// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "compiler.h" #include "bootstrapper.h" #include "codegen.h" #include "compilation-cache.h" #include "cpu-profiler.h" #include "debug.h" #include "deoptimizer.h" #include "full-codegen.h" #include "gdb-jit.h" #include "typing.h" #include "hydrogen.h" #include "isolate-inl.h" #include "lithium.h" #include "liveedit.h" #include "parser.h" #include "rewriter.h" #include "runtime-profiler.h" #include "scanner-character-streams.h" #include "scopeinfo.h" #include "scopes.h" #include "vm-state-inl.h" namespace v8 { namespace internal { CompilationInfo::CompilationInfo(Handle<Script> script, Zone* zone) : flags_(LanguageModeField::encode(CLASSIC_MODE)), script_(script), osr_ast_id_(BailoutId::None()), osr_pc_offset_(0), parameter_count_(0) { Initialize(script->GetIsolate(), BASE, zone); } CompilationInfo::CompilationInfo(Handle<SharedFunctionInfo> shared_info, Zone* zone) : flags_(LanguageModeField::encode(CLASSIC_MODE) | IsLazy::encode(true)), shared_info_(shared_info), script_(Handle<Script>(Script::cast(shared_info->script()))), osr_ast_id_(BailoutId::None()), osr_pc_offset_(0), parameter_count_(0) { Initialize(script_->GetIsolate(), BASE, zone); } CompilationInfo::CompilationInfo(Handle<JSFunction> closure, Zone* zone) : flags_(LanguageModeField::encode(CLASSIC_MODE) | IsLazy::encode(true)), closure_(closure), shared_info_(Handle<SharedFunctionInfo>(closure->shared())), script_(Handle<Script>(Script::cast(shared_info_->script()))), context_(closure->context()), osr_ast_id_(BailoutId::None()), osr_pc_offset_(0), parameter_count_(0) { Initialize(script_->GetIsolate(), BASE, zone); } CompilationInfo::CompilationInfo(HydrogenCodeStub* stub, Isolate* isolate, Zone* zone) : flags_(LanguageModeField::encode(CLASSIC_MODE) | IsLazy::encode(true)), osr_ast_id_(BailoutId::None()), osr_pc_offset_(0), parameter_count_(0) { Initialize(isolate, STUB, zone); code_stub_ = stub; } void CompilationInfo::Initialize(Isolate* isolate, Mode mode, Zone* zone) { isolate_ = isolate; function_ = NULL; scope_ = NULL; global_scope_ = NULL; extension_ = NULL; pre_parse_data_ = NULL; zone_ = zone; deferred_handles_ = NULL; code_stub_ = NULL; prologue_offset_ = Code::kPrologueOffsetNotSet; opt_count_ = shared_info().is_null() ? 0 : shared_info()->opt_count(); no_frame_ranges_ = isolate->cpu_profiler()->is_profiling() ? new List<OffsetRange>(2) : NULL; for (int i = 0; i < DependentCode::kGroupCount; i++) { dependencies_[i] = NULL; } if (mode == STUB) { mode_ = STUB; return; } mode_ = mode; abort_due_to_dependency_ = false; if (script_->type()->value() == Script::TYPE_NATIVE) { MarkAsNative(); } if (!shared_info_.is_null()) { ASSERT(language_mode() == CLASSIC_MODE); SetLanguageMode(shared_info_->language_mode()); } set_bailout_reason(kUnknown); } CompilationInfo::~CompilationInfo() { delete deferred_handles_; delete no_frame_ranges_; #ifdef DEBUG // Check that no dependent maps have been added or added dependent maps have // been rolled back or committed. for (int i = 0; i < DependentCode::kGroupCount; i++) { ASSERT_EQ(NULL, dependencies_[i]); } #endif // DEBUG } void CompilationInfo::CommitDependencies(Handle<Code> code) { for (int i = 0; i < DependentCode::kGroupCount; i++) { ZoneList<Handle<HeapObject> >* group_objects = dependencies_[i]; if (group_objects == NULL) continue; ASSERT(!object_wrapper_.is_null()); for (int j = 0; j < group_objects->length(); j++) { DependentCode::DependencyGroup group = static_cast<DependentCode::DependencyGroup>(i); DependentCode* dependent_code = DependentCode::ForObject(group_objects->at(j), group); dependent_code->UpdateToFinishedCode(group, this, *code); } dependencies_[i] = NULL; // Zone-allocated, no need to delete. } } void CompilationInfo::RollbackDependencies() { // Unregister from all dependent maps if not yet committed. for (int i = 0; i < DependentCode::kGroupCount; i++) { ZoneList<Handle<HeapObject> >* group_objects = dependencies_[i]; if (group_objects == NULL) continue; for (int j = 0; j < group_objects->length(); j++) { DependentCode::DependencyGroup group = static_cast<DependentCode::DependencyGroup>(i); DependentCode* dependent_code = DependentCode::ForObject(group_objects->at(j), group); dependent_code->RemoveCompilationInfo(group, this); } dependencies_[i] = NULL; // Zone-allocated, no need to delete. } } int CompilationInfo::num_parameters() const { if (IsStub()) { ASSERT(parameter_count_ > 0); return parameter_count_; } else { return scope()->num_parameters(); } } int CompilationInfo::num_heap_slots() const { if (IsStub()) { return 0; } else { return scope()->num_heap_slots(); } } Code::Flags CompilationInfo::flags() const { if (IsStub()) { return Code::ComputeFlags(code_stub()->GetCodeKind(), code_stub()->GetICState(), code_stub()->GetExtraICState(), code_stub()->GetStubType(), code_stub()->GetStubFlags()); } else { return Code::ComputeFlags(Code::OPTIMIZED_FUNCTION); } } // Disable optimization for the rest of the compilation pipeline. void CompilationInfo::DisableOptimization() { bool is_optimizable_closure = FLAG_optimize_closures && closure_.is_null() && !scope_->HasTrivialOuterContext() && !scope_->outer_scope_calls_non_strict_eval() && !scope_->inside_with(); SetMode(is_optimizable_closure ? BASE : NONOPT); } // Primitive functions are unlikely to be picked up by the stack-walking // profiler, so they trigger their own optimization when they're called // for the SharedFunctionInfo::kCallsUntilPrimitiveOptimization-th time. bool CompilationInfo::ShouldSelfOptimize() { return FLAG_self_optimization && FLAG_crankshaft && !function()->flags()->Contains(kDontSelfOptimize) && !function()->dont_optimize() && function()->scope()->AllowsLazyCompilation() && (shared_info().is_null() || !shared_info()->optimization_disabled()); } // Determine whether to use the full compiler for all code. If the flag // --always-full-compiler is specified this is the case. For the virtual frame // based compiler the full compiler is also used if a debugger is connected, as // the code from the full compiler supports mode precise break points. For the // crankshaft adaptive compiler debugging the optimized code is not possible at // all. However crankshaft support recompilation of functions, so in this case // the full compiler need not be be used if a debugger is attached, but only if // break points has actually been set. static bool IsDebuggerActive(Isolate* isolate) { #ifdef ENABLE_DEBUGGER_SUPPORT return isolate->use_crankshaft() ? isolate->debug()->has_break_points() : isolate->debugger()->IsDebuggerActive(); #else return false; #endif } static bool AlwaysFullCompiler(Isolate* isolate) { return FLAG_always_full_compiler || IsDebuggerActive(isolate); } void RecompileJob::RecordOptimizationStats() { Handle<JSFunction> function = info()->closure(); if (!function->IsOptimized()) { // Concurrent recompilation and OSR may race. Increment only once. int opt_count = function->shared()->opt_count(); function->shared()->set_opt_count(opt_count + 1); } double ms_creategraph = time_taken_to_create_graph_.InMillisecondsF(); double ms_optimize = time_taken_to_optimize_.InMillisecondsF(); double ms_codegen = time_taken_to_codegen_.InMillisecondsF(); if (FLAG_trace_opt) { PrintF("[optimizing "); function->ShortPrint(); PrintF(" - took %0.3f, %0.3f, %0.3f ms]\n", ms_creategraph, ms_optimize, ms_codegen); } if (FLAG_trace_opt_stats) { static double compilation_time = 0.0; static int compiled_functions = 0; static int code_size = 0; compilation_time += (ms_creategraph + ms_optimize + ms_codegen); compiled_functions++; code_size += function->shared()->SourceSize(); PrintF("Compiled: %d functions with %d byte source size in %fms.\n", compiled_functions, code_size, compilation_time); } if (FLAG_hydrogen_stats) { isolate()->GetHStatistics()->IncrementSubtotals(time_taken_to_create_graph_, time_taken_to_optimize_, time_taken_to_codegen_); } } // A return value of true indicates the compilation pipeline is still // going, not necessarily that we optimized the code. static bool MakeCrankshaftCode(CompilationInfo* info) { RecompileJob job(info); RecompileJob::Status status = job.CreateGraph(); if (status != RecompileJob::SUCCEEDED) { return status != RecompileJob::FAILED; } status = job.OptimizeGraph(); if (status != RecompileJob::SUCCEEDED) { status = job.AbortOptimization(); return status != RecompileJob::FAILED; } status = job.GenerateAndInstallCode(); return status != RecompileJob::FAILED; } class HOptimizedGraphBuilderWithPositions: public HOptimizedGraphBuilder { public: explicit HOptimizedGraphBuilderWithPositions(CompilationInfo* info) : HOptimizedGraphBuilder(info) { } #define DEF_VISIT(type) \ virtual void Visit##type(type* node) V8_OVERRIDE { \ if (node->position() != RelocInfo::kNoPosition) { \ SetSourcePosition(node->position()); \ } \ HOptimizedGraphBuilder::Visit##type(node); \ } EXPRESSION_NODE_LIST(DEF_VISIT) #undef DEF_VISIT #define DEF_VISIT(type) \ virtual void Visit##type(type* node) V8_OVERRIDE { \ if (node->position() != RelocInfo::kNoPosition) { \ SetSourcePosition(node->position()); \ } \ HOptimizedGraphBuilder::Visit##type(node); \ } STATEMENT_NODE_LIST(DEF_VISIT) #undef DEF_VISIT #define DEF_VISIT(type) \ virtual void Visit##type(type* node) V8_OVERRIDE { \ HOptimizedGraphBuilder::Visit##type(node); \ } MODULE_NODE_LIST(DEF_VISIT) DECLARATION_NODE_LIST(DEF_VISIT) AUXILIARY_NODE_LIST(DEF_VISIT) #undef DEF_VISIT }; RecompileJob::Status RecompileJob::CreateGraph() { ASSERT(isolate()->use_crankshaft()); ASSERT(info()->IsOptimizing()); ASSERT(!info()->IsCompilingForDebugging()); // We should never arrive here if there is no code object on the // shared function object. ASSERT(info()->shared_info()->code()->kind() == Code::FUNCTION); // We should never arrive here if optimization has been disabled on the // shared function info. ASSERT(!info()->shared_info()->optimization_disabled()); // Fall back to using the full code generator if it's not possible // to use the Hydrogen-based optimizing compiler. We already have // generated code for this from the shared function object. if (AlwaysFullCompiler(isolate())) { info()->AbortOptimization(); return SetLastStatus(BAILED_OUT); } // Limit the number of times we re-compile a functions with // the optimizing compiler. const int kMaxOptCount = FLAG_deopt_every_n_times == 0 ? FLAG_max_opt_count : 1000; if (info()->opt_count() > kMaxOptCount) { info()->set_bailout_reason(kOptimizedTooManyTimes); return AbortOptimization(); } // Due to an encoding limit on LUnallocated operands in the Lithium // language, we cannot optimize functions with too many formal parameters // or perform on-stack replacement for function with too many // stack-allocated local variables. // // The encoding is as a signed value, with parameters and receiver using // the negative indices and locals the non-negative ones. const int parameter_limit = -LUnallocated::kMinFixedSlotIndex; Scope* scope = info()->scope(); if ((scope->num_parameters() + 1) > parameter_limit) { info()->set_bailout_reason(kTooManyParameters); return AbortOptimization(); } const int locals_limit = LUnallocated::kMaxFixedSlotIndex; if (info()->is_osr() && scope->num_parameters() + 1 + scope->num_stack_slots() > locals_limit) { info()->set_bailout_reason(kTooManyParametersLocals); return AbortOptimization(); } // Take --hydrogen-filter into account. if (!info()->closure()->PassesFilter(FLAG_hydrogen_filter)) { info()->AbortOptimization(); return SetLastStatus(BAILED_OUT); } // Recompile the unoptimized version of the code if the current version // doesn't have deoptimization support. Alternatively, we may decide to // run the full code generator to get a baseline for the compile-time // performance of the hydrogen-based compiler. bool should_recompile = !info()->shared_info()->has_deoptimization_support(); if (should_recompile || FLAG_hydrogen_stats) { ElapsedTimer timer; if (FLAG_hydrogen_stats) { timer.Start(); } CompilationInfoWithZone unoptimized(info()->shared_info()); // Note that we use the same AST that we will use for generating the // optimized code. unoptimized.SetFunction(info()->function()); unoptimized.SetScope(info()->scope()); unoptimized.SetContext(info()->context()); if (should_recompile) unoptimized.EnableDeoptimizationSupport(); bool succeeded = FullCodeGenerator::MakeCode(&unoptimized); if (should_recompile) { if (!succeeded) return SetLastStatus(FAILED); Handle<SharedFunctionInfo> shared = info()->shared_info(); shared->EnableDeoptimizationSupport(*unoptimized.code()); // The existing unoptimized code was replaced with the new one. Compiler::RecordFunctionCompilation( Logger::LAZY_COMPILE_TAG, &unoptimized, shared); } if (FLAG_hydrogen_stats) { isolate()->GetHStatistics()->IncrementFullCodeGen(timer.Elapsed()); } } // Check that the unoptimized, shared code is ready for // optimizations. When using the always_opt flag we disregard the // optimizable marker in the code object and optimize anyway. This // is safe as long as the unoptimized code has deoptimization // support. ASSERT(FLAG_always_opt || info()->shared_info()->code()->optimizable()); ASSERT(info()->shared_info()->has_deoptimization_support()); if (FLAG_trace_hydrogen) { Handle<String> name = info()->function()->debug_name(); PrintF("-----------------------------------------------------------\n"); PrintF("Compiling method %s using hydrogen\n", *name->ToCString()); isolate()->GetHTracer()->TraceCompilation(info()); } // Type-check the function. AstTyper::Run(info()); graph_builder_ = FLAG_emit_opt_code_positions ? new(info()->zone()) HOptimizedGraphBuilderWithPositions(info()) : new(info()->zone()) HOptimizedGraphBuilder(info()); Timer t(this, &time_taken_to_create_graph_); graph_ = graph_builder_->CreateGraph(); if (isolate()->has_pending_exception()) { info()->SetCode(Handle<Code>::null()); return SetLastStatus(FAILED); } // The function being compiled may have bailed out due to an inline // candidate bailing out. In such a case, we don't disable // optimization on the shared_info. ASSERT(!graph_builder_->inline_bailout() || graph_ == NULL); if (graph_ == NULL) { if (graph_builder_->inline_bailout()) { info_->AbortOptimization(); return SetLastStatus(BAILED_OUT); } else { return AbortOptimization(); } } if (info()->HasAbortedDueToDependencyChange()) { info_->set_bailout_reason(kBailedOutDueToDependencyChange); info_->AbortOptimization(); return SetLastStatus(BAILED_OUT); } return SetLastStatus(SUCCEEDED); } RecompileJob::Status RecompileJob::OptimizeGraph() { DisallowHeapAllocation no_allocation; DisallowHandleAllocation no_handles; DisallowHandleDereference no_deref; DisallowCodeDependencyChange no_dependency_change; ASSERT(last_status() == SUCCEEDED); Timer t(this, &time_taken_to_optimize_); ASSERT(graph_ != NULL); BailoutReason bailout_reason = kNoReason; if (!graph_->Optimize(&bailout_reason)) { if (bailout_reason != kNoReason) graph_builder_->Bailout(bailout_reason); return SetLastStatus(BAILED_OUT); } else { chunk_ = LChunk::NewChunk(graph_); if (chunk_ == NULL) { return SetLastStatus(BAILED_OUT); } } return SetLastStatus(SUCCEEDED); } RecompileJob::Status RecompileJob::GenerateAndInstallCode() { ASSERT(last_status() == SUCCEEDED); ASSERT(!info()->HasAbortedDueToDependencyChange()); DisallowCodeDependencyChange no_dependency_change; { // Scope for timer. Timer timer(this, &time_taken_to_codegen_); ASSERT(chunk_ != NULL); ASSERT(graph_ != NULL); // Deferred handles reference objects that were accessible during // graph creation. To make sure that we don't encounter inconsistencies // between graph creation and code generation, we disallow accessing // objects through deferred handles during the latter, with exceptions. DisallowDeferredHandleDereference no_deferred_handle_deref; Handle<Code> optimized_code = chunk_->Codegen(); if (optimized_code.is_null()) { if (info()->bailout_reason() == kNoReason) { info()->set_bailout_reason(kCodeGenerationFailed); } return AbortOptimization(); } info()->SetCode(optimized_code); } RecordOptimizationStats(); // Add to the weak list of optimized code objects. info()->context()->native_context()->AddOptimizedCode(*info()->code()); return SetLastStatus(SUCCEEDED); } static bool GenerateCode(CompilationInfo* info) { bool is_optimizing = info->isolate()->use_crankshaft() && !info->IsCompilingForDebugging() && info->IsOptimizing(); if (is_optimizing) { Logger::TimerEventScope timer( info->isolate(), Logger::TimerEventScope::v8_recompile_synchronous); return MakeCrankshaftCode(info); } else { if (info->IsOptimizing()) { // Have the CompilationInfo decide if the compilation should be // BASE or NONOPT. info->DisableOptimization(); } Logger::TimerEventScope timer( info->isolate(), Logger::TimerEventScope::v8_compile_full_code); return FullCodeGenerator::MakeCode(info); } } static bool MakeCode(CompilationInfo* info) { // Precondition: code has been parsed. Postcondition: the code field in // the compilation info is set if compilation succeeded. ASSERT(info->function() != NULL); return Rewriter::Rewrite(info) && Scope::Analyze(info) && GenerateCode(info); } #ifdef ENABLE_DEBUGGER_SUPPORT bool Compiler::MakeCodeForLiveEdit(CompilationInfo* info) { // Precondition: code has been parsed. Postcondition: the code field in // the compilation info is set if compilation succeeded. bool succeeded = MakeCode(info); if (!info->shared_info().is_null()) { Handle<ScopeInfo> scope_info = ScopeInfo::Create(info->scope(), info->zone()); info->shared_info()->set_scope_info(*scope_info); } return succeeded; } #endif static bool DebuggerWantsEagerCompilation(CompilationInfo* info, bool allow_lazy_without_ctx = false) { return LiveEditFunctionTracker::IsActive(info->isolate()) || (info->isolate()->DebuggerHasBreakPoints() && !allow_lazy_without_ctx); } // Sets the expected number of properties based on estimate from compiler. void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared, int estimate) { // See the comment in SetExpectedNofProperties. if (shared->live_objects_may_exist()) return; // If no properties are added in the constructor, they are more likely // to be added later. if (estimate == 0) estimate = 2; // TODO(yangguo): check whether those heuristics are still up-to-date. // We do not shrink objects that go into a snapshot (yet), so we adjust // the estimate conservatively. if (Serializer::enabled()) { estimate += 2; } else if (FLAG_clever_optimizations) { // Inobject slack tracking will reclaim redundant inobject space later, // so we can afford to adjust the estimate generously. estimate += 8; } else { estimate += 3; } shared->set_expected_nof_properties(estimate); } static Handle<SharedFunctionInfo> MakeFunctionInfo(CompilationInfo* info) { Isolate* isolate = info->isolate(); PostponeInterruptsScope postpone(isolate); ASSERT(!isolate->native_context().is_null()); Handle<Script> script = info->script(); // TODO(svenpanne) Obscure place for this, perhaps move to OnBeforeCompile? FixedArray* array = isolate->native_context()->embedder_data(); script->set_context_data(array->get(0)); #ifdef ENABLE_DEBUGGER_SUPPORT if (info->is_eval()) { script->set_compilation_type(Script::COMPILATION_TYPE_EVAL); // For eval scripts add information on the function from which eval was // called. if (info->is_eval()) { StackTraceFrameIterator it(isolate); if (!it.done()) { script->set_eval_from_shared(it.frame()->function()->shared()); Code* code = it.frame()->LookupCode(); int offset = static_cast<int>( it.frame()->pc() - code->instruction_start()); script->set_eval_from_instructions_offset(Smi::FromInt(offset)); } } } // Notify debugger isolate->debugger()->OnBeforeCompile(script); #endif // Only allow non-global compiles for eval. ASSERT(info->is_eval() || info->is_global()); { Parser parser(info); if ((info->pre_parse_data() != NULL || String::cast(script->source())->length() > FLAG_min_preparse_length) && !DebuggerWantsEagerCompilation(info)) parser.set_allow_lazy(true); if (!parser.Parse()) { return Handle<SharedFunctionInfo>::null(); } } FunctionLiteral* lit = info->function(); LiveEditFunctionTracker live_edit_tracker(isolate, lit); Handle<SharedFunctionInfo> result; { // Measure how long it takes to do the compilation; only take the // rest of the function into account to avoid overlap with the // parsing statistics. HistogramTimer* rate = info->is_eval() ? info->isolate()->counters()->compile_eval() : info->isolate()->counters()->compile(); HistogramTimerScope timer(rate); // Compile the code. if (!MakeCode(info)) { if (!isolate->has_pending_exception()) isolate->StackOverflow(); return Handle<SharedFunctionInfo>::null(); } // Allocate function. ASSERT(!info->code().is_null()); result = isolate->factory()->NewSharedFunctionInfo( lit->name(), lit->materialized_literal_count(), lit->is_generator(), info->code(), ScopeInfo::Create(info->scope(), info->zone())); ASSERT_EQ(RelocInfo::kNoPosition, lit->function_token_position()); Compiler::SetFunctionInfo(result, lit, true, script); if (script->name()->IsString()) { PROFILE(isolate, CodeCreateEvent( info->is_eval() ? Logger::EVAL_TAG : Logger::ToNativeByScript(Logger::SCRIPT_TAG, *script), *info->code(), *result, info, String::cast(script->name()))); GDBJIT(AddCode(Handle<String>(String::cast(script->name())), script, info->code(), info)); } else { PROFILE(isolate, CodeCreateEvent( info->is_eval() ? Logger::EVAL_TAG : Logger::ToNativeByScript(Logger::SCRIPT_TAG, *script), *info->code(), *result, info, isolate->heap()->empty_string())); GDBJIT(AddCode(Handle<String>(), script, info->code(), info)); } // Hint to the runtime system used when allocating space for initial // property space by setting the expected number of properties for // the instances of the function. SetExpectedNofPropertiesFromEstimate(result, lit->expected_property_count()); script->set_compilation_state(Script::COMPILATION_STATE_COMPILED); } #ifdef ENABLE_DEBUGGER_SUPPORT // Notify debugger isolate->debugger()->OnAfterCompile( script, Debugger::NO_AFTER_COMPILE_FLAGS); #endif live_edit_tracker.RecordFunctionInfo(result, lit, info->zone()); return result; } Handle<SharedFunctionInfo> Compiler::Compile(Handle<String> source, Handle<Object> script_name, int line_offset, int column_offset, bool is_shared_cross_origin, Handle<Context> context, v8::Extension* extension, ScriptDataImpl* pre_data, Handle<Object> script_data, NativesFlag natives) { Isolate* isolate = source->GetIsolate(); int source_length = source->length(); isolate->counters()->total_load_size()->Increment(source_length); isolate->counters()->total_compile_size()->Increment(source_length); // The VM is in the COMPILER state until exiting this function. VMState<COMPILER> state(isolate); CompilationCache* compilation_cache = isolate->compilation_cache(); // Do a lookup in the compilation cache but not for extensions. Handle<SharedFunctionInfo> result; if (extension == NULL) { result = compilation_cache->LookupScript(source, script_name, line_offset, column_offset, is_shared_cross_origin, context); } if (result.is_null()) { // No cache entry found. Do pre-parsing, if it makes sense, and compile // the script. // Building preparse data that is only used immediately after is only a // saving if we might skip building the AST for lazily compiled functions. // I.e., preparse data isn't relevant when the lazy flag is off, and // for small sources, odds are that there aren't many functions // that would be compiled lazily anyway, so we skip the preparse step // in that case too. // Create a script object describing the script to be compiled. Handle<Script> script = isolate->factory()->NewScript(source); if (natives == NATIVES_CODE) { script->set_type(Smi::FromInt(Script::TYPE_NATIVE)); } if (!script_name.is_null()) { script->set_name(*script_name); script->set_line_offset(Smi::FromInt(line_offset)); script->set_column_offset(Smi::FromInt(column_offset)); } script->set_is_shared_cross_origin(is_shared_cross_origin); script->set_data(script_data.is_null() ? isolate->heap()->undefined_value() : *script_data); // Compile the function and add it to the cache. CompilationInfoWithZone info(script); info.MarkAsGlobal(); info.SetExtension(extension); info.SetPreParseData(pre_data); info.SetContext(context); if (FLAG_use_strict) { info.SetLanguageMode(FLAG_harmony_scoping ? EXTENDED_MODE : STRICT_MODE); } result = MakeFunctionInfo(&info); if (extension == NULL && !result.is_null() && !result->dont_cache()) { compilation_cache->PutScript(source, context, result); } } else { if (result->ic_age() != isolate->heap()->global_ic_age()) { result->ResetForNewContext(isolate->heap()->global_ic_age()); } } if (result.is_null()) isolate->ReportPendingMessages(); return result; } Handle<SharedFunctionInfo> Compiler::CompileEval(Handle<String> source, Handle<Context> context, bool is_global, LanguageMode language_mode, ParseRestriction restriction, int scope_position) { Isolate* isolate = source->GetIsolate(); int source_length = source->length(); isolate->counters()->total_eval_size()->Increment(source_length); isolate->counters()->total_compile_size()->Increment(source_length); // The VM is in the COMPILER state until exiting this function. VMState<COMPILER> state(isolate); // Do a lookup in the compilation cache; if the entry is not there, invoke // the compiler and add the result to the cache. Handle<SharedFunctionInfo> result; CompilationCache* compilation_cache = isolate->compilation_cache(); result = compilation_cache->LookupEval(source, context, is_global, language_mode, scope_position); if (result.is_null()) { // Create a script object describing the script to be compiled. Handle<Script> script = isolate->factory()->NewScript(source); CompilationInfoWithZone info(script); info.MarkAsEval(); if (is_global) info.MarkAsGlobal(); info.SetLanguageMode(language_mode); info.SetParseRestriction(restriction); info.SetContext(context); result = MakeFunctionInfo(&info); if (!result.is_null()) { // Explicitly disable optimization for eval code. We're not yet prepared // to handle eval-code in the optimizing compiler. result->DisableOptimization(kEval); // If caller is strict mode, the result must be in strict mode or // extended mode as well, but not the other way around. Consider: // eval("'use strict'; ..."); ASSERT(language_mode != STRICT_MODE || !result->is_classic_mode()); // If caller is in extended mode, the result must also be in // extended mode. ASSERT(language_mode != EXTENDED_MODE || result->is_extended_mode()); if (!result->dont_cache()) { compilation_cache->PutEval( source, context, is_global, result, scope_position); } } } else { if (result->ic_age() != isolate->heap()->global_ic_age()) { result->ResetForNewContext(isolate->heap()->global_ic_age()); } } return result; } static bool InstallFullCode(CompilationInfo* info) { // Update the shared function info with the compiled code and the // scope info. Please note, that the order of the shared function // info initialization is important since set_scope_info might // trigger a GC, causing the ASSERT below to be invalid if the code // was flushed. By setting the code object last we avoid this. Handle<SharedFunctionInfo> shared = info->shared_info(); Handle<Code> code = info->code(); CHECK(code->kind() == Code::FUNCTION); Handle<JSFunction> function = info->closure(); Handle<ScopeInfo> scope_info = ScopeInfo::Create(info->scope(), info->zone()); shared->set_scope_info(*scope_info); shared->ReplaceCode(*code); if (!function.is_null()) { function->ReplaceCode(*code); ASSERT(!function->IsOptimized()); } // Set the expected number of properties for instances. FunctionLiteral* lit = info->function(); int expected = lit->expected_property_count(); SetExpectedNofPropertiesFromEstimate(shared, expected); // Check the function has compiled code. ASSERT(shared->is_compiled()); shared->set_dont_optimize_reason(lit->dont_optimize_reason()); shared->set_dont_inline(lit->flags()->Contains(kDontInline)); shared->set_ast_node_count(lit->ast_node_count()); if (info->isolate()->use_crankshaft() && !function.is_null() && !shared->optimization_disabled()) { // If we're asked to always optimize, we compile the optimized // version of the function right away - unless the debugger is // active as it makes no sense to compile optimized code then. if (FLAG_always_opt && !info->isolate()->DebuggerHasBreakPoints()) { CompilationInfoWithZone optimized(function); optimized.SetOptimizing(BailoutId::None()); return Compiler::CompileLazy(&optimized); } } return true; } static void InstallCodeCommon(CompilationInfo* info) { Handle<SharedFunctionInfo> shared = info->shared_info(); Handle<Code> code = info->code(); ASSERT(!code.is_null()); // Set optimizable to false if this is disallowed by the shared // function info, e.g., we might have flushed the code and must // reset this bit when lazy compiling the code again. if (shared->optimization_disabled()) code->set_optimizable(false); if (shared->code() == *code) { // Do not send compilation event for the same code twice. return; } Compiler::RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, info, shared); } static void InsertCodeIntoOptimizedCodeMap(CompilationInfo* info) { Handle<Code> code = info->code(); if (code->kind() != Code::OPTIMIZED_FUNCTION) return; // Nothing to do. // Cache non-OSR optimized code. if (FLAG_cache_optimized_code && !info->is_osr()) { Handle<JSFunction> function = info->closure(); Handle<SharedFunctionInfo> shared(function->shared()); Handle<FixedArray> literals(function->literals()); Handle<Context> native_context(function->context()->native_context()); SharedFunctionInfo::AddToOptimizedCodeMap( shared, native_context, code, literals); } } static bool InstallCodeFromOptimizedCodeMap(CompilationInfo* info) { if (!info->IsOptimizing()) return false; // Nothing to look up. // Lookup non-OSR optimized code. if (FLAG_cache_optimized_code && !info->is_osr()) { Handle<SharedFunctionInfo> shared = info->shared_info(); Handle<JSFunction> function = info->closure(); ASSERT(!function.is_null()); Handle<Context> native_context(function->context()->native_context()); int index = shared->SearchOptimizedCodeMap(*native_context); if (index > 0) { if (FLAG_trace_opt) { PrintF("[found optimized code for "); function->ShortPrint(); PrintF("]\n"); } // Caching of optimized code enabled and optimized code found. shared->InstallFromOptimizedCodeMap(*function, index); return true; } } return false; } bool Compiler::CompileLazy(CompilationInfo* info) { Isolate* isolate = info->isolate(); // The VM is in the COMPILER state until exiting this function. VMState<COMPILER> state(isolate); PostponeInterruptsScope postpone(isolate); Handle<SharedFunctionInfo> shared = info->shared_info(); int compiled_size = shared->end_position() - shared->start_position(); isolate->counters()->total_compile_size()->Increment(compiled_size); if (InstallCodeFromOptimizedCodeMap(info)) return true; // Generate the AST for the lazily compiled function. if (Parser::Parse(info)) { // Measure how long it takes to do the lazy compilation; only take the // rest of the function into account to avoid overlap with the lazy // parsing statistics. HistogramTimerScope timer(isolate->counters()->compile_lazy()); // After parsing we know the function's language mode. Remember it. LanguageMode language_mode = info->function()->language_mode(); info->SetLanguageMode(language_mode); shared->set_language_mode(language_mode); // Compile the code. if (!MakeCode(info)) { if (!isolate->has_pending_exception()) { isolate->StackOverflow(); } } else { InstallCodeCommon(info); if (info->IsOptimizing()) { // Optimized code successfully created. Handle<Code> code = info->code(); ASSERT(shared->scope_info() != ScopeInfo::Empty(isolate)); // TODO(titzer): Only replace the code if it was not an OSR compile. info->closure()->ReplaceCode(*code); InsertCodeIntoOptimizedCodeMap(info); return true; } else if (!info->is_osr()) { // Compilation failed. Replace with full code if not OSR compile. return InstallFullCode(info); } } } ASSERT(info->code().is_null()); return false; } bool Compiler::RecompileConcurrent(Handle<JSFunction> closure, uint32_t osr_pc_offset) { bool compiling_for_osr = (osr_pc_offset != 0); Isolate* isolate = closure->GetIsolate(); // Here we prepare compile data for the concurrent recompilation thread, but // this still happens synchronously and interrupts execution. Logger::TimerEventScope timer( isolate, Logger::TimerEventScope::v8_recompile_synchronous); if (!isolate->optimizing_compiler_thread()->IsQueueAvailable()) { if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Compilation queue full, will retry optimizing "); closure->PrintName(); PrintF(" on next run.\n"); } return false; } SmartPointer<CompilationInfo> info(new CompilationInfoWithZone(closure)); Handle<SharedFunctionInfo> shared = info->shared_info(); if (compiling_for_osr) { BailoutId osr_ast_id = shared->code()->TranslatePcOffsetToAstId(osr_pc_offset); ASSERT(!osr_ast_id.IsNone()); info->SetOptimizing(osr_ast_id); info->set_osr_pc_offset(osr_pc_offset); if (FLAG_trace_osr) { PrintF("[COSR - attempt to queue "); closure->PrintName(); PrintF(" at AST id %d]\n", osr_ast_id.ToInt()); } } else { info->SetOptimizing(BailoutId::None()); } VMState<COMPILER> state(isolate); PostponeInterruptsScope postpone(isolate); int compiled_size = shared->end_position() - shared->start_position(); isolate->counters()->total_compile_size()->Increment(compiled_size); { CompilationHandleScope handle_scope(*info); if (!compiling_for_osr && InstallCodeFromOptimizedCodeMap(*info)) { return true; } if (Parser::Parse(*info)) { LanguageMode language_mode = info->function()->language_mode(); info->SetLanguageMode(language_mode); shared->set_language_mode(language_mode); info->SaveHandles(); if (Rewriter::Rewrite(*info) && Scope::Analyze(*info)) { RecompileJob* job = new(info->zone()) RecompileJob(*info); RecompileJob::Status status = job->CreateGraph(); if (status == RecompileJob::SUCCEEDED) { info.Detach(); shared->code()->set_profiler_ticks(0); isolate->optimizing_compiler_thread()->QueueForOptimization(job); ASSERT(!isolate->has_pending_exception()); return true; } else if (status == RecompileJob::BAILED_OUT) { isolate->clear_pending_exception(); InstallFullCode(*info); } } } } if (isolate->has_pending_exception()) isolate->clear_pending_exception(); return false; } Handle<Code> Compiler::InstallOptimizedCode(RecompileJob* job) { SmartPointer<CompilationInfo> info(job->info()); // The function may have already been optimized by OSR. Simply continue. // Except when OSR already disabled optimization for some reason. if (info->shared_info()->optimization_disabled()) { info->AbortOptimization(); InstallFullCode(*info); if (FLAG_trace_concurrent_recompilation) { PrintF(" ** aborting optimization for "); info->closure()->PrintName(); PrintF(" as it has been disabled.\n"); } ASSERT(!info->closure()->IsInRecompileQueue()); return Handle<Code>::null(); } Isolate* isolate = info->isolate(); VMState<COMPILER> state(isolate); Logger::TimerEventScope timer( isolate, Logger::TimerEventScope::v8_recompile_synchronous); // If crankshaft succeeded, install the optimized code else install // the unoptimized code. RecompileJob::Status status = job->last_status(); if (info->HasAbortedDueToDependencyChange()) { info->set_bailout_reason(kBailedOutDueToDependencyChange); status = job->AbortOptimization(); } else if (status != RecompileJob::SUCCEEDED) { info->set_bailout_reason(kFailedBailedOutLastTime); status = job->AbortOptimization(); } else if (isolate->DebuggerHasBreakPoints()) { info->set_bailout_reason(kDebuggerIsActive); status = job->AbortOptimization(); } else { status = job->GenerateAndInstallCode(); ASSERT(status == RecompileJob::SUCCEEDED || status == RecompileJob::BAILED_OUT); } InstallCodeCommon(*info); if (status == RecompileJob::SUCCEEDED) { Handle<Code> code = info->code(); ASSERT(info->shared_info()->scope_info() != ScopeInfo::Empty(isolate)); info->closure()->ReplaceCode(*code); if (info->shared_info()->SearchOptimizedCodeMap( info->closure()->context()->native_context()) == -1) { InsertCodeIntoOptimizedCodeMap(*info); } if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Optimized code for "); info->closure()->PrintName(); PrintF(" installed.\n"); } } else { info->AbortOptimization(); InstallFullCode(*info); } // Optimized code is finally replacing unoptimized code. Reset the latter's // profiler ticks to prevent too soon re-opt after a deopt. info->shared_info()->code()->set_profiler_ticks(0); ASSERT(!info->closure()->IsInRecompileQueue()); return (status == RecompileJob::SUCCEEDED) ? info->code() : Handle<Code>::null(); } Handle<SharedFunctionInfo> Compiler::BuildFunctionInfo(FunctionLiteral* literal, Handle<Script> script) { // Precondition: code has been parsed and scopes have been analyzed. CompilationInfoWithZone info(script); info.SetFunction(literal); info.SetScope(literal->scope()); info.SetLanguageMode(literal->scope()->language_mode()); Isolate* isolate = info.isolate(); Factory* factory = isolate->factory(); LiveEditFunctionTracker live_edit_tracker(isolate, literal); // Determine if the function can be lazily compiled. This is necessary to // allow some of our builtin JS files to be lazily compiled. These // builtins cannot be handled lazily by the parser, since we have to know // if a function uses the special natives syntax, which is something the // parser records. // If the debugger requests compilation for break points, we cannot be // aggressive about lazy compilation, because it might trigger compilation // of functions without an outer context when setting a breakpoint through // Debug::FindSharedFunctionInfoInScript. bool allow_lazy_without_ctx = literal->AllowsLazyCompilationWithoutContext(); bool allow_lazy = literal->AllowsLazyCompilation() && !DebuggerWantsEagerCompilation(&info, allow_lazy_without_ctx); Handle<ScopeInfo> scope_info(ScopeInfo::Empty(isolate)); // Generate code if (FLAG_lazy && allow_lazy && !literal->is_parenthesized()) { Handle<Code> code = isolate->builtins()->LazyCompile(); info.SetCode(code); } else if (GenerateCode(&info)) { ASSERT(!info.code().is_null()); scope_info = ScopeInfo::Create(info.scope(), info.zone()); } else { return Handle<SharedFunctionInfo>::null(); } // Create a shared function info object. Handle<SharedFunctionInfo> result = factory->NewSharedFunctionInfo(literal->name(), literal->materialized_literal_count(), literal->is_generator(), info.code(), scope_info); SetFunctionInfo(result, literal, false, script); RecordFunctionCompilation(Logger::FUNCTION_TAG, &info, result); result->set_allows_lazy_compilation(allow_lazy); result->set_allows_lazy_compilation_without_context(allow_lazy_without_ctx); // Set the expected number of properties for instances and return // the resulting function. SetExpectedNofPropertiesFromEstimate(result, literal->expected_property_count()); live_edit_tracker.RecordFunctionInfo(result, literal, info.zone()); return result; } // Sets the function info on a function. // The start_position points to the first '(' character after the function name // in the full script source. When counting characters in the script source the // the first character is number 0 (not 1). void Compiler::SetFunctionInfo(Handle<SharedFunctionInfo> function_info, FunctionLiteral* lit, bool is_toplevel, Handle<Script> script) { function_info->set_length(lit->parameter_count()); function_info->set_formal_parameter_count(lit->parameter_count()); function_info->set_script(*script); function_info->set_function_token_position(lit->function_token_position()); function_info->set_start_position(lit->start_position()); function_info->set_end_position(lit->end_position()); function_info->set_is_expression(lit->is_expression()); function_info->set_is_anonymous(lit->is_anonymous()); function_info->set_is_toplevel(is_toplevel); function_info->set_inferred_name(*lit->inferred_name()); function_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation()); function_info->set_allows_lazy_compilation_without_context( lit->AllowsLazyCompilationWithoutContext()); function_info->set_language_mode(lit->language_mode()); function_info->set_uses_arguments(lit->scope()->arguments() != NULL); function_info->set_has_duplicate_parameters(lit->has_duplicate_parameters()); function_info->set_ast_node_count(lit->ast_node_count()); function_info->set_is_function(lit->is_function()); function_info->set_dont_optimize_reason(lit->dont_optimize_reason()); function_info->set_dont_inline(lit->flags()->Contains(kDontInline)); function_info->set_dont_cache(lit->flags()->Contains(kDontCache)); function_info->set_is_generator(lit->is_generator()); } void Compiler::RecordFunctionCompilation(Logger::LogEventsAndTags tag, CompilationInfo* info, Handle<SharedFunctionInfo> shared) { // SharedFunctionInfo is passed separately, because if CompilationInfo // was created using Script object, it will not have it. // Log the code generation. If source information is available include // script name and line number. Check explicitly whether logging is // enabled as finding the line number is not free. if (info->isolate()->logger()->is_logging_code_events() || info->isolate()->cpu_profiler()->is_profiling()) { Handle<Script> script = info->script(); Handle<Code> code = info->code(); if (*code == info->isolate()->builtins()->builtin(Builtins::kLazyCompile)) return; int line_num = GetScriptLineNumber(script, shared->start_position()) + 1; int column_num = GetScriptColumnNumber(script, shared->start_position()) + 1; USE(line_num); if (script->name()->IsString()) { PROFILE(info->isolate(), CodeCreateEvent(Logger::ToNativeByScript(tag, *script), *code, *shared, info, String::cast(script->name()), line_num, column_num)); } else { PROFILE(info->isolate(), CodeCreateEvent(Logger::ToNativeByScript(tag, *script), *code, *shared, info, info->isolate()->heap()->empty_string(), line_num, column_num)); } } GDBJIT(AddCode(Handle<String>(shared->DebugName()), Handle<Script>(info->script()), Handle<Code>(info->code()), info)); } CompilationPhase::CompilationPhase(const char* name, CompilationInfo* info) : name_(name), info_(info), zone_(info->isolate()) { if (FLAG_hydrogen_stats) { info_zone_start_allocation_size_ = info->zone()->allocation_size(); timer_.Start(); } } CompilationPhase::~CompilationPhase() { if (FLAG_hydrogen_stats) { unsigned size = zone()->allocation_size(); size += info_->zone()->allocation_size() - info_zone_start_allocation_size_; isolate()->GetHStatistics()->SaveTiming(name_, timer_.Elapsed(), size); } } bool CompilationPhase::ShouldProduceTraceOutput() const { // Trace if the appropriate trace flag is set and the phase name's first // character is in the FLAG_trace_phase command line parameter. AllowHandleDereference allow_deref; bool tracing_on = info()->IsStub() ? FLAG_trace_hydrogen_stubs : (FLAG_trace_hydrogen && info()->closure()->PassesFilter(FLAG_trace_hydrogen_filter)); return (tracing_on && OS::StrChr(const_cast<char*>(FLAG_trace_phase), name_[0]) != NULL); } } } // namespace v8::internal