) { return OTS_FAILURE(); } substreams.at(i) = std::make_pair(data + offset, substream_size); offset += substream_size; } ots::Buffer n_contour_stream(substreams.at(0).first, substreams.at(0).second); ots::Buffer n_points_stream(substreams.at(1).first, substreams.at(1).second); ots::Buffer flag_stream(substreams.at(2).first, substreams.at(2).second); ots::Buffer glyph_stream(substreams.at(3).first, substreams.at(3).second); ots::Buffer composite_stream(substreams.at(4).first, substreams.at(4).second); ots::Buffer bbox_stream(substreams.at(5).first, substreams.at(5).second); ots::Buffer instruction_stream(substreams.at(6).first, substreams.at(6).second); std::vector<uint32_t> loca_values; loca_values.reserve(num_glyphs + 1); std::vector<unsigned int> n_points_vec; std::vector<Point> points; uint32_t loca_offset = 0; for (unsigned int i = 0; i < num_glyphs; ++i) { size_t glyph_size = 0; uint16_t n_contours = 0; if (!n_contour_stream.ReadU16(&n_contours)) { return OTS_FAILURE(); } uint8_t* glyf_dst = dst + loca_offset; size_t glyf_dst_size = dst_size - loca_offset; if (n_contours == 0xffff) { // composite glyph bool have_instructions = false; unsigned int instruction_size = 0; if (!ProcessComposite(&composite_stream, glyf_dst, glyf_dst_size, &glyph_size, &have_instructions)) { return OTS_FAILURE(); } if (have_instructions) { if (!Read255UShort(&glyph_stream, &instruction_size)) { return OTS_FAILURE(); } // No integer overflow here (instruction_size < 2^16). if (instruction_size + 2 > glyf_dst_size - glyph_size) { return OTS_FAILURE(); } Store16(glyf_dst, glyph_size, instruction_size); if (!instruction_stream.Read(glyf_dst + glyph_size + 2, instruction_size)) { return OTS_FAILURE(); } glyph_size += instruction_size + 2; } } else if (n_contours > 0) { // simple glyph n_points_vec.clear(); points.clear(); unsigned int total_n_points = 0; unsigned int n_points_contour; for (unsigned int j = 0; j < n_contours; ++j) { if (!Read255UShort(&n_points_stream, &n_points_contour)) { return OTS_FAILURE(); } n_points_vec.push_back(n_points_contour); if (total_n_points + n_points_contour < total_n_points) { return OTS_FAILURE(); } total_n_points += n_points_contour; } unsigned int flag_size = total_n_points; if (flag_size > flag_stream.length() - flag_stream.offset()) { return OTS_FAILURE(); } const uint8_t* flags_buf = flag_stream.buffer() + flag_stream.offset(); const uint8_t* triplet_buf = glyph_stream.buffer() + glyph_stream.offset(); size_t triplet_size = glyph_stream.length() - glyph_stream.offset(); size_t triplet_bytes_consumed = 0; if (!TripletDecode(flags_buf, triplet_buf, triplet_size, total_n_points, &points, &triplet_bytes_consumed)) { return OTS_FAILURE(); } const uint32_t header_and_endpts_contours_size = kEndPtsOfContoursOffset + 2 * n_contours; if (glyf_dst_size < header_and_endpts_contours_size) { return OTS_FAILURE(); } Store16(glyf_dst, 0, n_contours); ComputeBbox(points, glyf_dst); size_t offset = kEndPtsOfContoursOffset; int end_point = -1; for (unsigned int contour_ix = 0; contour_ix < n_contours; ++contour_ix) { end_point += n_points_vec.at(contour_ix); if (end_point >= 65536) { return OTS_FAILURE(); } offset = Store16(glyf_dst, offset, end_point); } if (!flag_stream.Skip(flag_size)) { return OTS_FAILURE(); } if (!glyph_stream.Skip(triplet_bytes_consumed)) { return OTS_FAILURE(); } unsigned int instruction_size; if (!Read255UShort(&glyph_stream, &instruction_size)) { return OTS_FAILURE(); } // No integer overflow here (instruction_size < 2^16). if (glyf_dst_size - header_and_endpts_contours_size < instruction_size + 2) { return OTS_FAILURE(); } uint8_t* instruction_dst = glyf_dst + header_and_endpts_contours_size; Store16(instruction_dst, 0, instruction_size); if (!instruction_stream.Read(instruction_dst + 2, instruction_size)) { return OTS_FAILURE(); } if (!StorePoints(points, n_contours, instruction_size, glyf_dst, glyf_dst_size, &glyph_size)) { return OTS_FAILURE(); } } else { glyph_size = 0; } loca_values.push_back(loca_offset); if (glyph_size + 3 < glyph_size) { return OTS_FAILURE(); } glyph_size = ots::Round2(glyph_size); if (glyph_size > dst_size - loca_offset) { // This shouldn't happen, but this test defensively maintains the // invariant that loca_offset <= dst_size. return OTS_FAILURE(); } loca_offset += glyph_size; } loca_values.push_back(loca_offset); assert(loca_values.size() == static_cast<size_t>(num_glyphs + 1)); if (!ProcessBboxStream(&bbox_stream, num_glyphs, loca_values, dst, dst_size)) { return OTS_FAILURE(); } return StoreLoca(loca_values, index_format, loca_buf, loca_size); } // This is linear search, but could be changed to binary because we // do have a guarantee that the tables are sorted by tag. But the total // cpu time is expected to be very small in any case. const Table* FindTable(const std::vector<Table>& tables, uint32_t tag) { size_t n_tables = tables.size(); for (size_t i = 0; i < n_tables; ++i) { if (tables.at(i).tag == tag) { return &tables.at(i); } } return NULL; } bool ReconstructTransformed(const std::vector<Table>& tables, uint32_t tag, const uint8_t* transformed_buf, size_t transformed_size, uint8_t* dst, size_t dst_length) { if (tag == TAG('g', 'l', 'y', 'f')) { const Table* glyf_table = FindTable(tables, tag); const Table* loca_table = FindTable(tables, TAG('l', 'o', 'c', 'a')); if (glyf_table == NULL || loca_table == NULL) { return OTS_FAILURE(); } if (static_cast<uint64_t>(glyf_table->dst_offset) + glyf_table->dst_length > dst_length) { return OTS_FAILURE(); } if (static_cast<uint64_t>(loca_table->dst_offset) + loca_table->dst_length > dst_length) { return OTS_FAILURE(); } return ReconstructGlyf(transformed_buf, transformed_size, dst + glyf_table->dst_offset, glyf_table->dst_length, dst + loca_table->dst_offset, loca_table->dst_length); } else if (tag == TAG('l', 'o', 'c', 'a')) { // processing was already done by glyf table, but validate if (!FindTable(tables, TAG('g', 'l', 'y', 'f'))) { return OTS_FAILURE(); } } else { // transform for the tag is not known return OTS_FAILURE(); } return true; } uint32_t ComputeChecksum(const uint8_t* buf, size_t size) { uint32_t checksum = 0; for (size_t i = 0; i < size; i += 4) { // We assume the addition is mod 2^32, which is valid because unsigned checksum += (buf[i] << 24) | (buf[i + 1] << 16) | (buf[i + 2] << 8) | buf[i + 3]; } return checksum; } bool FixChecksums(const std::vector<Table>& tables, uint8_t* dst) { const Table* head_table = FindTable(tables, TAG('h', 'e', 'a', 'd')); if (head_table == NULL || head_table->dst_length < kCheckSumAdjustmentOffset + 4) { return OTS_FAILURE(); } size_t adjustment_offset = head_table->dst_offset + kCheckSumAdjustmentOffset; if (adjustment_offset < head_table->dst_offset) { return OTS_FAILURE(); } StoreU32(dst, adjustment_offset, 0); size_t n_tables = tables.size(); uint32_t file_checksum = 0; for (size_t i = 0; i < n_tables; ++i) { const Table* table = &tables.at(i); size_t table_length = table->dst_length; uint8_t* table_data = dst + table->dst_offset; uint32_t checksum = ComputeChecksum(table_data, table_length); StoreU32(dst, kSfntHeaderSize + i * kSfntEntrySize + 4, checksum); file_checksum += checksum; // The addition is mod 2^32 } file_checksum += ComputeChecksum(dst, kSfntHeaderSize + kSfntEntrySize * n_tables); uint32_t checksum_adjustment = 0xb1b0afba - file_checksum; StoreU32(dst, adjustment_offset, checksum_adjustment); return true; } bool Woff2Uncompress(uint8_t* dst_buf, size_t dst_size, const uint8_t* src_buf, size_t src_size, uint32_t compression_type) { if (compression_type == kCompressionTypeGzip) { uLongf uncompressed_length = dst_size; int r = uncompress(reinterpret_cast<Bytef *>(dst_buf), &uncompressed_length, src_buf, src_size); if (r != Z_OK || uncompressed_length != dst_size) { return OTS_FAILURE(); } return true; } else if (compression_type == kCompressionTypeLzma) { if (src_size < kLzmaHeaderSize) { // Make sure we have at least a full Lzma header return OTS_FAILURE(); } // TODO: check that size matches (or elide size?) size_t uncompressed_size = dst_size; size_t compressed_size = src_size; int result = LzmaUncompress(dst_buf, &dst_size, src_buf + kLzmaHeaderSize, &compressed_size, src_buf, LZMA_PROPS_SIZE); if (result != SZ_OK || uncompressed_size != dst_size) { return OTS_FAILURE(); } return true; } // Unknown compression type return OTS_FAILURE(); } bool ReadShortDirectory(ots::Buffer* file, std::vector<Table>* tables, size_t num_tables) { uint32_t last_compression_type = 0; for (size_t i = 0; i < num_tables; ++i) { Table* table = &tables->at(i); uint8_t flag_byte; if (!file->ReadU8(&flag_byte)) { return OTS_FAILURE(); } uint32_t tag; if ((flag_byte & 0x1f) == 0x1f) { if (!file->ReadU32(&tag)) { return OTS_FAILURE(); } } else { if ((flag_byte & 0x1f) >= arraysize(kKnownTags)) { return OTS_FAILURE(); } tag = kKnownTags[flag_byte & 0x1f]; } uint32_t flags = flag_byte >> 6; if (flags == kShortFlagsContinue) { flags = last_compression_type | kWoff2FlagsContinueStream; } else { if (flags == kCompressionTypeNone || flags == kCompressionTypeGzip || flags == kCompressionTypeLzma) { last_compression_type = flags; } else { return OTS_FAILURE(); } } if ((flag_byte & 0x20) != 0) { flags |= kWoff2FlagsTransform; } uint32_t dst_length; if (!ReadBase128(file, &dst_length)) { return OTS_FAILURE(); } uint32_t transform_length = dst_length; if ((flags & kWoff2FlagsTransform) != 0) { if (!ReadBase128(file, &transform_length)) { return OTS_FAILURE(); } } uint32_t src_length = transform_length; if ((flag_byte >> 6) == 1 || (flag_byte >> 6) == 2) { if (!ReadBase128(file, &src_length)) { return OTS_FAILURE(); } } else if (static_cast<uint32_t>(flag_byte >> 6) == kShortFlagsContinue) { // The compressed data for this table is in a previuos table, so we set // the src_length to zero. src_length = 0; } // Disallow huge numbers (> 1GB) for sanity. if (src_length > 1024 * 1024 * 1024 || transform_length > 1024 * 1024 * 1024 || dst_length > 1024 * 1024 * 1024) { return OTS_FAILURE(); } table->tag = tag; table->flags = flags; table->src_length = src_length; table->transform_length = transform_length; table->dst_length = dst_length; } return true; } } // namespace namespace ots { size_t ComputeWOFF2FinalSize(const uint8_t* data, size_t length) { ots::Buffer file(data, length); uint32_t total_length; if (!file.Skip(16) || !file.ReadU32(&total_length)) { return 0; } return total_length; } bool ConvertWOFF2ToTTF(uint8_t* result, size_t result_length, const uint8_t* data, size_t length) { static const uint32_t kWoff2Signature = 0x774f4632; // "wOF2" ots::Buffer file(data, length); uint32_t signature; uint32_t flavor; if (!file.ReadU32(&signature) || signature != kWoff2Signature || !file.ReadU32(&flavor)) { return OTS_FAILURE(); } if (!IsValidVersionTag(ntohl(flavor))) { return OTS_FAILURE(); } uint32_t reported_length; if (!file.ReadU32(&reported_length) || length != reported_length) { return OTS_FAILURE(); } uint16_t num_tables; if (!file.ReadU16(&num_tables) || !num_tables) { return OTS_FAILURE(); } // We don't care about these fields of the header: // uint16_t reserved // uint32_t total_sfnt_size // uint16_t major_version, minor_version // uint32_t meta_offset, meta_length, meta_orig_length // uint32_t priv_offset, priv_length if (!file.Skip(30)) { return OTS_FAILURE(); } std::vector<Table> tables(num_tables); if (!ReadShortDirectory(&file, &tables, num_tables)) { return OTS_FAILURE(); } uint64_t src_offset = file.offset(); uint64_t dst_offset = kSfntHeaderSize + kSfntEntrySize * static_cast<uint64_t>(num_tables); uint64_t uncompressed_sum = 0; for (uint16_t i = 0; i < num_tables; ++i) { Table* table = &tables.at(i); table->src_offset = src_offset; src_offset += table->src_length; if (src_offset > std::numeric_limits<uint32_t>::max()) { return OTS_FAILURE(); } src_offset = ots::Round4(src_offset); table->dst_offset = dst_offset; dst_offset += table->dst_length; if (dst_offset > std::numeric_limits<uint32_t>::max()) { return OTS_FAILURE(); } dst_offset = ots::Round4(dst_offset); if ((table->flags & kCompressionTypeMask) != kCompressionTypeNone) { uncompressed_sum += table->src_length; if (uncompressed_sum > std::numeric_limits<uint32_t>::max()) { return OTS_FAILURE(); } } } // Enforce same 30M limit on uncompressed tables as OTS if (uncompressed_sum > 30 * 1024 * 1024) { return OTS_FAILURE(); } if (src_offset > length || dst_offset > result_length) { return OTS_FAILURE(); } const uint32_t sfnt_header_and_table_directory_size = 12 + 16 * num_tables; if (sfnt_header_and_table_directory_size > result_length) { return OTS_FAILURE(); } // Start building the font size_t offset = 0; offset = StoreU32(result, offset, flavor); offset = Store16(result, offset, num_tables); unsigned max_pow2 = 0; while (1u << (max_pow2 + 1) <= num_tables) { max_pow2++; } const uint16_t output_search_range = (1u << max_pow2) << 4; offset = Store16(result, offset, output_search_range); offset = Store16(result, offset, max_pow2); offset = Store16(result, offset, (num_tables << 4) - output_search_range); for (uint16_t i = 0; i < num_tables; ++i) { const Table* table = &tables.at(i); offset = StoreU32(result, offset, table->tag); offset = StoreU32(result, offset, 0); // checksum, to fill in later offset = StoreU32(result, offset, table->dst_offset); offset = StoreU32(result, offset, table->dst_length); } std::vector<uint8_t> uncompressed_buf; bool continue_valid = false; const uint8_t* transform_buf = NULL; for (uint16_t i = 0; i < num_tables; ++i) { const Table* table = &tables.at(i); uint32_t flags = table->flags; const uint8_t* src_buf = data + table->src_offset; uint32_t compression_type = flags & kCompressionTypeMask; size_t transform_length = table->transform_length; if ((flags & kWoff2FlagsContinueStream) != 0) { if (!continue_valid) { return OTS_FAILURE(); } } else if (compression_type == kCompressionTypeNone) { if (transform_length != table->src_length) { return OTS_FAILURE(); } transform_buf = src_buf; continue_valid = false; } else if ((flags & kWoff2FlagsContinueStream) == 0) { uint64_t total_size = transform_length; for (uint16_t j = i + 1; j < num_tables; ++j) { if ((tables.at(j).flags & kWoff2FlagsContinueStream) == 0) { break; } total_size += tables.at(j).transform_length; if (total_size > std::numeric_limits<uint32_t>::max()) { return OTS_FAILURE(); } } // Enforce same 30M limit on uncompressed tables as OTS if (total_size > 30 * 1024 * 1024) { return OTS_FAILURE(); } uncompressed_buf.resize(total_size); if (!Woff2Uncompress(&uncompressed_buf[0], total_size, src_buf, table->src_length, compression_type)) { return OTS_FAILURE(); } transform_buf = &uncompressed_buf[0]; continue_valid = true; } else { return OTS_FAILURE(); } if ((flags & kWoff2FlagsTransform) == 0) { if (transform_length != table->dst_length) { return OTS_FAILURE(); } if (static_cast<uint64_t>(table->dst_offset) + transform_length > result_length) { return OTS_FAILURE(); } std::memcpy(result + table->dst_offset, transform_buf, transform_length); } else { if (!ReconstructTransformed(tables, table->tag, transform_buf, transform_length, result, result_length)) { return OTS_FAILURE(); } } if (continue_valid) { transform_buf += transform_length; if (transform_buf > &uncompressed_buf[0] + uncompressed_buf.size()) { return OTS_FAILURE(); } } } return FixChecksums(tables, result); } } // namespace ots