// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if V8_TARGET_ARCH_IA32 #include "ic-inl.h" #include "codegen.h" #include "stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) static void ProbeTable(Isolate* isolate, MacroAssembler* masm, Code::Flags flags, StubCache::Table table, Register name, Register receiver, // Number of the cache entry pointer-size scaled. Register offset, Register extra) { ExternalReference key_offset(isolate->stub_cache()->key_reference(table)); ExternalReference value_offset(isolate->stub_cache()->value_reference(table)); ExternalReference map_offset(isolate->stub_cache()->map_reference(table)); Label miss; // Multiply by 3 because there are 3 fields per entry (name, code, map). __ lea(offset, Operand(offset, offset, times_2, 0)); if (extra.is_valid()) { // Get the code entry from the cache. __ mov(extra, Operand::StaticArray(offset, times_1, value_offset)); // Check that the key in the entry matches the name. __ cmp(name, Operand::StaticArray(offset, times_1, key_offset)); __ j(not_equal, &miss); // Check the map matches. __ mov(offset, Operand::StaticArray(offset, times_1, map_offset)); __ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset)); __ j(not_equal, &miss); // Check that the flags match what we're looking for. __ mov(offset, FieldOperand(extra, Code::kFlagsOffset)); __ and_(offset, ~Code::kFlagsNotUsedInLookup); __ cmp(offset, flags); __ j(not_equal, &miss); #ifdef DEBUG if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) { __ jmp(&miss); } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) { __ jmp(&miss); } #endif // Jump to the first instruction in the code stub. __ add(extra, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(extra); __ bind(&miss); } else { // Save the offset on the stack. __ push(offset); // Check that the key in the entry matches the name. __ cmp(name, Operand::StaticArray(offset, times_1, key_offset)); __ j(not_equal, &miss); // Check the map matches. __ mov(offset, Operand::StaticArray(offset, times_1, map_offset)); __ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset)); __ j(not_equal, &miss); // Restore offset register. __ mov(offset, Operand(esp, 0)); // Get the code entry from the cache. __ mov(offset, Operand::StaticArray(offset, times_1, value_offset)); // Check that the flags match what we're looking for. __ mov(offset, FieldOperand(offset, Code::kFlagsOffset)); __ and_(offset, ~Code::kFlagsNotUsedInLookup); __ cmp(offset, flags); __ j(not_equal, &miss); #ifdef DEBUG if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) { __ jmp(&miss); } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) { __ jmp(&miss); } #endif // Restore offset and re-load code entry from cache. __ pop(offset); __ mov(offset, Operand::StaticArray(offset, times_1, value_offset)); // Jump to the first instruction in the code stub. __ add(offset, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(offset); // Pop at miss. __ bind(&miss); __ pop(offset); } } void StubCompiler::GenerateDictionaryNegativeLookup(MacroAssembler* masm, Label* miss_label, Register receiver, Handle<Name> name, Register scratch0, Register scratch1) { ASSERT(name->IsUniqueName()); ASSERT(!receiver.is(scratch0)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1); __ IncrementCounter(counters->negative_lookups_miss(), 1); __ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset)); const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. __ test_b(FieldOperand(scratch0, Map::kBitFieldOffset), kInterceptorOrAccessCheckNeededMask); __ j(not_zero, miss_label); // Check that receiver is a JSObject. __ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE); __ j(below, miss_label); // Load properties array. Register properties = scratch0; __ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ cmp(FieldOperand(properties, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->hash_table_map())); __ j(not_equal, miss_label); Label done; NameDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done, properties, name, scratch1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1); } void StubCache::GenerateProbe(MacroAssembler* masm, Code::Flags flags, Register receiver, Register name, Register scratch, Register extra, Register extra2, Register extra3) { Label miss; // Assert that code is valid. The multiplying code relies on the entry size // being 12. ASSERT(sizeof(Entry) == 12); // Assert the flags do not name a specific type. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Assert that there are no register conflicts. ASSERT(!scratch.is(receiver)); ASSERT(!scratch.is(name)); ASSERT(!extra.is(receiver)); ASSERT(!extra.is(name)); ASSERT(!extra.is(scratch)); // Assert scratch and extra registers are valid, and extra2/3 are unused. ASSERT(!scratch.is(no_reg)); ASSERT(extra2.is(no_reg)); ASSERT(extra3.is(no_reg)); Register offset = scratch; scratch = no_reg; Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Get the map of the receiver and compute the hash. __ mov(offset, FieldOperand(name, Name::kHashFieldOffset)); __ add(offset, FieldOperand(receiver, HeapObject::kMapOffset)); __ xor_(offset, flags); // We mask out the last two bits because they are not part of the hash and // they are always 01 for maps. Also in the two 'and' instructions below. __ and_(offset, (kPrimaryTableSize - 1) << kHeapObjectTagSize); // ProbeTable expects the offset to be pointer scaled, which it is, because // the heap object tag size is 2 and the pointer size log 2 is also 2. ASSERT(kHeapObjectTagSize == kPointerSizeLog2); // Probe the primary table. ProbeTable(isolate(), masm, flags, kPrimary, name, receiver, offset, extra); // Primary miss: Compute hash for secondary probe. __ mov(offset, FieldOperand(name, Name::kHashFieldOffset)); __ add(offset, FieldOperand(receiver, HeapObject::kMapOffset)); __ xor_(offset, flags); __ and_(offset, (kPrimaryTableSize - 1) << kHeapObjectTagSize); __ sub(offset, name); __ add(offset, Immediate(flags)); __ and_(offset, (kSecondaryTableSize - 1) << kHeapObjectTagSize); // Probe the secondary table. ProbeTable( isolate(), masm, flags, kSecondary, name, receiver, offset, extra); // Cache miss: Fall-through and let caller handle the miss by // entering the runtime system. __ bind(&miss); __ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1); } void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm, int index, Register prototype) { __ LoadGlobalFunction(index, prototype); __ LoadGlobalFunctionInitialMap(prototype, prototype); // Load the prototype from the initial map. __ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype, Label* miss) { // Check we're still in the same context. __ cmp(Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)), masm->isolate()->global_object()); __ j(not_equal, miss); // Get the global function with the given index. Handle<JSFunction> function( JSFunction::cast(masm->isolate()->native_context()->get(index))); // Load its initial map. The global functions all have initial maps. __ Set(prototype, Immediate(Handle<Map>(function->initial_map()))); // Load the prototype from the initial map. __ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm, Register receiver, Register scratch, Label* miss_label) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss_label); // Check that the object is a JS array. __ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch); __ j(not_equal, miss_label); // Load length directly from the JS array. __ mov(eax, FieldOperand(receiver, JSArray::kLengthOffset)); __ ret(0); } // Generate code to check if an object is a string. If the object is // a string, the map's instance type is left in the scratch register. static void GenerateStringCheck(MacroAssembler* masm, Register receiver, Register scratch, Label* smi, Label* non_string_object) { // Check that the object isn't a smi. __ JumpIfSmi(receiver, smi); // Check that the object is a string. __ mov(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ test(scratch, Immediate(kNotStringTag)); __ j(not_zero, non_string_object); } void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss) { Label check_wrapper; // Check if the object is a string leaving the instance type in the // scratch register. GenerateStringCheck(masm, receiver, scratch1, miss, &check_wrapper); // Load length from the string and convert to a smi. __ mov(eax, FieldOperand(receiver, String::kLengthOffset)); __ ret(0); // Check if the object is a JSValue wrapper. __ bind(&check_wrapper); __ cmp(scratch1, JS_VALUE_TYPE); __ j(not_equal, miss); // Check if the wrapped value is a string and load the length // directly if it is. __ mov(scratch2, FieldOperand(receiver, JSValue::kValueOffset)); GenerateStringCheck(masm, scratch2, scratch1, miss, miss); __ mov(eax, FieldOperand(scratch2, String::kLengthOffset)); __ ret(0); } void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); __ mov(eax, scratch1); __ ret(0); } void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm, Register dst, Register src, bool inobject, int index, Representation representation) { ASSERT(!FLAG_track_double_fields || !representation.IsDouble()); int offset = index * kPointerSize; if (!inobject) { // Calculate the offset into the properties array. offset = offset + FixedArray::kHeaderSize; __ mov(dst, FieldOperand(src, JSObject::kPropertiesOffset)); src = dst; } __ mov(dst, FieldOperand(src, offset)); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle<JSObject> holder_obj) { STATIC_ASSERT(StubCache::kInterceptorArgsNameIndex == 0); STATIC_ASSERT(StubCache::kInterceptorArgsInfoIndex == 1); STATIC_ASSERT(StubCache::kInterceptorArgsThisIndex == 2); STATIC_ASSERT(StubCache::kInterceptorArgsHolderIndex == 3); STATIC_ASSERT(StubCache::kInterceptorArgsLength == 4); __ push(name); Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor()); ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor)); Register scratch = name; __ mov(scratch, Immediate(interceptor)); __ push(scratch); __ push(receiver); __ push(holder); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle<JSObject> holder_obj, IC::UtilityId id) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); __ CallExternalReference( ExternalReference(IC_Utility(id), masm->isolate()), StubCache::kInterceptorArgsLength); } // Number of pointers to be reserved on stack for fast API call. static const int kFastApiCallArguments = FunctionCallbackArguments::kArgsLength; // Reserves space for the extra arguments to API function in the // caller's frame. // // These arguments are set by CheckPrototypes and GenerateFastApiCall. static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : last argument in the internal frame of the caller // ----------------------------------- __ pop(scratch); for (int i = 0; i < kFastApiCallArguments; i++) { __ push(Immediate(Smi::FromInt(0))); } __ push(scratch); } // Undoes the effects of ReserveSpaceForFastApiCall. static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { // ----------- S t a t e ------------- // -- esp[0] : return address. // -- esp[4] : last fast api call extra argument. // -- ... // -- esp[kFastApiCallArguments * 4] : first fast api call extra argument. // -- esp[kFastApiCallArguments * 4 + 4] : last argument in the internal // frame. // ----------------------------------- __ pop(scratch); __ add(esp, Immediate(kPointerSize * kFastApiCallArguments)); __ push(scratch); } static void GenerateFastApiCallBody(MacroAssembler* masm, const CallOptimization& optimization, int argc, bool restore_context); // Generates call to API function. static void GenerateFastApiCall(MacroAssembler* masm, const CallOptimization& optimization, int argc) { typedef FunctionCallbackArguments FCA; // Save calling context. __ mov(Operand(esp, (1 + FCA::kContextSaveIndex) * kPointerSize), esi); // Get the function and setup the context. Handle<JSFunction> function = optimization.constant_function(); __ LoadHeapObject(edi, function); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Construct the FunctionCallbackInfo. __ mov(Operand(esp, (1 + FCA::kCalleeIndex) * kPointerSize), edi); Handle<CallHandlerInfo> api_call_info = optimization.api_call_info(); Handle<Object> call_data(api_call_info->data(), masm->isolate()); if (masm->isolate()->heap()->InNewSpace(*call_data)) { __ mov(ecx, api_call_info); __ mov(ebx, FieldOperand(ecx, CallHandlerInfo::kDataOffset)); __ mov(Operand(esp, (1 + FCA::kDataIndex) * kPointerSize), ebx); } else { __ mov(Operand(esp, (1 + FCA::kDataIndex) * kPointerSize), Immediate(call_data)); } __ mov(Operand(esp, (1 + FCA::kIsolateIndex) * kPointerSize), Immediate(reinterpret_cast<int>(masm->isolate()))); __ mov(Operand(esp, (1 + FCA::kReturnValueOffset) * kPointerSize), masm->isolate()->factory()->undefined_value()); __ mov(Operand(esp, (1 + FCA::kReturnValueDefaultValueIndex) * kPointerSize), masm->isolate()->factory()->undefined_value()); // Prepare arguments. STATIC_ASSERT(kFastApiCallArguments == 7); __ lea(eax, Operand(esp, 1 * kPointerSize)); GenerateFastApiCallBody(masm, optimization, argc, false); } // Generate call to api function. // This function uses push() to generate smaller, faster code than // the version above. It is an optimization that should will be removed // when api call ICs are generated in hydrogen. static void GenerateFastApiCall(MacroAssembler* masm, const CallOptimization& optimization, Register receiver, Register scratch1, Register scratch2, Register scratch3, int argc, Register* values) { ASSERT(optimization.is_simple_api_call()); // Copy return value. __ pop(scratch1); // receiver __ push(receiver); // Write the arguments to stack frame. for (int i = 0; i < argc; i++) { Register arg = values[argc-1-i]; ASSERT(!receiver.is(arg)); ASSERT(!scratch1.is(arg)); ASSERT(!scratch2.is(arg)); ASSERT(!scratch3.is(arg)); __ push(arg); } typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kArgsLength == 7); // context save __ push(esi); // Get the function and setup the context. Handle<JSFunction> function = optimization.constant_function(); __ LoadHeapObject(scratch2, function); __ mov(esi, FieldOperand(scratch2, JSFunction::kContextOffset)); // callee __ push(scratch2); Isolate* isolate = masm->isolate(); Handle<CallHandlerInfo> api_call_info = optimization.api_call_info(); Handle<Object> call_data(api_call_info->data(), isolate); // Push data from ExecutableAccessorInfo. if (isolate->heap()->InNewSpace(*call_data)) { __ mov(scratch2, api_call_info); __ mov(scratch3, FieldOperand(scratch2, CallHandlerInfo::kDataOffset)); __ push(scratch3); } else { __ push(Immediate(call_data)); } // return value __ push(Immediate(isolate->factory()->undefined_value())); // return value default __ push(Immediate(isolate->factory()->undefined_value())); // isolate __ push(Immediate(reinterpret_cast<int>(isolate))); // holder __ push(receiver); // store receiver address for GenerateFastApiCallBody ASSERT(!scratch1.is(eax)); __ mov(eax, esp); // return address __ push(scratch1); GenerateFastApiCallBody(masm, optimization, argc, true); } static void GenerateFastApiCallBody(MacroAssembler* masm, const CallOptimization& optimization, int argc, bool restore_context) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] - esp[28] : FunctionCallbackInfo, incl. // : object passing the type check // (set by CheckPrototypes) // -- esp[32] : last argument // -- ... // -- esp[(argc + 7) * 4] : first argument // -- esp[(argc + 8) * 4] : receiver // // -- eax : receiver address // ----------------------------------- typedef FunctionCallbackArguments FCA; // API function gets reference to the v8::Arguments. If CPU profiler // is enabled wrapper function will be called and we need to pass // address of the callback as additional parameter, always allocate // space for it. const int kApiArgc = 1 + 1; // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 4; Handle<CallHandlerInfo> api_call_info = optimization.api_call_info(); // Function address is a foreign pointer outside V8's heap. Address function_address = v8::ToCData<Address>(api_call_info->callback()); __ PrepareCallApiFunction(kApiArgc + kApiStackSpace); // FunctionCallbackInfo::implicit_args_. __ mov(ApiParameterOperand(2), eax); __ add(eax, Immediate((argc + kFastApiCallArguments - 1) * kPointerSize)); // FunctionCallbackInfo::values_. __ mov(ApiParameterOperand(3), eax); // FunctionCallbackInfo::length_. __ Set(ApiParameterOperand(4), Immediate(argc)); // FunctionCallbackInfo::is_construct_call_. __ Set(ApiParameterOperand(5), Immediate(0)); // v8::InvocationCallback's argument. __ lea(eax, ApiParameterOperand(2)); __ mov(ApiParameterOperand(0), eax); Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); Operand context_restore_operand(ebp, (2 + FCA::kContextSaveIndex) * kPointerSize); Operand return_value_operand(ebp, (2 + FCA::kReturnValueOffset) * kPointerSize); __ CallApiFunctionAndReturn(function_address, thunk_address, ApiParameterOperand(1), argc + kFastApiCallArguments + 1, return_value_operand, restore_context ? &context_restore_operand : NULL); } class CallInterceptorCompiler BASE_EMBEDDED { public: CallInterceptorCompiler(CallStubCompiler* stub_compiler, const ParameterCount& arguments, Register name, ExtraICState extra_state) : stub_compiler_(stub_compiler), arguments_(arguments), name_(name) {} void Compile(MacroAssembler* masm, Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, LookupResult* lookup, Register receiver, Register scratch1, Register scratch2, Register scratch3, Label* miss) { ASSERT(holder->HasNamedInterceptor()); ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); CallOptimization optimization(lookup); if (optimization.is_constant_call()) { CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3, holder, lookup, name, optimization, miss); } else { CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3, name, holder, miss); } } private: void CompileCacheable(MacroAssembler* masm, Handle<JSObject> object, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle<JSObject> interceptor_holder, LookupResult* lookup, Handle<Name> name, const CallOptimization& optimization, Label* miss_label) { ASSERT(optimization.is_constant_call()); ASSERT(!lookup->holder()->IsGlobalObject()); int depth1 = kInvalidProtoDepth; int depth2 = kInvalidProtoDepth; bool can_do_fast_api_call = false; if (optimization.is_simple_api_call() && !lookup->holder()->IsGlobalObject()) { depth1 = optimization.GetPrototypeDepthOfExpectedType( object, interceptor_holder); if (depth1 == kInvalidProtoDepth) { depth2 = optimization.GetPrototypeDepthOfExpectedType( interceptor_holder, Handle<JSObject>(lookup->holder())); } can_do_fast_api_call = depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth; } Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->call_const_interceptor(), 1); if (can_do_fast_api_call) { __ IncrementCounter(counters->call_const_interceptor_fast_api(), 1); ReserveSpaceForFastApiCall(masm, scratch1); } // Check that the maps from receiver to interceptor's holder // haven't changed and thus we can invoke interceptor. Label miss_cleanup; Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label; Register holder = stub_compiler_->CheckPrototypes( IC::CurrentTypeOf(object, masm->isolate()), receiver, interceptor_holder, scratch1, scratch2, scratch3, name, depth1, miss); // Invoke an interceptor and if it provides a value, // branch to |regular_invoke|. Label regular_invoke; LoadWithInterceptor(masm, receiver, holder, interceptor_holder, ®ular_invoke); // Interceptor returned nothing for this property. Try to use cached // constant function. // Check that the maps from interceptor's holder to constant function's // holder haven't changed and thus we can use cached constant function. if (*interceptor_holder != lookup->holder()) { stub_compiler_->CheckPrototypes( IC::CurrentTypeOf(interceptor_holder, masm->isolate()), holder, handle(lookup->holder()), scratch1, scratch2, scratch3, name, depth2, miss); } else { // CheckPrototypes has a side effect of fetching a 'holder' // for API (object which is instanceof for the signature). It's // safe to omit it here, as if present, it should be fetched // by the previous CheckPrototypes. ASSERT(depth2 == kInvalidProtoDepth); } // Invoke function. if (can_do_fast_api_call) { GenerateFastApiCall(masm, optimization, arguments_.immediate()); } else { Handle<JSFunction> fun = optimization.constant_function(); stub_compiler_->GenerateJumpFunction(object, fun); } // Deferred code for fast API call case---clean preallocated space. if (can_do_fast_api_call) { __ bind(&miss_cleanup); FreeSpaceForFastApiCall(masm, scratch1); __ jmp(miss_label); } // Invoke a regular function. __ bind(®ular_invoke); if (can_do_fast_api_call) { FreeSpaceForFastApiCall(masm, scratch1); } } void CompileRegular(MacroAssembler* masm, Handle<JSObject> object, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle<Name> name, Handle<JSObject> interceptor_holder, Label* miss_label) { Register holder = stub_compiler_->CheckPrototypes( IC::CurrentTypeOf(object, masm->isolate()), receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss_label); FrameScope scope(masm, StackFrame::INTERNAL); // Save the name_ register across the call. __ push(name_); CompileCallLoadPropertyWithInterceptor( masm, receiver, holder, name_, interceptor_holder, IC::kLoadPropertyWithInterceptorForCall); // Restore the name_ register. __ pop(name_); // Leave the internal frame. } void LoadWithInterceptor(MacroAssembler* masm, Register receiver, Register holder, Handle<JSObject> holder_obj, Label* interceptor_succeeded) { { FrameScope scope(masm, StackFrame::INTERNAL); __ push(receiver); __ push(holder); __ push(name_); CompileCallLoadPropertyWithInterceptor( masm, receiver, holder, name_, holder_obj, IC::kLoadPropertyWithInterceptorOnly); __ pop(name_); __ pop(holder); __ pop(receiver); // Leave the internal frame. } __ cmp(eax, masm->isolate()->factory()->no_interceptor_result_sentinel()); __ j(not_equal, interceptor_succeeded); } CallStubCompiler* stub_compiler_; const ParameterCount& arguments_; Register name_; }; void StoreStubCompiler::GenerateRestoreName(MacroAssembler* masm, Label* label, Handle<Name> name) { if (!label->is_unused()) { __ bind(label); __ mov(this->name(), Immediate(name)); } } // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. void StubCompiler::GenerateCheckPropertyCell(MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name, Register scratch, Label* miss) { Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name); ASSERT(cell->value()->IsTheHole()); Handle<Oddball> the_hole = masm->isolate()->factory()->the_hole_value(); if (Serializer::enabled()) { __ mov(scratch, Immediate(cell)); __ cmp(FieldOperand(scratch, PropertyCell::kValueOffset), Immediate(the_hole)); } else { __ cmp(Operand::ForCell(cell), Immediate(the_hole)); } __ j(not_equal, miss); } void StoreStubCompiler::GenerateNegativeHolderLookup( MacroAssembler* masm, Handle<JSObject> holder, Register holder_reg, Handle<Name> name, Label* miss) { if (holder->IsJSGlobalObject()) { GenerateCheckPropertyCell( masm, Handle<JSGlobalObject>::cast(holder), name, scratch1(), miss); } else if (!holder->HasFastProperties() && !holder->IsJSGlobalProxy()) { GenerateDictionaryNegativeLookup( masm, miss, holder_reg, name, scratch1(), scratch2()); } } // Receiver_reg is preserved on jumps to miss_label, but may be destroyed if // store is successful. void StoreStubCompiler::GenerateStoreTransition(MacroAssembler* masm, Handle<JSObject> object, LookupResult* lookup, Handle<Map> transition, Handle<Name> name, Register receiver_reg, Register storage_reg, Register value_reg, Register scratch1, Register scratch2, Register unused, Label* miss_label, Label* slow) { int descriptor = transition->LastAdded(); DescriptorArray* descriptors = transition->instance_descriptors(); PropertyDetails details = descriptors->GetDetails(descriptor); Representation representation = details.representation(); ASSERT(!representation.IsNone()); if (details.type() == CONSTANT) { Handle<Object> constant(descriptors->GetValue(descriptor), masm->isolate()); __ CmpObject(value_reg, constant); __ j(not_equal, miss_label); } else if (FLAG_track_fields && representation.IsSmi()) { __ JumpIfNotSmi(value_reg, miss_label); } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { __ JumpIfSmi(value_reg, miss_label); } else if (FLAG_track_double_fields && representation.IsDouble()) { Label do_store, heap_number; __ AllocateHeapNumber(storage_reg, scratch1, scratch2, slow); __ JumpIfNotSmi(value_reg, &heap_number); __ SmiUntag(value_reg); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope use_sse2(masm, SSE2); __ Cvtsi2sd(xmm0, value_reg); } else { __ push(value_reg); __ fild_s(Operand(esp, 0)); __ pop(value_reg); } __ SmiTag(value_reg); __ jmp(&do_store); __ bind(&heap_number); __ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(), miss_label, DONT_DO_SMI_CHECK); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope use_sse2(masm, SSE2); __ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset)); } else { __ fld_d(FieldOperand(value_reg, HeapNumber::kValueOffset)); } __ bind(&do_store); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope use_sse2(masm, SSE2); __ movsd(FieldOperand(storage_reg, HeapNumber::kValueOffset), xmm0); } else { __ fstp_d(FieldOperand(storage_reg, HeapNumber::kValueOffset)); } } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); // Perform map transition for the receiver if necessary. if (details.type() == FIELD && object->map()->unused_property_fields() == 0) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ pop(scratch1); // Return address. __ push(receiver_reg); __ push(Immediate(transition)); __ push(value_reg); __ push(scratch1); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), masm->isolate()), 3, 1); return; } // Update the map of the object. __ mov(scratch1, Immediate(transition)); __ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1); // Update the write barrier for the map field. __ RecordWriteField(receiver_reg, HeapObject::kMapOffset, scratch1, scratch2, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); if (details.type() == CONSTANT) { ASSERT(value_reg.is(eax)); __ ret(0); return; } int index = transition->instance_descriptors()->GetFieldIndex( transition->LastAdded()); // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= object->map()->inobject_properties(); SmiCheck smi_check = representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK; // TODO(verwaest): Share this code as a code stub. if (index < 0) { // Set the property straight into the object. int offset = object->map()->instance_size() + (index * kPointerSize); if (FLAG_track_double_fields && representation.IsDouble()) { __ mov(FieldOperand(receiver_reg, offset), storage_reg); } else { __ mov(FieldOperand(receiver_reg, offset), value_reg); } if (!FLAG_track_fields || !representation.IsSmi()) { // Update the write barrier for the array address. if (!FLAG_track_double_fields || !representation.IsDouble()) { __ mov(storage_reg, value_reg); } __ RecordWriteField(receiver_reg, offset, storage_reg, scratch1, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array (optimistically). __ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); if (FLAG_track_double_fields && representation.IsDouble()) { __ mov(FieldOperand(scratch1, offset), storage_reg); } else { __ mov(FieldOperand(scratch1, offset), value_reg); } if (!FLAG_track_fields || !representation.IsSmi()) { // Update the write barrier for the array address. if (!FLAG_track_double_fields || !representation.IsDouble()) { __ mov(storage_reg, value_reg); } __ RecordWriteField(scratch1, offset, storage_reg, receiver_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } // Return the value (register eax). ASSERT(value_reg.is(eax)); __ ret(0); } // Both name_reg and receiver_reg are preserved on jumps to miss_label, // but may be destroyed if store is successful. void StoreStubCompiler::GenerateStoreField(MacroAssembler* masm, Handle<JSObject> object, LookupResult* lookup, Register receiver_reg, Register name_reg, Register value_reg, Register scratch1, Register scratch2, Label* miss_label) { // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); int index = lookup->GetFieldIndex().field_index(); // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= object->map()->inobject_properties(); Representation representation = lookup->representation(); ASSERT(!representation.IsNone()); if (FLAG_track_fields && representation.IsSmi()) { __ JumpIfNotSmi(value_reg, miss_label); } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { __ JumpIfSmi(value_reg, miss_label); } else if (FLAG_track_double_fields && representation.IsDouble()) { // Load the double storage. if (index < 0) { int offset = object->map()->instance_size() + (index * kPointerSize); __ mov(scratch1, FieldOperand(receiver_reg, offset)); } else { __ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); int offset = index * kPointerSize + FixedArray::kHeaderSize; __ mov(scratch1, FieldOperand(scratch1, offset)); } // Store the value into the storage. Label do_store, heap_number; __ JumpIfNotSmi(value_reg, &heap_number); __ SmiUntag(value_reg); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope use_sse2(masm, SSE2); __ Cvtsi2sd(xmm0, value_reg); } else { __ push(value_reg); __ fild_s(Operand(esp, 0)); __ pop(value_reg); } __ SmiTag(value_reg); __ jmp(&do_store); __ bind(&heap_number); __ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(), miss_label, DONT_DO_SMI_CHECK); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope use_sse2(masm, SSE2); __ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset)); } else { __ fld_d(FieldOperand(value_reg, HeapNumber::kValueOffset)); } __ bind(&do_store); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope use_sse2(masm, SSE2); __ movsd(FieldOperand(scratch1, HeapNumber::kValueOffset), xmm0); } else { __ fstp_d(FieldOperand(scratch1, HeapNumber::kValueOffset)); } // Return the value (register eax). ASSERT(value_reg.is(eax)); __ ret(0); return; } ASSERT(!FLAG_track_double_fields || !representation.IsDouble()); // TODO(verwaest): Share this code as a code stub. SmiCheck smi_check = representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK; if (index < 0) { // Set the property straight into the object. int offset = object->map()->instance_size() + (index * kPointerSize); __ mov(FieldOperand(receiver_reg, offset), value_reg); if (!FLAG_track_fields || !representation.IsSmi()) { // Update the write barrier for the array address. // Pass the value being stored in the now unused name_reg. __ mov(name_reg, value_reg); __ RecordWriteField(receiver_reg, offset, name_reg, scratch1, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array (optimistically). __ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); __ mov(FieldOperand(scratch1, offset), value_reg); if (!FLAG_track_fields || !representation.IsSmi()) { // Update the write barrier for the array address. // Pass the value being stored in the now unused name_reg. __ mov(name_reg, value_reg); __ RecordWriteField(scratch1, offset, name_reg, receiver_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } // Return the value (register eax). ASSERT(value_reg.is(eax)); __ ret(0); } void StubCompiler::GenerateTailCall(MacroAssembler* masm, Handle<Code> code) { __ jmp(code, RelocInfo::CODE_TARGET); } #undef __ #define __ ACCESS_MASM(masm()) Register StubCompiler::CheckPrototypes(Handle<Type> type, Register object_reg, Handle<JSObject> holder, Register holder_reg, Register scratch1, Register scratch2, Handle<Name> name, int save_at_depth, Label* miss, PrototypeCheckType check) { Handle<Map> receiver_map(IC::TypeToMap(*type, isolate())); // Make sure that the type feedback oracle harvests the receiver map. // TODO(svenpanne) Remove this hack when all ICs are reworked. __ mov(scratch1, receiver_map); // Make sure there's no overlap between holder and object registers. ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 0; const int kHolderIndex = FunctionCallbackArguments::kHolderIndex + 1; if (save_at_depth == depth) { __ mov(Operand(esp, kHolderIndex * kPointerSize), reg); } Handle<JSObject> current = Handle<JSObject>::null(); if (type->IsConstant()) current = Handle<JSObject>::cast(type->AsConstant()); Handle<JSObject> prototype = Handle<JSObject>::null(); Handle<Map> current_map = receiver_map; Handle<Map> holder_map(holder->map()); // Traverse the prototype chain and check the maps in the prototype chain for // fast and global objects or do negative lookup for normal objects. while (!current_map.is_identical_to(holder_map)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); prototype = handle(JSObject::cast(current_map->prototype())); if (current_map->is_dictionary_map() && !current_map->IsJSGlobalObjectMap() && !current_map->IsJSGlobalProxyMap()) { if (!name->IsUniqueName()) { ASSERT(name->IsString()); name = factory()->InternalizeString(Handle<String>::cast(name)); } ASSERT(current.is_null() || current->property_dictionary()->FindEntry(*name) == NameDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // From now on the object will be in holder_reg. __ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { bool in_new_space = heap()->InNewSpace(*prototype); if (depth != 1 || check == CHECK_ALL_MAPS) { __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK); } // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss); } else if (current_map->IsJSGlobalObjectMap()) { GenerateCheckPropertyCell( masm(), Handle<JSGlobalObject>::cast(current), name, scratch2, miss); } if (in_new_space) { // Save the map in scratch1 for later. __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); } reg = holder_reg; // From now on the object will be in holder_reg. if (in_new_space) { // The prototype is in new space; we cannot store a reference to it // in the code. Load it from the map. __ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { // The prototype is in old space; load it directly. __ mov(reg, prototype); } } if (save_at_depth == depth) { __ mov(Operand(esp, kHolderIndex * kPointerSize), reg); } // Go to the next object in the prototype chain. current = prototype; current_map = handle(current->map()); } // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); if (depth != 0 || check == CHECK_ALL_MAPS) { // Check the holder map. __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK); } // Perform security check for access to the global object. ASSERT(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss); } // Return the register containing the holder. return reg; } void LoadStubCompiler::HandlerFrontendFooter(Handle<Name> name, Label* miss) { if (!miss->is_unused()) { Label success; __ jmp(&success); __ bind(miss); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void StoreStubCompiler::HandlerFrontendFooter(Handle<Name> name, Label* miss) { if (!miss->is_unused()) { Label success; __ jmp(&success); GenerateRestoreName(masm(), miss, name); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } Register LoadStubCompiler::CallbackHandlerFrontend( Handle<Type> type, Register object_reg, Handle<JSObject> holder, Handle<Name> name, Handle<Object> callback) { Label miss; Register reg = HandlerFrontendHeader(type, object_reg, holder, name, &miss); if (!holder->HasFastProperties() && !holder->IsJSGlobalObject()) { ASSERT(!reg.is(scratch2())); ASSERT(!reg.is(scratch3())); Register dictionary = scratch1(); bool must_preserve_dictionary_reg = reg.is(dictionary); // Load the properties dictionary. if (must_preserve_dictionary_reg) { __ push(dictionary); } __ mov(dictionary, FieldOperand(reg, JSObject::kPropertiesOffset)); // Probe the dictionary. Label probe_done, pop_and_miss; NameDictionaryLookupStub::GeneratePositiveLookup(masm(), &pop_and_miss, &probe_done, dictionary, this->name(), scratch2(), scratch3()); __ bind(&pop_and_miss); if (must_preserve_dictionary_reg) { __ pop(dictionary); } __ jmp(&miss); __ bind(&probe_done); // If probing finds an entry in the dictionary, scratch2 contains the // index into the dictionary. Check that the value is the callback. Register index = scratch2(); const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kValueOffset = kElementsStartOffset + kPointerSize; __ mov(scratch3(), Operand(dictionary, index, times_4, kValueOffset - kHeapObjectTag)); if (must_preserve_dictionary_reg) { __ pop(dictionary); } __ cmp(scratch3(), callback); __ j(not_equal, &miss); } HandlerFrontendFooter(name, &miss); return reg; } void LoadStubCompiler::GenerateLoadField(Register reg, Handle<JSObject> holder, PropertyIndex field, Representation representation) { if (!reg.is(receiver())) __ mov(receiver(), reg); if (kind() == Code::LOAD_IC) { LoadFieldStub stub(field.is_inobject(holder), field.translate(holder), representation); GenerateTailCall(masm(), stub.GetCode(isolate())); } else { KeyedLoadFieldStub stub(field.is_inobject(holder), field.translate(holder), representation); GenerateTailCall(masm(), stub.GetCode(isolate())); } } void LoadStubCompiler::GenerateLoadCallback( const CallOptimization& call_optimization) { GenerateFastApiCall( masm(), call_optimization, receiver(), scratch1(), scratch2(), name(), 0, NULL); } void LoadStubCompiler::GenerateLoadCallback( Register reg, Handle<ExecutableAccessorInfo> callback) { // Insert additional parameters into the stack frame above return address. ASSERT(!scratch3().is(reg)); __ pop(scratch3()); // Get return address to place it below. STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5); __ push(receiver()); // receiver // Push data from ExecutableAccessorInfo. if (isolate()->heap()->InNewSpace(callback->data())) { ASSERT(!scratch2().is(reg)); __ mov(scratch2(), Immediate(callback)); __ push(FieldOperand(scratch2(), ExecutableAccessorInfo::kDataOffset)); } else { __ push(Immediate(Handle<Object>(callback->data(), isolate()))); } __ push(Immediate(isolate()->factory()->undefined_value())); // ReturnValue // ReturnValue default value __ push(Immediate(isolate()->factory()->undefined_value())); __ push(Immediate(reinterpret_cast<int>(isolate()))); __ push(reg); // holder // Save a pointer to where we pushed the arguments. This will be // passed as the const PropertyAccessorInfo& to the C++ callback. __ push(esp); __ push(name()); // name __ mov(ebx, esp); // esp points to reference to name (handler). __ push(scratch3()); // Restore return address. // array for v8::Arguments::values_, handler for name and pointer // to the values (it considered as smi in GC). const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2; // Allocate space for opional callback address parameter in case // CPU profiler is active. const int kApiArgc = 2 + 1; Address getter_address = v8::ToCData<Address>(callback->getter()); __ PrepareCallApiFunction(kApiArgc); __ mov(ApiParameterOperand(0), ebx); // name. __ add(ebx, Immediate(kPointerSize)); __ mov(ApiParameterOperand(1), ebx); // arguments pointer. // Emitting a stub call may try to allocate (if the code is not // already generated). Do not allow the assembler to perform a // garbage collection but instead return the allocation failure // object. Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); __ CallApiFunctionAndReturn(getter_address, thunk_address, ApiParameterOperand(2), kStackSpace, Operand(ebp, 7 * kPointerSize), NULL); } void LoadStubCompiler::GenerateLoadConstant(Handle<Object> value) { // Return the constant value. __ LoadObject(eax, value); __ ret(0); } void LoadStubCompiler::GenerateLoadInterceptor( Register holder_reg, Handle<Object> object, Handle<JSObject> interceptor_holder, LookupResult* lookup, Handle<Name> name) { ASSERT(interceptor_holder->HasNamedInterceptor()); ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined()); // So far the most popular follow ups for interceptor loads are FIELD // and CALLBACKS, so inline only them, other cases may be added // later. bool compile_followup_inline = false; if (lookup->IsFound() && lookup->IsCacheable()) { if (lookup->IsField()) { compile_followup_inline = true; } else if (lookup->type() == CALLBACKS && lookup->GetCallbackObject()->IsExecutableAccessorInfo()) { ExecutableAccessorInfo* callback = ExecutableAccessorInfo::cast(lookup->GetCallbackObject()); compile_followup_inline = callback->getter() != NULL && callback->IsCompatibleReceiver(*object); } } if (compile_followup_inline) { // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. ASSERT(holder_reg.is(receiver()) || holder_reg.is(scratch1())); // Preserve the receiver register explicitly whenever it is different from // the holder and it is needed should the interceptor return without any // result. The CALLBACKS case needs the receiver to be passed into C++ code, // the FIELD case might cause a miss during the prototype check. bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder(); bool must_preserve_receiver_reg = !receiver().is(holder_reg) && (lookup->type() == CALLBACKS || must_perfrom_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ push(receiver()); } __ push(holder_reg); __ push(this->name()); // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor( masm(), receiver(), holder_reg, this->name(), interceptor_holder, IC::kLoadPropertyWithInterceptorOnly); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ cmp(eax, factory()->no_interceptor_result_sentinel()); __ j(equal, &interceptor_failed); frame_scope.GenerateLeaveFrame(); __ ret(0); // Clobber registers when generating debug-code to provoke errors. __ bind(&interceptor_failed); if (FLAG_debug_code) { __ mov(receiver(), Immediate(BitCast<int32_t>(kZapValue))); __ mov(holder_reg, Immediate(BitCast<int32_t>(kZapValue))); __ mov(this->name(), Immediate(BitCast<int32_t>(kZapValue))); } __ pop(this->name()); __ pop(holder_reg); if (must_preserve_receiver_reg) { __ pop(receiver()); } // Leave the internal frame. } GenerateLoadPostInterceptor(holder_reg, interceptor_holder, name, lookup); } else { // !compile_followup_inline // Call the runtime system to load the interceptor. // Check that the maps haven't changed. __ pop(scratch2()); // save old return address PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(), interceptor_holder); __ push(scratch2()); // restore old return address ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), isolate()); __ TailCallExternalReference(ref, StubCache::kInterceptorArgsLength, 1); } } void CallStubCompiler::GenerateNameCheck(Handle<Name> name, Label* miss) { if (kind_ == Code::KEYED_CALL_IC) { __ cmp(ecx, Immediate(name)); __ j(not_equal, miss); } } void CallStubCompiler::GenerateFunctionCheck(Register function, Register scratch, Label* miss) { __ JumpIfSmi(function, miss); __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch); __ j(not_equal, miss); } void CallStubCompiler::GenerateLoadFunctionFromCell( Handle<Cell> cell, Handle<JSFunction> function, Label* miss) { // Get the value from the cell. if (Serializer::enabled()) { __ mov(edi, Immediate(cell)); __ mov(edi, FieldOperand(edi, Cell::kValueOffset)); } else { __ mov(edi, Operand::ForCell(cell)); } // Check that the cell contains the same function. if (isolate()->heap()->InNewSpace(*function)) { // We can't embed a pointer to a function in new space so we have // to verify that the shared function info is unchanged. This has // the nice side effect that multiple closures based on the same // function can all use this call IC. Before we load through the // function, we have to verify that it still is a function. GenerateFunctionCheck(edi, ebx, miss); // Check the shared function info. Make sure it hasn't changed. __ cmp(FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset), Immediate(Handle<SharedFunctionInfo>(function->shared()))); } else { __ cmp(edi, Immediate(function)); } __ j(not_equal, miss); } void CallStubCompiler::GenerateMissBranch() { Handle<Code> code = isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(), kind_, extra_state()); __ jmp(code, RelocInfo::CODE_TARGET); } Handle<Code> CallStubCompiler::CompileCallField(Handle<JSObject> object, Handle<JSObject> holder, PropertyIndex index, Handle<Name> name) { Label miss; Register reg = HandlerFrontendHeader( object, holder, name, RECEIVER_MAP_CHECK, &miss); GenerateFastPropertyLoad( masm(), edi, reg, index.is_inobject(holder), index.translate(holder), Representation::Tagged()); GenerateJumpFunction(object, edi, &miss); HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(Code::FAST, name); } Handle<Code> CallStubCompiler::CompileArrayCodeCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name, Code::StubType type) { Label miss; HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss); if (!cell.is_null()) { ASSERT(cell->value() == *function); GenerateLoadFunctionFromCell(cell, function, &miss); } Handle<AllocationSite> site = isolate()->factory()->NewAllocationSite(); site->SetElementsKind(GetInitialFastElementsKind()); Handle<Cell> site_feedback_cell = isolate()->factory()->NewCell(site); const int argc = arguments().immediate(); __ mov(eax, Immediate(argc)); __ mov(ebx, site_feedback_cell); __ mov(edi, function); ArrayConstructorStub stub(isolate()); __ TailCallStub(&stub); HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(type, name); } Handle<Code> CallStubCompiler::CompileArrayPushCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name, Code::StubType type) { // If object is not an array or is observed or sealed, bail out to regular // call. if (!object->IsJSArray() || !cell.is_null() || Handle<JSArray>::cast(object)->map()->is_observed() || !Handle<JSArray>::cast(object)->map()->is_extensible()) { return Handle<Code>::null(); } Label miss; HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss); const int argc = arguments().immediate(); if (argc == 0) { // Noop, return the length. __ mov(eax, FieldOperand(edx, JSArray::kLengthOffset)); __ ret((argc + 1) * kPointerSize); } else { Label call_builtin; if (argc == 1) { // Otherwise fall through to call builtin. Label attempt_to_grow_elements, with_write_barrier, check_double; // Get the elements array of the object. __ mov(edi, FieldOperand(edx, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ cmp(FieldOperand(edi, HeapObject::kMapOffset), Immediate(factory()->fixed_array_map())); __ j(not_equal, &check_double); // Get the array's length into eax and calculate new length. __ mov(eax, FieldOperand(edx, JSArray::kLengthOffset)); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); __ add(eax, Immediate(Smi::FromInt(argc))); // Get the elements' length into ecx. __ mov(ecx, FieldOperand(edi, FixedArray::kLengthOffset)); // Check if we could survive without allocation. __ cmp(eax, ecx); __ j(greater, &attempt_to_grow_elements); // Check if value is a smi. __ mov(ecx, Operand(esp, argc * kPointerSize)); __ JumpIfNotSmi(ecx, &with_write_barrier); // Save new length. __ mov(FieldOperand(edx, JSArray::kLengthOffset), eax); // Store the value. __ mov(FieldOperand(edi, eax, times_half_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize), ecx); __ ret((argc + 1) * kPointerSize); __ bind(&check_double); // Check that the elements are in double mode. __ cmp(FieldOperand(edi, HeapObject::kMapOffset), Immediate(factory()->fixed_double_array_map())); __ j(not_equal, &call_builtin); // Get the array's length into eax and calculate new length. __ mov(eax, FieldOperand(edx, JSArray::kLengthOffset)); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); __ add(eax, Immediate(Smi::FromInt(argc))); // Get the elements' length into ecx. __ mov(ecx, FieldOperand(edi, FixedArray::kLengthOffset)); // Check if we could survive without allocation. __ cmp(eax, ecx); __ j(greater, &call_builtin); __ mov(ecx, Operand(esp, argc * kPointerSize)); __ StoreNumberToDoubleElements( ecx, edi, eax, ecx, xmm0, &call_builtin, true, argc * kDoubleSize); // Save new length. __ mov(FieldOperand(edx, JSArray::kLengthOffset), eax); __ ret((argc + 1) * kPointerSize); __ bind(&with_write_barrier); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) { Label fast_object, not_fast_object; __ CheckFastObjectElements(ebx, ¬_fast_object, Label::kNear); __ jmp(&fast_object); // In case of fast smi-only, convert to fast object, otherwise bail out. __ bind(¬_fast_object); __ CheckFastSmiElements(ebx, &call_builtin); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), Immediate(factory()->heap_number_map())); __ j(equal, &call_builtin); // edi: elements array // edx: receiver // ebx: map Label try_holey_map; __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, ebx, edi, &try_holey_map); ElementsTransitionGenerator:: GenerateMapChangeElementsTransition(masm(), DONT_TRACK_ALLOCATION_SITE, NULL); // Restore edi. __ mov(edi, FieldOperand(edx, JSArray::kElementsOffset)); __ jmp(&fast_object); __ bind(&try_holey_map); __ LoadTransitionedArrayMapConditional(FAST_HOLEY_SMI_ELEMENTS, FAST_HOLEY_ELEMENTS, ebx, edi, &call_builtin); ElementsTransitionGenerator:: GenerateMapChangeElementsTransition(masm(), DONT_TRACK_ALLOCATION_SITE, NULL); // Restore edi. __ mov(edi, FieldOperand(edx, JSArray::kElementsOffset)); __ bind(&fast_object); } else { __ CheckFastObjectElements(ebx, &call_builtin); } // Save new length. __ mov(FieldOperand(edx, JSArray::kLengthOffset), eax); // Store the value. __ lea(edx, FieldOperand(edi, eax, times_half_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize)); __ mov(Operand(edx, 0), ecx); __ RecordWrite(edi, edx, ecx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ ret((argc + 1) * kPointerSize); __ bind(&attempt_to_grow_elements); if (!FLAG_inline_new) { __ jmp(&call_builtin); } __ mov(ebx, Operand(esp, argc * kPointerSize)); // Growing elements that are SMI-only requires special handling in case // the new element is non-Smi. For now, delegate to the builtin. Label no_fast_elements_check; __ JumpIfSmi(ebx, &no_fast_elements_check); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ CheckFastObjectElements(ecx, &call_builtin, Label::kFar); __ bind(&no_fast_elements_check); // We could be lucky and the elements array could be at the top of // new-space. In this case we can just grow it in place by moving the // allocation pointer up. ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); const int kAllocationDelta = 4; // Load top. __ mov(ecx, Operand::StaticVariable(new_space_allocation_top)); // Check if it's the end of elements. __ lea(edx, FieldOperand(edi, eax, times_half_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize)); __ cmp(edx, ecx); __ j(not_equal, &call_builtin); __ add(ecx, Immediate(kAllocationDelta * kPointerSize)); __ cmp(ecx, Operand::StaticVariable(new_space_allocation_limit)); __ j(above, &call_builtin); // We fit and could grow elements. __ mov(Operand::StaticVariable(new_space_allocation_top), ecx); // Push the argument... __ mov(Operand(edx, 0), ebx); // ... and fill the rest with holes. for (int i = 1; i < kAllocationDelta; i++) { __ mov(Operand(edx, i * kPointerSize), Immediate(factory()->the_hole_value())); } // We know the elements array is in new space so we don't need the // remembered set, but we just pushed a value onto it so we may have to // tell the incremental marker to rescan the object that we just grew. We // don't need to worry about the holes because they are in old space and // already marked black. __ RecordWrite(edi, edx, ebx, kDontSaveFPRegs, OMIT_REMEMBERED_SET); // Restore receiver to edx as finish sequence assumes it's here. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Increment element's and array's sizes. __ add(FieldOperand(edi, FixedArray::kLengthOffset), Immediate(Smi::FromInt(kAllocationDelta))); // NOTE: This only happen in new-space, where we don't // care about the black-byte-count on pages. Otherwise we should // update that too if the object is black. __ mov(FieldOperand(edx, JSArray::kLengthOffset), eax); __ ret((argc + 1) * kPointerSize); } __ bind(&call_builtin); __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPush, isolate()), argc + 1, 1); } HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(type, name); } Handle<Code> CallStubCompiler::CompileArrayPopCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name, Code::StubType type) { // If object is not an array or is observed or sealed, bail out to regular // call. if (!object->IsJSArray() || !cell.is_null() || Handle<JSArray>::cast(object)->map()->is_observed() || !Handle<JSArray>::cast(object)->map()->is_extensible()) { return Handle<Code>::null(); } Label miss, return_undefined, call_builtin; HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss); // Get the elements array of the object. __ mov(ebx, FieldOperand(edx, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(factory()->fixed_array_map())); __ j(not_equal, &call_builtin); // Get the array's length into ecx and calculate new length. __ mov(ecx, FieldOperand(edx, JSArray::kLengthOffset)); __ sub(ecx, Immediate(Smi::FromInt(1))); __ j(negative, &return_undefined); // Get the last element. STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); __ mov(eax, FieldOperand(ebx, ecx, times_half_pointer_size, FixedArray::kHeaderSize)); __ cmp(eax, Immediate(factory()->the_hole_value())); __ j(equal, &call_builtin); // Set the array's length. __ mov(FieldOperand(edx, JSArray::kLengthOffset), ecx); // Fill with the hole. __ mov(FieldOperand(ebx, ecx, times_half_pointer_size, FixedArray::kHeaderSize), Immediate(factory()->the_hole_value())); const int argc = arguments().immediate(); __ ret((argc + 1) * kPointerSize); __ bind(&return_undefined); __ mov(eax, Immediate(factory()->undefined_value())); __ ret((argc + 1) * kPointerSize); __ bind(&call_builtin); __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPop, isolate()), argc + 1, 1); HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(type, name); } Handle<Code> CallStubCompiler::CompileStringCharCodeAtCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name, Code::StubType type) { // If object is not a string, bail out to regular call. if (!object->IsString() || !cell.is_null()) { return Handle<Code>::null(); } const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && (CallICBase::StringStubState::decode(extra_state()) == DEFAULT_STRING_STUB)) { index_out_of_range_label = &miss; } HandlerFrontendHeader(object, holder, name, STRING_CHECK, &name_miss); Register receiver = ebx; Register index = edi; Register result = eax; __ mov(receiver, Operand(esp, (argc + 1) * kPointerSize)); if (argc > 0) { __ mov(index, Operand(esp, (argc - 0) * kPointerSize)); } else { __ Set(index, Immediate(factory()->undefined_value())); } StringCharCodeAtGenerator generator(receiver, index, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm()); __ ret((argc + 1) * kPointerSize); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ Set(eax, Immediate(factory()->nan_value())); __ ret((argc + 1) * kPointerSize); } __ bind(&miss); // Restore function name in ecx. __ Set(ecx, Immediate(name)); HandlerFrontendFooter(&name_miss); // Return the generated code. return GetCode(type, name); } Handle<Code> CallStubCompiler::CompileStringCharAtCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name, Code::StubType type) { // If object is not a string, bail out to regular call. if (!object->IsString() || !cell.is_null()) { return Handle<Code>::null(); } const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && (CallICBase::StringStubState::decode(extra_state()) == DEFAULT_STRING_STUB)) { index_out_of_range_label = &miss; } HandlerFrontendHeader(object, holder, name, STRING_CHECK, &name_miss); Register receiver = eax; Register index = edi; Register scratch = edx; Register result = eax; __ mov(receiver, Operand(esp, (argc + 1) * kPointerSize)); if (argc > 0) { __ mov(index, Operand(esp, (argc - 0) * kPointerSize)); } else { __ Set(index, Immediate(factory()->undefined_value())); } StringCharAtGenerator generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm()); __ ret((argc + 1) * kPointerSize); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ Set(eax, Immediate(factory()->empty_string())); __ ret((argc + 1) * kPointerSize); } __ bind(&miss); // Restore function name in ecx. __ Set(ecx, Immediate(name)); HandlerFrontendFooter(&name_miss); // Return the generated code. return GetCode(type, name); } Handle<Code> CallStubCompiler::CompileStringFromCharCodeCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name, Code::StubType type) { const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) { return Handle<Code>::null(); } Label miss; HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss); if (!cell.is_null()) { ASSERT(cell->value() == *function); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the char code argument. Register code = ebx; __ mov(code, Operand(esp, 1 * kPointerSize)); // Check the code is a smi. Label slow; STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(code, &slow); // Convert the smi code to uint16. __ and_(code, Immediate(Smi::FromInt(0xffff))); StringCharFromCodeGenerator generator(code, eax); generator.GenerateFast(masm()); __ ret(2 * kPointerSize); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); __ bind(&slow); // We do not have to patch the receiver because the function makes no use of // it. GenerateJumpFunctionIgnoreReceiver(function); HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(type, name); } Handle<Code> CallStubCompiler::CompileMathFloorCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name, Code::StubType type) { if (!CpuFeatures::IsSupported(SSE2)) { return Handle<Code>::null(); } CpuFeatureScope use_sse2(masm(), SSE2); const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) { return Handle<Code>::null(); } Label miss; HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss); if (!cell.is_null()) { ASSERT(cell->value() == *function); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into eax. __ mov(eax, Operand(esp, 1 * kPointerSize)); // Check if the argument is a smi. Label smi; STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(eax, &smi); // Check if the argument is a heap number and load its value into xmm0. Label slow; __ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK); __ movsd(xmm0, FieldOperand(eax, HeapNumber::kValueOffset)); // Check if the argument is strictly positive. Note this also // discards NaN. __ xorpd(xmm1, xmm1); __ ucomisd(xmm0, xmm1); __ j(below_equal, &slow); // Do a truncating conversion. __ cvttsd2si(eax, Operand(xmm0)); // Check if the result fits into a smi. Note this also checks for // 0x80000000 which signals a failed conversion. Label wont_fit_into_smi; __ test(eax, Immediate(0xc0000000)); __ j(not_zero, &wont_fit_into_smi); // Smi tag and return. __ SmiTag(eax); __ bind(&smi); __ ret(2 * kPointerSize); // Check if the argument is < 2^kMantissaBits. Label already_round; __ bind(&wont_fit_into_smi); __ LoadPowerOf2(xmm1, ebx, HeapNumber::kMantissaBits); __ ucomisd(xmm0, xmm1); __ j(above_equal, &already_round); // Save a copy of the argument. __ movaps(xmm2, xmm0); // Compute (argument + 2^kMantissaBits) - 2^kMantissaBits. __ addsd(xmm0, xmm1); __ subsd(xmm0, xmm1); // Compare the argument and the tentative result to get the right mask: // if xmm2 < xmm0: // xmm2 = 1...1 // else: // xmm2 = 0...0 __ cmpltsd(xmm2, xmm0); // Subtract 1 if the argument was less than the tentative result. __ LoadPowerOf2(xmm1, ebx, 0); __ andpd(xmm1, xmm2); __ subsd(xmm0, xmm1); // Return a new heap number. __ AllocateHeapNumber(eax, ebx, edx, &slow); __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); __ ret(2 * kPointerSize); // Return the argument (when it's an already round heap number). __ bind(&already_round); __ mov(eax, Operand(esp, 1 * kPointerSize)); __ ret(2 * kPointerSize); __ bind(&slow); // We do not have to patch the receiver because the function makes no use of // it. GenerateJumpFunctionIgnoreReceiver(function); HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(type, name); } Handle<Code> CallStubCompiler::CompileMathAbsCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name, Code::StubType type) { const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) { return Handle<Code>::null(); } Label miss; HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss); if (!cell.is_null()) { ASSERT(cell->value() == *function); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into eax. __ mov(eax, Operand(esp, 1 * kPointerSize)); // Check if the argument is a smi. Label not_smi; STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(eax, ¬_smi); // Branchless abs implementation, refer to below: // http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs // Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0 // otherwise. __ mov(ebx, eax); __ sar(ebx, kBitsPerInt - 1); // Do bitwise not or do nothing depending on ebx. __ xor_(eax, ebx); // Add 1 or do nothing depending on ebx. __ sub(eax, ebx); // If the result is still negative, go to the slow case. // This only happens for the most negative smi. Label slow; __ j(negative, &slow); // Smi case done. __ ret(2 * kPointerSize); // Check if the argument is a heap number and load its exponent and // sign into ebx. __ bind(¬_smi); __ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK); __ mov(ebx, FieldOperand(eax, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, // just return it. Label negative_sign; __ test(ebx, Immediate(HeapNumber::kSignMask)); __ j(not_zero, &negative_sign); __ ret(2 * kPointerSize); // If the argument is negative, clear the sign, and return a new // number. __ bind(&negative_sign); __ and_(ebx, ~HeapNumber::kSignMask); __ mov(ecx, FieldOperand(eax, HeapNumber::kMantissaOffset)); __ AllocateHeapNumber(eax, edi, edx, &slow); __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ebx); __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); __ ret(2 * kPointerSize); __ bind(&slow); // We do not have to patch the receiver because the function makes no use of // it. GenerateJumpFunctionIgnoreReceiver(function); HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(type, name); } Handle<Code> CallStubCompiler::CompileFastApiCall( const CallOptimization& optimization, Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> name) { ASSERT(optimization.is_simple_api_call()); // Bail out if object is a global object as we don't want to // repatch it to global receiver. if (object->IsGlobalObject()) return Handle<Code>::null(); if (!cell.is_null()) return Handle<Code>::null(); if (!object->IsJSObject()) return Handle<Code>::null(); int depth = optimization.GetPrototypeDepthOfExpectedType( Handle<JSObject>::cast(object), holder); if (depth == kInvalidProtoDepth) return Handle<Code>::null(); Label miss, miss_before_stack_reserved; GenerateNameCheck(name, &miss_before_stack_reserved); // Get the receiver from the stack. const int argc = arguments().immediate(); __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(edx, &miss_before_stack_reserved); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->call_const(), 1); __ IncrementCounter(counters->call_const_fast_api(), 1); // Allocate space for v8::Arguments implicit values. Must be initialized // before calling any runtime function. __ sub(esp, Immediate(kFastApiCallArguments * kPointerSize)); // Check that the maps haven't changed and find a Holder as a side effect. CheckPrototypes(IC::CurrentTypeOf(object, isolate()), edx, holder, ebx, eax, edi, name, depth, &miss); // Move the return address on top of the stack. __ mov(eax, Operand(esp, kFastApiCallArguments * kPointerSize)); __ mov(Operand(esp, 0 * kPointerSize), eax); // esp[2 * kPointerSize] is uninitialized, esp[3 * kPointerSize] contains // duplicate of return address and will be overwritten. GenerateFastApiCall(masm(), optimization, argc); __ bind(&miss); __ add(esp, Immediate(kFastApiCallArguments * kPointerSize)); HandlerFrontendFooter(&miss_before_stack_reserved); // Return the generated code. return GetCode(function); } void StubCompiler::GenerateBooleanCheck(Register object, Label* miss) { Label success; // Check that the object is a boolean. __ cmp(object, factory()->true_value()); __ j(equal, &success); __ cmp(object, factory()->false_value()); __ j(not_equal, miss); __ bind(&success); } void CallStubCompiler::PatchGlobalProxy(Handle<Object> object) { if (object->IsGlobalObject()) { const int argc = arguments().immediate(); const int receiver_offset = (argc + 1) * kPointerSize; __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset)); __ mov(Operand(esp, receiver_offset), edx); } } Register CallStubCompiler::HandlerFrontendHeader(Handle<Object> object, Handle<JSObject> holder, Handle<Name> name, CheckType check, Label* miss) { GenerateNameCheck(name, miss); Register reg = edx; const int argc = arguments().immediate(); const int receiver_offset = (argc + 1) * kPointerSize; __ mov(reg, Operand(esp, receiver_offset)); // Check that the receiver isn't a smi. if (check != NUMBER_CHECK) { __ JumpIfSmi(reg, miss); } // Make sure that it's okay not to patch the on stack receiver // unless we're doing a receiver map check. ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK); switch (check) { case RECEIVER_MAP_CHECK: __ IncrementCounter(isolate()->counters()->call_const(), 1); // Check that the maps haven't changed. reg = CheckPrototypes(IC::CurrentTypeOf(object, isolate()), reg, holder, ebx, eax, edi, name, miss); break; case STRING_CHECK: { // Check that the object is a string. __ CmpObjectType(reg, FIRST_NONSTRING_TYPE, eax); __ j(above_equal, miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::STRING_FUNCTION_INDEX, eax, miss); break; } case SYMBOL_CHECK: { // Check that the object is a symbol. __ CmpObjectType(reg, SYMBOL_TYPE, eax); __ j(not_equal, miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::SYMBOL_FUNCTION_INDEX, eax, miss); break; } case NUMBER_CHECK: { Label fast; // Check that the object is a smi or a heap number. __ JumpIfSmi(reg, &fast); __ CmpObjectType(reg, HEAP_NUMBER_TYPE, eax); __ j(not_equal, miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::NUMBER_FUNCTION_INDEX, eax, miss); break; } case BOOLEAN_CHECK: { GenerateBooleanCheck(reg, miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::BOOLEAN_FUNCTION_INDEX, eax, miss); break; } } if (check != RECEIVER_MAP_CHECK) { Handle<Object> prototype(object->GetPrototype(isolate()), isolate()); reg = CheckPrototypes( IC::CurrentTypeOf(prototype, isolate()), eax, holder, ebx, edx, edi, name, miss); } return reg; } void CallStubCompiler::GenerateJumpFunction(Handle<Object> object, Register function, Label* miss) { // Check that the function really is a function. GenerateFunctionCheck(function, ebx, miss); if (!function.is(edi)) __ mov(edi, function); PatchGlobalProxy(object); // Invoke the function. __ InvokeFunction(edi, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind()); } Handle<Code> CallStubCompiler::CompileCallInterceptor(Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name) { Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); // Get the receiver from the stack. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); CallInterceptorCompiler compiler(this, arguments(), ecx, extra_state()); compiler.Compile(masm(), object, holder, name, &lookup, edx, ebx, edi, eax, &miss); // Restore receiver. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); GenerateJumpFunction(object, eax, &miss); HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(Code::FAST, name); } Handle<Code> CallStubCompiler::CompileCallGlobal( Handle<JSObject> object, Handle<GlobalObject> holder, Handle<PropertyCell> cell, Handle<JSFunction> function, Handle<Name> name) { if (HasCustomCallGenerator(function)) { Handle<Code> code = CompileCustomCall( object, holder, cell, function, Handle<String>::cast(name), Code::NORMAL); // A null handle means bail out to the regular compiler code below. if (!code.is_null()) return code; } Label miss; HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss); // Potentially loads a closure that matches the shared function info of the // function, rather than function. GenerateLoadFunctionFromCell(cell, function, &miss); GenerateJumpFunction(object, edi, function); HandlerFrontendFooter(&miss); // Return the generated code. return GetCode(Code::NORMAL, name); } Handle<Code> StoreStubCompiler::CompileStoreCallback( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, Handle<ExecutableAccessorInfo> callback) { HandlerFrontend(IC::CurrentTypeOf(object, isolate()), receiver(), holder, name); __ pop(scratch1()); // remove the return address __ push(receiver()); __ Push(callback); __ Push(name); __ push(value()); __ push(scratch1()); // restore return address // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate()); __ TailCallExternalReference(store_callback_property, 4, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Handle<Code> StoreStubCompiler::CompileStoreCallback( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, const CallOptimization& call_optimization) { HandlerFrontend(IC::CurrentTypeOf(object, isolate()), receiver(), holder, name); Register values[] = { value() }; GenerateFastApiCall( masm(), call_optimization, receiver(), scratch1(), scratch2(), this->name(), 1, values); // Return the generated code. return GetCode(kind(), Code::FAST, name); } #undef __ #define __ ACCESS_MASM(masm) void StoreStubCompiler::GenerateStoreViaSetter( MacroAssembler* masm, Handle<JSFunction> setter) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Save value register, so we can restore it later. __ push(eax); if (!setter.is_null()) { // Call the JavaScript setter with receiver and value on the stack. __ push(edx); __ push(eax); ParameterCount actual(1); ParameterCount expected(setter); __ InvokeFunction(setter, expected, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset()); } // We have to return the passed value, not the return value of the setter. __ pop(eax); // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); } __ ret(0); } #undef __ #define __ ACCESS_MASM(masm()) Handle<Code> StoreStubCompiler::CompileStoreInterceptor( Handle<JSObject> object, Handle<Name> name) { __ pop(scratch1()); // remove the return address __ push(receiver()); __ push(this->name()); __ push(value()); __ push(scratch1()); // restore return address // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate()); __ TailCallExternalReference(store_ic_property, 3, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic( MapHandleList* receiver_maps, CodeHandleList* handler_stubs, MapHandleList* transitioned_maps) { Label miss; __ JumpIfSmi(receiver(), &miss, Label::kNear); __ mov(scratch1(), FieldOperand(receiver(), HeapObject::kMapOffset)); for (int i = 0; i < receiver_maps->length(); ++i) { __ cmp(scratch1(), receiver_maps->at(i)); if (transitioned_maps->at(i).is_null()) { __ j(equal, handler_stubs->at(i)); } else { Label next_map; __ j(not_equal, &next_map, Label::kNear); __ mov(transition_map(), Immediate(transitioned_maps->at(i))); __ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET); __ bind(&next_map); } } __ bind(&miss); TailCallBuiltin(masm(), MissBuiltin(kind())); // Return the generated code. return GetICCode( kind(), Code::NORMAL, factory()->empty_string(), POLYMORPHIC); } Handle<Code> LoadStubCompiler::CompileLoadNonexistent(Handle<Type> type, Handle<JSObject> last, Handle<Name> name) { NonexistentHandlerFrontend(type, last, name); // Return undefined if maps of the full prototype chain are still the // same and no global property with this name contains a value. __ mov(eax, isolate()->factory()->undefined_value()); __ ret(0); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Register* LoadStubCompiler::registers() { // receiver, name, scratch1, scratch2, scratch3, scratch4. static Register registers[] = { edx, ecx, ebx, eax, edi, no_reg }; return registers; } Register* KeyedLoadStubCompiler::registers() { // receiver, name, scratch1, scratch2, scratch3, scratch4. static Register registers[] = { edx, ecx, ebx, eax, edi, no_reg }; return registers; } Register* StoreStubCompiler::registers() { // receiver, name, value, scratch1, scratch2, scratch3. static Register registers[] = { edx, ecx, eax, ebx, edi, no_reg }; return registers; } Register* KeyedStoreStubCompiler::registers() { // receiver, name, value, scratch1, scratch2, scratch3. static Register registers[] = { edx, ecx, eax, ebx, edi, no_reg }; return registers; } void KeyedLoadStubCompiler::GenerateNameCheck(Handle<Name> name, Register name_reg, Label* miss) { __ cmp(name_reg, Immediate(name)); __ j(not_equal, miss); } void KeyedStoreStubCompiler::GenerateNameCheck(Handle<Name> name, Register name_reg, Label* miss) { __ cmp(name_reg, Immediate(name)); __ j(not_equal, miss); } #undef __ #define __ ACCESS_MASM(masm) void LoadStubCompiler::GenerateLoadViaGetter(MacroAssembler* masm, Register receiver, Handle<JSFunction> getter) { { FrameScope scope(masm, StackFrame::INTERNAL); if (!getter.is_null()) { // Call the JavaScript getter with the receiver on the stack. __ push(receiver); ParameterCount actual(0); ParameterCount expected(getter); __ InvokeFunction(getter, expected, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset()); } // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); } __ ret(0); } #undef __ #define __ ACCESS_MASM(masm()) Handle<Code> LoadStubCompiler::CompileLoadGlobal( Handle<Type> type, Handle<GlobalObject> global, Handle<PropertyCell> cell, Handle<Name> name, bool is_dont_delete) { Label miss; HandlerFrontendHeader(type, receiver(), global, name, &miss); // Get the value from the cell. if (Serializer::enabled()) { __ mov(eax, Immediate(cell)); __ mov(eax, FieldOperand(eax, PropertyCell::kValueOffset)); } else { __ mov(eax, Operand::ForCell(cell)); } // Check for deleted property if property can actually be deleted. if (!is_dont_delete) { __ cmp(eax, factory()->the_hole_value()); __ j(equal, &miss); } else if (FLAG_debug_code) { __ cmp(eax, factory()->the_hole_value()); __ Check(not_equal, kDontDeleteCellsCannotContainTheHole); } HandlerFrontendFooter(name, &miss); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1); // The code above already loads the result into the return register. __ ret(0); // Return the generated code. return GetCode(kind(), Code::NORMAL, name); } Handle<Code> BaseLoadStoreStubCompiler::CompilePolymorphicIC( TypeHandleList* types, CodeHandleList* handlers, Handle<Name> name, Code::StubType type, IcCheckType check) { Label miss; if (check == PROPERTY) { GenerateNameCheck(name, this->name(), &miss); } Label number_case; Label* smi_target = IncludesNumberType(types) ? &number_case : &miss; __ JumpIfSmi(receiver(), smi_target); Register map_reg = scratch1(); __ mov(map_reg, FieldOperand(receiver(), HeapObject::kMapOffset)); int receiver_count = types->length(); int number_of_handled_maps = 0; for (int current = 0; current < receiver_count; ++current) { Handle<Type> type = types->at(current); Handle<Map> map = IC::TypeToMap(*type, isolate()); if (!map->is_deprecated()) { number_of_handled_maps++; __ cmp(map_reg, map); if (type->Is(Type::Number())) { ASSERT(!number_case.is_unused()); __ bind(&number_case); } __ j(equal, handlers->at(current)); } } ASSERT(number_of_handled_maps != 0); __ bind(&miss); TailCallBuiltin(masm(), MissBuiltin(kind())); // Return the generated code. InlineCacheState state = number_of_handled_maps > 1 ? POLYMORPHIC : MONOMORPHIC; return GetICCode(kind(), type, name, state); } #undef __ #define __ ACCESS_MASM(masm) void KeyedLoadStubCompiler::GenerateLoadDictionaryElement( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label slow, miss; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. __ JumpIfNotSmi(ecx, &miss); __ mov(ebx, ecx); __ SmiUntag(ebx); __ mov(eax, FieldOperand(edx, JSObject::kElementsOffset)); // Push receiver on the stack to free up a register for the dictionary // probing. __ push(edx); __ LoadFromNumberDictionary(&slow, eax, ecx, ebx, edx, edi, eax); // Pop receiver before returning. __ pop(edx); __ ret(0); __ bind(&slow); __ pop(edx); // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Slow); __ bind(&miss); // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Miss); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32