# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Extract histogram names from the description XML file. For more information on the format of the XML file, which is self-documenting, see histograms.xml; however, here is a simple example to get you started. The XML below will generate the following five histograms: HistogramTime HistogramEnum HistogramEnum_Chrome HistogramEnum_IE HistogramEnum_Firefox <histogram-configuration> <histograms> <histogram name="HistogramTime" units="milliseconds"> <summary>A brief description.</summary> <details>This is a more thorough description of this histogram.</details> </histogram> <histogram name="HistogramEnum" enum="MyEnumType"> <summary>This histogram sports an enum value type.</summary> </histogram> </histograms> <enums> <enum name="MyEnumType"> <summary>This is an example enum type, where the values mean little.</summary> <int value="1" label="FIRST_VALUE">This is the first value.</int> <int value="2" label="SECOND_VALUE">This is the second value.</int> </enum> </enums> <fieldtrials> <fieldtrial name="BrowserType"> <group name="Chrome"/> <group name="IE"/> <group name="Firefox"/> <affected-histogram name="HistogramEnum"/> </fieldtrial> </fieldtrials> </histogram-configuration> """ import copy import logging import xml.dom.minidom MAX_FIELDTRIAL_DEPENDENCY_DEPTH = 5 class Error(Exception): pass def _JoinChildNodes(tag): """Join child nodes into a single text. Applicable to leafs like 'summary' and 'detail'. Args: tag: parent node Returns: a string with concatenated nodes' text representation. """ return ''.join(c.toxml() for c in tag.childNodes).strip() def _NormalizeString(s): """Normalizes a string (possibly of multiple lines) by replacing each whitespace sequence with a single space. Args: s: The string to normalize, e.g. ' \n a b c\n d ' Returns: The normalized string, e.g. 'a b c d' """ return ' '.join(s.split()) def _NormalizeAllAttributeValues(node): """Recursively normalizes all tag attribute values in the given tree. Args: node: The minidom node to be normalized. Returns: The normalized minidom node. """ if node.nodeType == xml.dom.minidom.Node.ELEMENT_NODE: for a in node.attributes.keys(): node.attributes[a].value = _NormalizeString(node.attributes[a].value) for c in node.childNodes: _NormalizeAllAttributeValues(c) return node def _ExpandHistogramNameWithFieldTrial(group_name, histogram_name, fieldtrial): """Creates a new histogram name based on the field trial group. Args: group_name: The name of the field trial group. May be empty. histogram_name: The name of the histogram. May be of the form Group.BaseName or BaseName field_trial: The FieldTrial XML element. Returns: A string with the expanded histogram name. Raises: Error if the expansion can't be done. """ if fieldtrial.hasAttribute('separator'): separator = fieldtrial.getAttribute('separator') else: separator = '_' if fieldtrial.hasAttribute('ordering'): ordering = fieldtrial.getAttribute('ordering') else: ordering = 'suffix' if ordering not in ['prefix', 'suffix']: logging.error('ordering needs to be prefix or suffix, value is %s' % ordering) raise Error() if not group_name: return histogram_name if ordering == 'suffix': return histogram_name + separator + group_name # For prefixes, the group_name is inserted between the "cluster" and the # "remainder", e.g. Foo.BarHist expanded with gamma becomes Foo.gamma_BarHist. sections = histogram_name.split('.') if len(sections) <= 1: logging.error( 'Prefix Field Trial expansions require histogram names which include a ' 'dot separator. Histogram name is %s, and Field Trial is %s' % (histogram_name, fieldtrial.getAttribute('name'))) raise Error() cluster = sections[0] + '.' remainder = '.'.join(sections[1:]) return cluster + group_name + separator + remainder def _ExtractEnumsFromXmlTree(tree): """Extract all <enum> nodes in the tree into a dictionary.""" enums = {} have_errors = False last_name = None for enum in tree.getElementsByTagName("enum"): if enum.getAttribute('type') != 'int': logging.error('Unknown enum type %s' % enum.getAttribute('type')) have_errors = True continue name = enum.getAttribute('name') if last_name is not None and name.lower() < last_name.lower(): logging.error('Enums %s and %s are not in alphabetical order' % (last_name, name)) have_errors = True last_name = name if name in enums: logging.error('Duplicate enum %s' % name) have_errors = True continue last_int_value = None enum_dict = {} enum_dict['name'] = name enum_dict['values'] = {} for int_tag in enum.getElementsByTagName("int"): value_dict = {} int_value = int(int_tag.getAttribute('value')) if last_int_value is not None and int_value < last_int_value: logging.error('Enum %s int values %d and %d are not in numerical order' % (name, last_int_value, int_value)) have_errors = True last_int_value = int_value if int_value in enum_dict['values']: logging.error('Duplicate enum value %d for enum %s' % (int_value, name)) have_errors = True continue value_dict['label'] = int_tag.getAttribute('label') value_dict['summary'] = _JoinChildNodes(int_tag) enum_dict['values'][int_value] = value_dict summary_nodes = enum.getElementsByTagName("summary") if len(summary_nodes) > 0: enum_dict['summary'] = _NormalizeString(_JoinChildNodes(summary_nodes[0])) enums[name] = enum_dict return enums, have_errors def _ExtractHistogramsFromXmlTree(tree, enums): """Extract all <histogram> nodes in the tree into a dictionary.""" # Process the histograms. The descriptions can include HTML tags. histograms = {} have_errors = False last_name = None for histogram in tree.getElementsByTagName("histogram"): name = histogram.getAttribute('name') if last_name is not None and name.lower() < last_name.lower(): logging.error('Histograms %s and %s are not in alphabetical order' % (last_name, name)) have_errors = True last_name = name if name in histograms: logging.error('Duplicate histogram definition %s' % name) have_errors = True continue histograms[name] = histogram_entry = {} # Find <summary> tag. summary_nodes = histogram.getElementsByTagName("summary") if len(summary_nodes) > 0: histogram_entry['summary'] = _NormalizeString( _JoinChildNodes(summary_nodes[0])) else: histogram_entry['summary'] = 'TBD' # Find <obsolete> tag. obsolete_nodes = histogram.getElementsByTagName("obsolete") if len(obsolete_nodes) > 0: reason = _JoinChildNodes(obsolete_nodes[0]) histogram_entry['obsolete'] = reason # Handle units. if histogram.hasAttribute('units'): histogram_entry['units'] = histogram.getAttribute('units') # Find <details> tag. details_nodes = histogram.getElementsByTagName("details") if len(details_nodes) > 0: histogram_entry['details'] = _NormalizeString( _JoinChildNodes(details_nodes[0])) # Handle enum types. if histogram.hasAttribute('enum'): enum_name = histogram.getAttribute('enum') if not enum_name in enums: logging.error('Unknown enum %s in histogram %s' % (enum_name, name)) have_errors = True else: histogram_entry['enum'] = enums[enum_name] return histograms, have_errors def _UpdateHistogramsWithFieldTrialInformation(tree, histograms): """Process field trials' tags and combine with affected histograms. The histograms dictionary will be updated in-place by adding new histograms created by combining histograms themselves with field trials targetting these histograms. Args: tree: XML dom tree. histograms: a dictinary of histograms previously extracted from the tree; Returns: True if any errors were found. """ have_errors = False # Verify order of fieldtrial fields first. last_name = None for fieldtrial in tree.getElementsByTagName("fieldtrial"): name = fieldtrial.getAttribute('name') if last_name is not None and name.lower() < last_name.lower(): logging.error('Field trials %s and %s are not in alphabetical order' % (last_name, name)) have_errors = True last_name = name # Field trials can depend on other field trials, so we need to be careful. # Make a temporary copy of the list of field trials to use as a queue. # Field trials whose dependencies have not yet been processed will get # relegated to the back of the queue to be processed later. reprocess_queue = [] def GenerateFieldTrials(): for f in tree.getElementsByTagName("fieldtrial"): yield 0, f for r, f in reprocess_queue: yield r, f for reprocess_count, fieldtrial in GenerateFieldTrials(): # Check dependencies first dependencies_valid = True affected_histograms = fieldtrial.getElementsByTagName('affected-histogram') for affected_histogram in affected_histograms: histogram_name = affected_histogram.getAttribute('name') if not histogram_name in histograms: # Base histogram is missing dependencies_valid = False missing_dependency = histogram_name break if not dependencies_valid: if reprocess_count < MAX_FIELDTRIAL_DEPENDENCY_DEPTH: reprocess_queue.append( (reprocess_count + 1, fieldtrial) ) continue else: logging.error('Field trial %s is missing its dependency %s' % (fieldtrial.getAttribute('name'), missing_dependency)) have_errors = True continue name = fieldtrial.getAttribute('name') groups = fieldtrial.getElementsByTagName('group') group_labels = {} for group in groups: group_labels[group.getAttribute('name')] = group.getAttribute('label') last_histogram_name = None for affected_histogram in affected_histograms: histogram_name = affected_histogram.getAttribute('name') if (last_histogram_name is not None and histogram_name.lower() < last_histogram_name.lower()): logging.error('Affected histograms %s and %s of field trial %s are not ' 'in alphabetical order' % (last_histogram_name, histogram_name, name)) have_errors = True last_histogram_name = histogram_name base_description = histograms[histogram_name] with_groups = affected_histogram.getElementsByTagName('with-group') if len(with_groups) > 0: histogram_groups = with_groups else: histogram_groups = groups for group in histogram_groups: group_name = group.getAttribute('name') try: new_histogram_name = _ExpandHistogramNameWithFieldTrial( group_name, histogram_name, fieldtrial) if new_histogram_name != histogram_name: histograms[new_histogram_name] = copy.deepcopy( histograms[histogram_name]) group_label = group_labels.get(group_name, '') if not 'fieldtrial_groups' in histograms[new_histogram_name]: histograms[new_histogram_name]['fieldtrial_groups'] = [] histograms[new_histogram_name]['fieldtrial_groups'].append(group_name) if not 'fieldtrial_names' in histograms[new_histogram_name]: histograms[new_histogram_name]['fieldtrial_names'] = [] histograms[new_histogram_name]['fieldtrial_names'].append(name) if not 'fieldtrial_labels' in histograms[new_histogram_name]: histograms[new_histogram_name]['fieldtrial_labels'] = [] histograms[new_histogram_name]['fieldtrial_labels'].append( group_label) except Error: have_errors = True return have_errors def ExtractHistogramsFromFile(file_handle): """Compute the histogram names and descriptions from the XML representation. Args: file_handle: A file or file-like with XML content. Returns: a tuple of (histograms, status) where histograms is a dictionary mapping histogram names to dictionaries containing histogram descriptions and status is a boolean indicating if errros were encoutered in processing. """ tree = xml.dom.minidom.parse(file_handle) _NormalizeAllAttributeValues(tree) enums, enum_errors = _ExtractEnumsFromXmlTree(tree) histograms, histogram_errors = _ExtractHistogramsFromXmlTree(tree, enums) update_errors = _UpdateHistogramsWithFieldTrialInformation(tree, histograms) return histograms, enum_errors or histogram_errors or update_errors def ExtractHistograms(filename): """Load histogram definitions from a disk file. Args: filename: a file path to load data from. Raises: Error if the file is not well-formatted. """ with open(filename, 'r') as f: histograms, had_errors = ExtractHistogramsFromFile(f) if had_errors: logging.error('Error parsing %s' % filename) raise Error() return histograms def ExtractNames(histograms): return sorted(histograms.keys())