// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include "v8.h" #include "ast.h" #include "bootstrapper.h" #include "codegen.h" #include "compilation-cache.h" #include "cpu-profiler.h" #include "debug.h" #include "deoptimizer.h" #include "heap-profiler.h" #include "hydrogen.h" #include "isolate-inl.h" #include "lithium-allocator.h" #include "log.h" #include "messages.h" #include "platform.h" #include "regexp-stack.h" #include "runtime-profiler.h" #include "sampler.h" #include "scopeinfo.h" #include "serialize.h" #include "simulator.h" #include "spaces.h" #include "stub-cache.h" #include "sweeper-thread.h" #include "utils/random-number-generator.h" #include "version.h" #include "vm-state-inl.h" namespace v8 { namespace internal { Atomic32 ThreadId::highest_thread_id_ = 0; int ThreadId::AllocateThreadId() { int new_id = NoBarrier_AtomicIncrement(&highest_thread_id_, 1); return new_id; } int ThreadId::GetCurrentThreadId() { int thread_id = Thread::GetThreadLocalInt(Isolate::thread_id_key_); if (thread_id == 0) { thread_id = AllocateThreadId(); Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id); } return thread_id; } ThreadLocalTop::ThreadLocalTop() { InitializeInternal(); // This flag may be set using v8::V8::IgnoreOutOfMemoryException() // before an isolate is initialized. The initialize methods below do // not touch it to preserve its value. ignore_out_of_memory_ = false; } void ThreadLocalTop::InitializeInternal() { c_entry_fp_ = 0; handler_ = 0; #ifdef USE_SIMULATOR simulator_ = NULL; #endif js_entry_sp_ = NULL; external_callback_scope_ = NULL; current_vm_state_ = EXTERNAL; try_catch_handler_address_ = NULL; context_ = NULL; thread_id_ = ThreadId::Invalid(); external_caught_exception_ = false; failed_access_check_callback_ = NULL; save_context_ = NULL; catcher_ = NULL; top_lookup_result_ = NULL; // These members are re-initialized later after deserialization // is complete. pending_exception_ = NULL; has_pending_message_ = false; rethrowing_message_ = false; pending_message_obj_ = NULL; pending_message_script_ = NULL; scheduled_exception_ = NULL; } void ThreadLocalTop::Initialize() { InitializeInternal(); #ifdef USE_SIMULATOR simulator_ = Simulator::current(isolate_); #endif thread_id_ = ThreadId::Current(); } v8::TryCatch* ThreadLocalTop::TryCatchHandler() { return TRY_CATCH_FROM_ADDRESS(try_catch_handler_address()); } Isolate* Isolate::default_isolate_ = NULL; Thread::LocalStorageKey Isolate::isolate_key_; Thread::LocalStorageKey Isolate::thread_id_key_; Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_; #ifdef DEBUG Thread::LocalStorageKey PerThreadAssertScopeBase::thread_local_key; #endif // DEBUG Mutex Isolate::process_wide_mutex_; // TODO(dcarney): Remove with default isolate. enum DefaultIsolateStatus { kDefaultIsolateUninitialized, kDefaultIsolateInitialized, kDefaultIsolateCrashIfInitialized }; static DefaultIsolateStatus default_isolate_status_ = kDefaultIsolateUninitialized; Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL; Atomic32 Isolate::isolate_counter_ = 0; Isolate::PerIsolateThreadData* Isolate::FindOrAllocatePerThreadDataForThisThread() { ThreadId thread_id = ThreadId::Current(); PerIsolateThreadData* per_thread = NULL; { LockGuard<Mutex> lock_guard(&process_wide_mutex_); per_thread = thread_data_table_->Lookup(this, thread_id); if (per_thread == NULL) { per_thread = new PerIsolateThreadData(this, thread_id); thread_data_table_->Insert(per_thread); } } ASSERT(thread_data_table_->Lookup(this, thread_id) == per_thread); return per_thread; } Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() { ThreadId thread_id = ThreadId::Current(); return FindPerThreadDataForThread(thread_id); } Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread( ThreadId thread_id) { PerIsolateThreadData* per_thread = NULL; { LockGuard<Mutex> lock_guard(&process_wide_mutex_); per_thread = thread_data_table_->Lookup(this, thread_id); } return per_thread; } void Isolate::SetCrashIfDefaultIsolateInitialized() { LockGuard<Mutex> lock_guard(&process_wide_mutex_); CHECK(default_isolate_status_ != kDefaultIsolateInitialized); default_isolate_status_ = kDefaultIsolateCrashIfInitialized; } void Isolate::EnsureDefaultIsolate() { LockGuard<Mutex> lock_guard(&process_wide_mutex_); CHECK(default_isolate_status_ != kDefaultIsolateCrashIfInitialized); if (default_isolate_ == NULL) { isolate_key_ = Thread::CreateThreadLocalKey(); thread_id_key_ = Thread::CreateThreadLocalKey(); per_isolate_thread_data_key_ = Thread::CreateThreadLocalKey(); #ifdef DEBUG PerThreadAssertScopeBase::thread_local_key = Thread::CreateThreadLocalKey(); #endif // DEBUG thread_data_table_ = new Isolate::ThreadDataTable(); default_isolate_ = new Isolate(); } // Can't use SetIsolateThreadLocals(default_isolate_, NULL) here // because a non-null thread data may be already set. if (Thread::GetThreadLocal(isolate_key_) == NULL) { Thread::SetThreadLocal(isolate_key_, default_isolate_); } } struct StaticInitializer { StaticInitializer() { Isolate::EnsureDefaultIsolate(); } } static_initializer; #ifdef ENABLE_DEBUGGER_SUPPORT Debugger* Isolate::GetDefaultIsolateDebugger() { EnsureDefaultIsolate(); return default_isolate_->debugger(); } #endif StackGuard* Isolate::GetDefaultIsolateStackGuard() { EnsureDefaultIsolate(); return default_isolate_->stack_guard(); } void Isolate::EnterDefaultIsolate() { EnsureDefaultIsolate(); ASSERT(default_isolate_ != NULL); PerIsolateThreadData* data = CurrentPerIsolateThreadData(); // If not yet in default isolate - enter it. if (data == NULL || data->isolate() != default_isolate_) { default_isolate_->Enter(); } } v8::Isolate* Isolate::GetDefaultIsolateForLocking() { EnsureDefaultIsolate(); return reinterpret_cast<v8::Isolate*>(default_isolate_); } Address Isolate::get_address_from_id(Isolate::AddressId id) { return isolate_addresses_[id]; } char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) { ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage); Iterate(v, thread); return thread_storage + sizeof(ThreadLocalTop); } void Isolate::IterateThread(ThreadVisitor* v, char* t) { ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t); v->VisitThread(this, thread); } void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) { // Visit the roots from the top for a given thread. Object* pending; // The pending exception can sometimes be a failure. We can't show // that to the GC, which only understands objects. if (thread->pending_exception_->ToObject(&pending)) { v->VisitPointer(&pending); thread->pending_exception_ = pending; // In case GC updated it. } v->VisitPointer(&(thread->pending_message_obj_)); v->VisitPointer(BitCast<Object**>(&(thread->pending_message_script_))); v->VisitPointer(BitCast<Object**>(&(thread->context_))); Object* scheduled; if (thread->scheduled_exception_->ToObject(&scheduled)) { v->VisitPointer(&scheduled); thread->scheduled_exception_ = scheduled; } for (v8::TryCatch* block = thread->TryCatchHandler(); block != NULL; block = TRY_CATCH_FROM_ADDRESS(block->next_)) { v->VisitPointer(BitCast<Object**>(&(block->exception_))); v->VisitPointer(BitCast<Object**>(&(block->message_obj_))); v->VisitPointer(BitCast<Object**>(&(block->message_script_))); } // Iterate over pointers on native execution stack. for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) { it.frame()->Iterate(v); } // Iterate pointers in live lookup results. thread->top_lookup_result_->Iterate(v); } void Isolate::Iterate(ObjectVisitor* v) { ThreadLocalTop* current_t = thread_local_top(); Iterate(v, current_t); } void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) { for (DeferredHandles* deferred = deferred_handles_head_; deferred != NULL; deferred = deferred->next_) { deferred->Iterate(visitor); } } #ifdef DEBUG bool Isolate::IsDeferredHandle(Object** handle) { // Each DeferredHandles instance keeps the handles to one job in the // concurrent recompilation queue, containing a list of blocks. Each block // contains kHandleBlockSize handles except for the first block, which may // not be fully filled. // We iterate through all the blocks to see whether the argument handle // belongs to one of the blocks. If so, it is deferred. for (DeferredHandles* deferred = deferred_handles_head_; deferred != NULL; deferred = deferred->next_) { List<Object**>* blocks = &deferred->blocks_; for (int i = 0; i < blocks->length(); i++) { Object** block_limit = (i == 0) ? deferred->first_block_limit_ : blocks->at(i) + kHandleBlockSize; if (blocks->at(i) <= handle && handle < block_limit) return true; } } return false; } #endif // DEBUG void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) { // The ARM simulator has a separate JS stack. We therefore register // the C++ try catch handler with the simulator and get back an // address that can be used for comparisons with addresses into the // JS stack. When running without the simulator, the address // returned will be the address of the C++ try catch handler itself. Address address = reinterpret_cast<Address>( SimulatorStack::RegisterCTryCatch(reinterpret_cast<uintptr_t>(that))); thread_local_top()->set_try_catch_handler_address(address); } void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) { ASSERT(thread_local_top()->TryCatchHandler() == that); thread_local_top()->set_try_catch_handler_address( reinterpret_cast<Address>(that->next_)); thread_local_top()->catcher_ = NULL; SimulatorStack::UnregisterCTryCatch(); } Handle<String> Isolate::StackTraceString() { if (stack_trace_nesting_level_ == 0) { stack_trace_nesting_level_++; HeapStringAllocator allocator; StringStream::ClearMentionedObjectCache(this); StringStream accumulator(&allocator); incomplete_message_ = &accumulator; PrintStack(&accumulator); Handle<String> stack_trace = accumulator.ToString(this); incomplete_message_ = NULL; stack_trace_nesting_level_ = 0; return stack_trace; } else if (stack_trace_nesting_level_ == 1) { stack_trace_nesting_level_++; OS::PrintError( "\n\nAttempt to print stack while printing stack (double fault)\n"); OS::PrintError( "If you are lucky you may find a partial stack dump on stdout.\n\n"); incomplete_message_->OutputToStdOut(); return factory()->empty_string(); } else { OS::Abort(); // Unreachable return factory()->empty_string(); } } void Isolate::PushStackTraceAndDie(unsigned int magic, Object* object, Map* map, unsigned int magic2) { const int kMaxStackTraceSize = 8192; Handle<String> trace = StackTraceString(); uint8_t buffer[kMaxStackTraceSize]; int length = Min(kMaxStackTraceSize - 1, trace->length()); String::WriteToFlat(*trace, buffer, 0, length); buffer[length] = '\0'; // TODO(dcarney): convert buffer to utf8? OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n", magic, magic2, static_cast<void*>(object), static_cast<void*>(map), reinterpret_cast<char*>(buffer)); OS::Abort(); } // Determines whether the given stack frame should be displayed in // a stack trace. The caller is the error constructor that asked // for the stack trace to be collected. The first time a construct // call to this function is encountered it is skipped. The seen_caller // in/out parameter is used to remember if the caller has been seen // yet. static bool IsVisibleInStackTrace(StackFrame* raw_frame, Object* caller, bool* seen_caller) { // Only display JS frames. if (!raw_frame->is_java_script()) return false; JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame); JSFunction* fun = frame->function(); if ((fun == caller) && !(*seen_caller)) { *seen_caller = true; return false; } // Skip all frames until we've seen the caller. if (!(*seen_caller)) return false; // Also, skip non-visible built-in functions and any call with the builtins // object as receiver, so as to not reveal either the builtins object or // an internal function. // The --builtins-in-stack-traces command line flag allows including // internal call sites in the stack trace for debugging purposes. if (!FLAG_builtins_in_stack_traces) { if (frame->receiver()->IsJSBuiltinsObject() || (fun->IsBuiltin() && !fun->shared()->native())) { return false; } } return true; } Handle<JSArray> Isolate::CaptureSimpleStackTrace(Handle<JSObject> error_object, Handle<Object> caller, int limit) { limit = Max(limit, 0); // Ensure that limit is not negative. int initial_size = Min(limit, 10); Handle<FixedArray> elements = factory()->NewFixedArrayWithHoles(initial_size * 4 + 1); // If the caller parameter is a function we skip frames until we're // under it before starting to collect. bool seen_caller = !caller->IsJSFunction(); // First element is reserved to store the number of non-strict frames. int cursor = 1; int frames_seen = 0; int non_strict_frames = 0; bool encountered_strict_function = false; for (StackFrameIterator iter(this); !iter.done() && frames_seen < limit; iter.Advance()) { StackFrame* raw_frame = iter.frame(); if (IsVisibleInStackTrace(raw_frame, *caller, &seen_caller)) { frames_seen++; JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame); // Set initial size to the maximum inlining level + 1 for the outermost // function. List<FrameSummary> frames(FLAG_max_inlining_levels + 1); frame->Summarize(&frames); for (int i = frames.length() - 1; i >= 0; i--) { if (cursor + 4 > elements->length()) { int new_capacity = JSObject::NewElementsCapacity(elements->length()); Handle<FixedArray> new_elements = factory()->NewFixedArrayWithHoles(new_capacity); for (int i = 0; i < cursor; i++) { new_elements->set(i, elements->get(i)); } elements = new_elements; } ASSERT(cursor + 4 <= elements->length()); Handle<Object> recv = frames[i].receiver(); Handle<JSFunction> fun = frames[i].function(); Handle<Code> code = frames[i].code(); Handle<Smi> offset(Smi::FromInt(frames[i].offset()), this); // The stack trace API should not expose receivers and function // objects on frames deeper than the top-most one with a strict // mode function. The number of non-strict frames is stored as // first element in the result array. if (!encountered_strict_function) { if (!fun->shared()->is_classic_mode()) { encountered_strict_function = true; } else { non_strict_frames++; } } elements->set(cursor++, *recv); elements->set(cursor++, *fun); elements->set(cursor++, *code); elements->set(cursor++, *offset); } } } elements->set(0, Smi::FromInt(non_strict_frames)); Handle<JSArray> result = factory()->NewJSArrayWithElements(elements); result->set_length(Smi::FromInt(cursor)); return result; } void Isolate::CaptureAndSetDetailedStackTrace(Handle<JSObject> error_object) { if (capture_stack_trace_for_uncaught_exceptions_) { // Capture stack trace for a detailed exception message. Handle<String> key = factory()->hidden_stack_trace_string(); Handle<JSArray> stack_trace = CaptureCurrentStackTrace( stack_trace_for_uncaught_exceptions_frame_limit_, stack_trace_for_uncaught_exceptions_options_); JSObject::SetHiddenProperty(error_object, key, stack_trace); } } Handle<JSArray> Isolate::CaptureCurrentStackTrace( int frame_limit, StackTrace::StackTraceOptions options) { // Ensure no negative values. int limit = Max(frame_limit, 0); Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit); Handle<String> column_key = factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("column")); Handle<String> line_key = factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("lineNumber")); Handle<String> script_id_key = factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("scriptId")); Handle<String> script_name_key = factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("scriptName")); Handle<String> script_name_or_source_url_key = factory()->InternalizeOneByteString( STATIC_ASCII_VECTOR("scriptNameOrSourceURL")); Handle<String> function_key = factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("functionName")); Handle<String> eval_key = factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("isEval")); Handle<String> constructor_key = factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("isConstructor")); StackTraceFrameIterator it(this); int frames_seen = 0; while (!it.done() && (frames_seen < limit)) { JavaScriptFrame* frame = it.frame(); // Set initial size to the maximum inlining level + 1 for the outermost // function. List<FrameSummary> frames(FLAG_max_inlining_levels + 1); frame->Summarize(&frames); for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) { // Create a JSObject to hold the information for the StackFrame. Handle<JSObject> stack_frame = factory()->NewJSObject(object_function()); Handle<JSFunction> fun = frames[i].function(); Handle<Script> script(Script::cast(fun->shared()->script())); if (options & StackTrace::kLineNumber) { int script_line_offset = script->line_offset()->value(); int position = frames[i].code()->SourcePosition(frames[i].pc()); int line_number = GetScriptLineNumber(script, position); // line_number is already shifted by the script_line_offset. int relative_line_number = line_number - script_line_offset; if (options & StackTrace::kColumnOffset && relative_line_number >= 0) { Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends())); int start = (relative_line_number == 0) ? 0 : Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1; int column_offset = position - start; if (relative_line_number == 0) { // For the case where the code is on the same line as the script // tag. column_offset += script->column_offset()->value(); } CHECK_NOT_EMPTY_HANDLE( this, JSObject::SetLocalPropertyIgnoreAttributes( stack_frame, column_key, Handle<Smi>(Smi::FromInt(column_offset + 1), this), NONE)); } CHECK_NOT_EMPTY_HANDLE( this, JSObject::SetLocalPropertyIgnoreAttributes( stack_frame, line_key, Handle<Smi>(Smi::FromInt(line_number + 1), this), NONE)); } if (options & StackTrace::kScriptId) { Handle<Smi> script_id(script->id(), this); CHECK_NOT_EMPTY_HANDLE(this, JSObject::SetLocalPropertyIgnoreAttributes( stack_frame, script_id_key, script_id, NONE)); } if (options & StackTrace::kScriptName) { Handle<Object> script_name(script->name(), this); CHECK_NOT_EMPTY_HANDLE(this, JSObject::SetLocalPropertyIgnoreAttributes( stack_frame, script_name_key, script_name, NONE)); } if (options & StackTrace::kScriptNameOrSourceURL) { Handle<Object> result = GetScriptNameOrSourceURL(script); CHECK_NOT_EMPTY_HANDLE(this, JSObject::SetLocalPropertyIgnoreAttributes( stack_frame, script_name_or_source_url_key, result, NONE)); } if (options & StackTrace::kFunctionName) { Handle<Object> fun_name(fun->shared()->name(), this); if (!fun_name->BooleanValue()) { fun_name = Handle<Object>(fun->shared()->inferred_name(), this); } CHECK_NOT_EMPTY_HANDLE(this, JSObject::SetLocalPropertyIgnoreAttributes( stack_frame, function_key, fun_name, NONE)); } if (options & StackTrace::kIsEval) { Handle<Object> is_eval = script->compilation_type() == Script::COMPILATION_TYPE_EVAL ? factory()->true_value() : factory()->false_value(); CHECK_NOT_EMPTY_HANDLE(this, JSObject::SetLocalPropertyIgnoreAttributes( stack_frame, eval_key, is_eval, NONE)); } if (options & StackTrace::kIsConstructor) { Handle<Object> is_constructor = (frames[i].is_constructor()) ? factory()->true_value() : factory()->false_value(); CHECK_NOT_EMPTY_HANDLE(this, JSObject::SetLocalPropertyIgnoreAttributes( stack_frame, constructor_key, is_constructor, NONE)); } FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame); frames_seen++; } it.Advance(); } stack_trace->set_length(Smi::FromInt(frames_seen)); return stack_trace; } void Isolate::PrintStack(FILE* out) { if (stack_trace_nesting_level_ == 0) { stack_trace_nesting_level_++; StringStream::ClearMentionedObjectCache(this); HeapStringAllocator allocator; StringStream accumulator(&allocator); incomplete_message_ = &accumulator; PrintStack(&accumulator); accumulator.OutputToFile(out); InitializeLoggingAndCounters(); accumulator.Log(this); incomplete_message_ = NULL; stack_trace_nesting_level_ = 0; } else if (stack_trace_nesting_level_ == 1) { stack_trace_nesting_level_++; OS::PrintError( "\n\nAttempt to print stack while printing stack (double fault)\n"); OS::PrintError( "If you are lucky you may find a partial stack dump on stdout.\n\n"); incomplete_message_->OutputToFile(out); } } static void PrintFrames(Isolate* isolate, StringStream* accumulator, StackFrame::PrintMode mode) { StackFrameIterator it(isolate); for (int i = 0; !it.done(); it.Advance()) { it.frame()->Print(accumulator, mode, i++); } } void Isolate::PrintStack(StringStream* accumulator) { if (!IsInitialized()) { accumulator->Add( "\n==== JS stack trace is not available =======================\n\n"); accumulator->Add( "\n==== Isolate for the thread is not initialized =============\n\n"); return; } // The MentionedObjectCache is not GC-proof at the moment. DisallowHeapAllocation no_gc; ASSERT(StringStream::IsMentionedObjectCacheClear(this)); // Avoid printing anything if there are no frames. if (c_entry_fp(thread_local_top()) == 0) return; accumulator->Add( "\n==== JS stack trace =========================================\n\n"); PrintFrames(this, accumulator, StackFrame::OVERVIEW); accumulator->Add( "\n==== Details ================================================\n\n"); PrintFrames(this, accumulator, StackFrame::DETAILS); accumulator->PrintMentionedObjectCache(this); accumulator->Add("=====================\n\n"); } void Isolate::SetFailedAccessCheckCallback( v8::FailedAccessCheckCallback callback) { thread_local_top()->failed_access_check_callback_ = callback; } void Isolate::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) { if (!thread_local_top()->failed_access_check_callback_) return; ASSERT(receiver->IsAccessCheckNeeded()); ASSERT(context()); // Get the data object from access check info. JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); if (!constructor->shared()->IsApiFunction()) return; Object* data_obj = constructor->shared()->get_api_func_data()->access_check_info(); if (data_obj == heap_.undefined_value()) return; HandleScope scope(this); Handle<JSObject> receiver_handle(receiver); Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this); { VMState<EXTERNAL> state(this); thread_local_top()->failed_access_check_callback_( v8::Utils::ToLocal(receiver_handle), type, v8::Utils::ToLocal(data)); } } enum MayAccessDecision { YES, NO, UNKNOWN }; static MayAccessDecision MayAccessPreCheck(Isolate* isolate, JSObject* receiver, v8::AccessType type) { // During bootstrapping, callback functions are not enabled yet. if (isolate->bootstrapper()->IsActive()) return YES; if (receiver->IsJSGlobalProxy()) { Object* receiver_context = JSGlobalProxy::cast(receiver)->native_context(); if (!receiver_context->IsContext()) return NO; // Get the native context of current top context. // avoid using Isolate::native_context() because it uses Handle. Context* native_context = isolate->context()->global_object()->native_context(); if (receiver_context == native_context) return YES; if (Context::cast(receiver_context)->security_token() == native_context->security_token()) return YES; } return UNKNOWN; } bool Isolate::MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type) { ASSERT(receiver->IsAccessCheckNeeded()); // The callers of this method are not expecting a GC. DisallowHeapAllocation no_gc; // Skip checks for hidden properties access. Note, we do not // require existence of a context in this case. if (key == heap_.hidden_string()) return true; // Check for compatibility between the security tokens in the // current lexical context and the accessed object. ASSERT(context()); MayAccessDecision decision = MayAccessPreCheck(this, receiver, type); if (decision != UNKNOWN) return decision == YES; // Get named access check callback JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); if (!constructor->shared()->IsApiFunction()) return false; Object* data_obj = constructor->shared()->get_api_func_data()->access_check_info(); if (data_obj == heap_.undefined_value()) return false; Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback(); v8::NamedSecurityCallback callback = v8::ToCData<v8::NamedSecurityCallback>(fun_obj); if (!callback) return false; HandleScope scope(this); Handle<JSObject> receiver_handle(receiver, this); Handle<Object> key_handle(key, this); Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this); LOG(this, ApiNamedSecurityCheck(key)); bool result = false; { // Leaving JavaScript. VMState<EXTERNAL> state(this); result = callback(v8::Utils::ToLocal(receiver_handle), v8::Utils::ToLocal(key_handle), type, v8::Utils::ToLocal(data)); } return result; } bool Isolate::MayIndexedAccess(JSObject* receiver, uint32_t index, v8::AccessType type) { ASSERT(receiver->IsAccessCheckNeeded()); // Check for compatibility between the security tokens in the // current lexical context and the accessed object. ASSERT(context()); MayAccessDecision decision = MayAccessPreCheck(this, receiver, type); if (decision != UNKNOWN) return decision == YES; // Get indexed access check callback JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); if (!constructor->shared()->IsApiFunction()) return false; Object* data_obj = constructor->shared()->get_api_func_data()->access_check_info(); if (data_obj == heap_.undefined_value()) return false; Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback(); v8::IndexedSecurityCallback callback = v8::ToCData<v8::IndexedSecurityCallback>(fun_obj); if (!callback) return false; HandleScope scope(this); Handle<JSObject> receiver_handle(receiver, this); Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this); LOG(this, ApiIndexedSecurityCheck(index)); bool result = false; { // Leaving JavaScript. VMState<EXTERNAL> state(this); result = callback(v8::Utils::ToLocal(receiver_handle), index, type, v8::Utils::ToLocal(data)); } return result; } const char* const Isolate::kStackOverflowMessage = "Uncaught RangeError: Maximum call stack size exceeded"; Failure* Isolate::StackOverflow() { HandleScope scope(this); // At this point we cannot create an Error object using its javascript // constructor. Instead, we copy the pre-constructed boilerplate and // attach the stack trace as a hidden property. Handle<String> key = factory()->stack_overflow_string(); Handle<JSObject> boilerplate = Handle<JSObject>::cast(GetProperty(this, js_builtins_object(), key)); Handle<JSObject> exception = JSObject::Copy(boilerplate); DoThrow(*exception, NULL); // Get stack trace limit. Handle<Object> error = GetProperty(js_builtins_object(), "$Error"); if (!error->IsJSObject()) return Failure::Exception(); Handle<Object> stack_trace_limit = GetProperty(Handle<JSObject>::cast(error), "stackTraceLimit"); if (!stack_trace_limit->IsNumber()) return Failure::Exception(); double dlimit = stack_trace_limit->Number(); int limit = std::isnan(dlimit) ? 0 : static_cast<int>(dlimit); Handle<JSArray> stack_trace = CaptureSimpleStackTrace( exception, factory()->undefined_value(), limit); JSObject::SetHiddenProperty(exception, factory()->hidden_stack_trace_string(), stack_trace); return Failure::Exception(); } Failure* Isolate::TerminateExecution() { DoThrow(heap_.termination_exception(), NULL); return Failure::Exception(); } void Isolate::CancelTerminateExecution() { if (try_catch_handler()) { try_catch_handler()->has_terminated_ = false; } if (has_pending_exception() && pending_exception() == heap_.termination_exception()) { thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); } if (has_scheduled_exception() && scheduled_exception() == heap_.termination_exception()) { thread_local_top()->external_caught_exception_ = false; clear_scheduled_exception(); } } Failure* Isolate::Throw(Object* exception, MessageLocation* location) { DoThrow(exception, location); return Failure::Exception(); } Failure* Isolate::ReThrow(MaybeObject* exception) { bool can_be_caught_externally = false; bool catchable_by_javascript = is_catchable_by_javascript(exception); ShouldReportException(&can_be_caught_externally, catchable_by_javascript); thread_local_top()->catcher_ = can_be_caught_externally ? try_catch_handler() : NULL; // Set the exception being re-thrown. set_pending_exception(exception); if (exception->IsFailure()) return exception->ToFailureUnchecked(); return Failure::Exception(); } Failure* Isolate::ThrowIllegalOperation() { return Throw(heap_.illegal_access_string()); } void Isolate::ScheduleThrow(Object* exception) { // When scheduling a throw we first throw the exception to get the // error reporting if it is uncaught before rescheduling it. Throw(exception); PropagatePendingExceptionToExternalTryCatch(); if (has_pending_exception()) { thread_local_top()->scheduled_exception_ = pending_exception(); thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); } } void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) { ASSERT(handler == try_catch_handler()); ASSERT(handler->HasCaught()); ASSERT(handler->rethrow_); ASSERT(handler->capture_message_); Object* message = reinterpret_cast<Object*>(handler->message_obj_); Object* script = reinterpret_cast<Object*>(handler->message_script_); ASSERT(message->IsJSMessageObject() || message->IsTheHole()); ASSERT(script->IsScript() || script->IsTheHole()); thread_local_top()->pending_message_obj_ = message; thread_local_top()->pending_message_script_ = script; thread_local_top()->pending_message_start_pos_ = handler->message_start_pos_; thread_local_top()->pending_message_end_pos_ = handler->message_end_pos_; } Failure* Isolate::PromoteScheduledException() { MaybeObject* thrown = scheduled_exception(); clear_scheduled_exception(); // Re-throw the exception to avoid getting repeated error reporting. return ReThrow(thrown); } void Isolate::PrintCurrentStackTrace(FILE* out) { StackTraceFrameIterator it(this); while (!it.done()) { HandleScope scope(this); // Find code position if recorded in relocation info. JavaScriptFrame* frame = it.frame(); int pos = frame->LookupCode()->SourcePosition(frame->pc()); Handle<Object> pos_obj(Smi::FromInt(pos), this); // Fetch function and receiver. Handle<JSFunction> fun(frame->function()); Handle<Object> recv(frame->receiver(), this); // Advance to the next JavaScript frame and determine if the // current frame is the top-level frame. it.Advance(); Handle<Object> is_top_level = it.done() ? factory()->true_value() : factory()->false_value(); // Generate and print stack trace line. Handle<String> line = Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level); if (line->length() > 0) { line->PrintOn(out); PrintF(out, "\n"); } } } void Isolate::ComputeLocation(MessageLocation* target) { *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1); StackTraceFrameIterator it(this); if (!it.done()) { JavaScriptFrame* frame = it.frame(); JSFunction* fun = frame->function(); Object* script = fun->shared()->script(); if (script->IsScript() && !(Script::cast(script)->source()->IsUndefined())) { int pos = frame->LookupCode()->SourcePosition(frame->pc()); // Compute the location from the function and the reloc info. Handle<Script> casted_script(Script::cast(script)); *target = MessageLocation(casted_script, pos, pos + 1); } } } bool Isolate::ShouldReportException(bool* can_be_caught_externally, bool catchable_by_javascript) { // Find the top-most try-catch handler. StackHandler* handler = StackHandler::FromAddress(Isolate::handler(thread_local_top())); while (handler != NULL && !handler->is_catch()) { handler = handler->next(); } // Get the address of the external handler so we can compare the address to // determine which one is closer to the top of the stack. Address external_handler_address = thread_local_top()->try_catch_handler_address(); // The exception has been externally caught if and only if there is // an external handler which is on top of the top-most try-catch // handler. *can_be_caught_externally = external_handler_address != NULL && (handler == NULL || handler->address() > external_handler_address || !catchable_by_javascript); if (*can_be_caught_externally) { // Only report the exception if the external handler is verbose. return try_catch_handler()->is_verbose_; } else { // Report the exception if it isn't caught by JavaScript code. return handler == NULL; } } bool Isolate::IsErrorObject(Handle<Object> obj) { if (!obj->IsJSObject()) return false; String* error_key = *(factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("$Error"))); Object* error_constructor = js_builtins_object()->GetPropertyNoExceptionThrown(error_key); for (Object* prototype = *obj; !prototype->IsNull(); prototype = prototype->GetPrototype(this)) { if (!prototype->IsJSObject()) return false; if (JSObject::cast(prototype)->map()->constructor() == error_constructor) { return true; } } return false; } static int fatal_exception_depth = 0; void Isolate::DoThrow(Object* exception, MessageLocation* location) { ASSERT(!has_pending_exception()); HandleScope scope(this); Handle<Object> exception_handle(exception, this); // Determine reporting and whether the exception is caught externally. bool catchable_by_javascript = is_catchable_by_javascript(exception); bool can_be_caught_externally = false; bool should_report_exception = ShouldReportException(&can_be_caught_externally, catchable_by_javascript); bool report_exception = catchable_by_javascript && should_report_exception; bool try_catch_needs_message = can_be_caught_externally && try_catch_handler()->capture_message_ && !thread_local_top()->rethrowing_message_; bool bootstrapping = bootstrapper()->IsActive(); thread_local_top()->rethrowing_message_ = false; #ifdef ENABLE_DEBUGGER_SUPPORT // Notify debugger of exception. if (catchable_by_javascript) { debugger_->OnException(exception_handle, report_exception); } #endif // Generate the message if required. if (report_exception || try_catch_needs_message) { MessageLocation potential_computed_location; if (location == NULL) { // If no location was specified we use a computed one instead. ComputeLocation(&potential_computed_location); location = &potential_computed_location; } // It's not safe to try to make message objects or collect stack traces // while the bootstrapper is active since the infrastructure may not have // been properly initialized. if (!bootstrapping) { Handle<String> stack_trace; if (FLAG_trace_exception) stack_trace = StackTraceString(); Handle<JSArray> stack_trace_object; if (capture_stack_trace_for_uncaught_exceptions_) { if (IsErrorObject(exception_handle)) { // We fetch the stack trace that corresponds to this error object. String* key = heap()->hidden_stack_trace_string(); Object* stack_property = JSObject::cast(*exception_handle)->GetHiddenProperty(key); // Property lookup may have failed. In this case it's probably not // a valid Error object. if (stack_property->IsJSArray()) { stack_trace_object = Handle<JSArray>(JSArray::cast(stack_property)); } } if (stack_trace_object.is_null()) { // Not an error object, we capture at throw site. stack_trace_object = CaptureCurrentStackTrace( stack_trace_for_uncaught_exceptions_frame_limit_, stack_trace_for_uncaught_exceptions_options_); } } Handle<Object> exception_arg = exception_handle; // If the exception argument is a custom object, turn it into a string // before throwing as uncaught exception. Note that the pending // exception object to be set later must not be turned into a string. if (exception_arg->IsJSObject() && !IsErrorObject(exception_arg)) { bool failed = false; exception_arg = Execution::ToDetailString(this, exception_arg, &failed); if (failed) { exception_arg = factory()->InternalizeOneByteString( STATIC_ASCII_VECTOR("exception")); } } Handle<Object> message_obj = MessageHandler::MakeMessageObject( this, "uncaught_exception", location, HandleVector<Object>(&exception_arg, 1), stack_trace, stack_trace_object); thread_local_top()->pending_message_obj_ = *message_obj; if (location != NULL) { thread_local_top()->pending_message_script_ = *location->script(); thread_local_top()->pending_message_start_pos_ = location->start_pos(); thread_local_top()->pending_message_end_pos_ = location->end_pos(); } // If the abort-on-uncaught-exception flag is specified, abort on any // exception not caught by JavaScript, even when an external handler is // present. This flag is intended for use by JavaScript developers, so // print a user-friendly stack trace (not an internal one). if (fatal_exception_depth == 0 && FLAG_abort_on_uncaught_exception && (report_exception || can_be_caught_externally)) { fatal_exception_depth++; PrintF(stderr, "%s\n\nFROM\n", *MessageHandler::GetLocalizedMessage(this, message_obj)); PrintCurrentStackTrace(stderr); OS::Abort(); } } else if (location != NULL && !location->script().is_null()) { // We are bootstrapping and caught an error where the location is set // and we have a script for the location. // In this case we could have an extension (or an internal error // somewhere) and we print out the line number at which the error occured // to the console for easier debugging. int line_number = GetScriptLineNumberSafe(location->script(), location->start_pos()); if (exception->IsString() && location->script()->name()->IsString()) { OS::PrintError( "Extension or internal compilation error: %s in %s at line %d.\n", *String::cast(exception)->ToCString(), *String::cast(location->script()->name())->ToCString(), line_number + 1); } else if (location->script()->name()->IsString()) { OS::PrintError( "Extension or internal compilation error in %s at line %d.\n", *String::cast(location->script()->name())->ToCString(), line_number + 1); } else { OS::PrintError("Extension or internal compilation error.\n"); } } } // Save the message for reporting if the the exception remains uncaught. thread_local_top()->has_pending_message_ = report_exception; // Do not forget to clean catcher_ if currently thrown exception cannot // be caught. If necessary, ReThrow will update the catcher. thread_local_top()->catcher_ = can_be_caught_externally ? try_catch_handler() : NULL; set_pending_exception(*exception_handle); } bool Isolate::IsExternallyCaught() { ASSERT(has_pending_exception()); if ((thread_local_top()->catcher_ == NULL) || (try_catch_handler() != thread_local_top()->catcher_)) { // When throwing the exception, we found no v8::TryCatch // which should care about this exception. return false; } if (!is_catchable_by_javascript(pending_exception())) { return true; } // Get the address of the external handler so we can compare the address to // determine which one is closer to the top of the stack. Address external_handler_address = thread_local_top()->try_catch_handler_address(); ASSERT(external_handler_address != NULL); // The exception has been externally caught if and only if there is // an external handler which is on top of the top-most try-finally // handler. // There should be no try-catch blocks as they would prohibit us from // finding external catcher in the first place (see catcher_ check above). // // Note, that finally clause would rethrow an exception unless it's // aborted by jumps in control flow like return, break, etc. and we'll // have another chances to set proper v8::TryCatch. StackHandler* handler = StackHandler::FromAddress(Isolate::handler(thread_local_top())); while (handler != NULL && handler->address() < external_handler_address) { ASSERT(!handler->is_catch()); if (handler->is_finally()) return false; handler = handler->next(); } return true; } void Isolate::ReportPendingMessages() { ASSERT(has_pending_exception()); PropagatePendingExceptionToExternalTryCatch(); // If the pending exception is OutOfMemoryException set out_of_memory in // the native context. Note: We have to mark the native context here // since the GenerateThrowOutOfMemory stub cannot make a RuntimeCall to // set it. HandleScope scope(this); if (thread_local_top_.pending_exception_->IsOutOfMemory()) { context()->mark_out_of_memory(); } else if (thread_local_top_.pending_exception_ == heap()->termination_exception()) { // Do nothing: if needed, the exception has been already propagated to // v8::TryCatch. } else { if (thread_local_top_.has_pending_message_) { thread_local_top_.has_pending_message_ = false; if (!thread_local_top_.pending_message_obj_->IsTheHole()) { HandleScope scope(this); Handle<Object> message_obj(thread_local_top_.pending_message_obj_, this); if (!thread_local_top_.pending_message_script_->IsTheHole()) { Handle<Script> script( Script::cast(thread_local_top_.pending_message_script_)); int start_pos = thread_local_top_.pending_message_start_pos_; int end_pos = thread_local_top_.pending_message_end_pos_; MessageLocation location(script, start_pos, end_pos); MessageHandler::ReportMessage(this, &location, message_obj); } else { MessageHandler::ReportMessage(this, NULL, message_obj); } } } } clear_pending_message(); } MessageLocation Isolate::GetMessageLocation() { ASSERT(has_pending_exception()); if (!thread_local_top_.pending_exception_->IsOutOfMemory() && thread_local_top_.pending_exception_ != heap()->termination_exception() && thread_local_top_.has_pending_message_ && !thread_local_top_.pending_message_obj_->IsTheHole() && !thread_local_top_.pending_message_obj_->IsTheHole()) { Handle<Script> script( Script::cast(thread_local_top_.pending_message_script_)); int start_pos = thread_local_top_.pending_message_start_pos_; int end_pos = thread_local_top_.pending_message_end_pos_; return MessageLocation(script, start_pos, end_pos); } return MessageLocation(); } bool Isolate::OptionalRescheduleException(bool is_bottom_call) { ASSERT(has_pending_exception()); PropagatePendingExceptionToExternalTryCatch(); // Always reschedule out of memory exceptions. if (!is_out_of_memory()) { bool is_termination_exception = pending_exception() == heap_.termination_exception(); // Do not reschedule the exception if this is the bottom call. bool clear_exception = is_bottom_call; if (is_termination_exception) { if (is_bottom_call) { thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); return false; } } else if (thread_local_top()->external_caught_exception_) { // If the exception is externally caught, clear it if there are no // JavaScript frames on the way to the C++ frame that has the // external handler. ASSERT(thread_local_top()->try_catch_handler_address() != NULL); Address external_handler_address = thread_local_top()->try_catch_handler_address(); JavaScriptFrameIterator it(this); if (it.done() || (it.frame()->sp() > external_handler_address)) { clear_exception = true; } } // Clear the exception if needed. if (clear_exception) { thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); return false; } } // Reschedule the exception. thread_local_top()->scheduled_exception_ = pending_exception(); clear_pending_exception(); return true; } void Isolate::SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options) { capture_stack_trace_for_uncaught_exceptions_ = capture; stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit; stack_trace_for_uncaught_exceptions_options_ = options; } bool Isolate::is_out_of_memory() { if (has_pending_exception()) { MaybeObject* e = pending_exception(); if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) { return true; } } if (has_scheduled_exception()) { MaybeObject* e = scheduled_exception(); if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) { return true; } } return false; } Handle<Context> Isolate::native_context() { return Handle<Context>(context()->global_object()->native_context()); } Handle<Context> Isolate::global_context() { return Handle<Context>(context()->global_object()->global_context()); } Handle<Context> Isolate::GetCallingNativeContext() { JavaScriptFrameIterator it(this); #ifdef ENABLE_DEBUGGER_SUPPORT if (debug_->InDebugger()) { while (!it.done()) { JavaScriptFrame* frame = it.frame(); Context* context = Context::cast(frame->context()); if (context->native_context() == *debug_->debug_context()) { it.Advance(); } else { break; } } } #endif // ENABLE_DEBUGGER_SUPPORT if (it.done()) return Handle<Context>::null(); JavaScriptFrame* frame = it.frame(); Context* context = Context::cast(frame->context()); return Handle<Context>(context->native_context()); } char* Isolate::ArchiveThread(char* to) { OS::MemCopy(to, reinterpret_cast<char*>(thread_local_top()), sizeof(ThreadLocalTop)); InitializeThreadLocal(); clear_pending_exception(); clear_pending_message(); clear_scheduled_exception(); return to + sizeof(ThreadLocalTop); } char* Isolate::RestoreThread(char* from) { OS::MemCopy(reinterpret_cast<char*>(thread_local_top()), from, sizeof(ThreadLocalTop)); // This might be just paranoia, but it seems to be needed in case a // thread_local_top_ is restored on a separate OS thread. #ifdef USE_SIMULATOR thread_local_top()->simulator_ = Simulator::current(this); #endif ASSERT(context() == NULL || context()->IsContext()); return from + sizeof(ThreadLocalTop); } Isolate::ThreadDataTable::ThreadDataTable() : list_(NULL) { } Isolate::ThreadDataTable::~ThreadDataTable() { // TODO(svenpanne) The assertion below would fire if an embedder does not // cleanly dispose all Isolates before disposing v8, so we are conservative // and leave it out for now. // ASSERT_EQ(NULL, list_); } Isolate::PerIsolateThreadData* Isolate::ThreadDataTable::Lookup(Isolate* isolate, ThreadId thread_id) { for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) { if (data->Matches(isolate, thread_id)) return data; } return NULL; } void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) { if (list_ != NULL) list_->prev_ = data; data->next_ = list_; list_ = data; } void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) { if (list_ == data) list_ = data->next_; if (data->next_ != NULL) data->next_->prev_ = data->prev_; if (data->prev_ != NULL) data->prev_->next_ = data->next_; delete data; } void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) { PerIsolateThreadData* data = list_; while (data != NULL) { PerIsolateThreadData* next = data->next_; if (data->isolate() == isolate) Remove(data); data = next; } } #ifdef DEBUG #define TRACE_ISOLATE(tag) \ do { \ if (FLAG_trace_isolates) { \ PrintF("Isolate %p (id %d)" #tag "\n", \ reinterpret_cast<void*>(this), id()); \ } \ } while (false) #else #define TRACE_ISOLATE(tag) #endif Isolate::Isolate() : embedder_data_(), state_(UNINITIALIZED), entry_stack_(NULL), stack_trace_nesting_level_(0), incomplete_message_(NULL), bootstrapper_(NULL), runtime_profiler_(NULL), compilation_cache_(NULL), counters_(NULL), code_range_(NULL), debugger_initialized_(false), logger_(NULL), stats_table_(NULL), stub_cache_(NULL), deoptimizer_data_(NULL), capture_stack_trace_for_uncaught_exceptions_(false), stack_trace_for_uncaught_exceptions_frame_limit_(0), stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview), transcendental_cache_(NULL), memory_allocator_(NULL), keyed_lookup_cache_(NULL), context_slot_cache_(NULL), descriptor_lookup_cache_(NULL), handle_scope_implementer_(NULL), unicode_cache_(NULL), runtime_zone_(this), inner_pointer_to_code_cache_(NULL), write_iterator_(NULL), global_handles_(NULL), eternal_handles_(NULL), thread_manager_(NULL), fp_stubs_generated_(false), has_installed_extensions_(false), string_tracker_(NULL), regexp_stack_(NULL), date_cache_(NULL), code_stub_interface_descriptors_(NULL), // TODO(bmeurer) Initialized lazily because it depends on flags; can // be fixed once the default isolate cleanup is done. random_number_generator_(NULL), has_fatal_error_(false), use_crankshaft_(true), initialized_from_snapshot_(false), cpu_profiler_(NULL), heap_profiler_(NULL), function_entry_hook_(NULL), deferred_handles_head_(NULL), optimizing_compiler_thread_(NULL), sweeper_thread_(NULL), num_sweeper_threads_(0), max_available_threads_(0), stress_deopt_count_(0) { id_ = NoBarrier_AtomicIncrement(&isolate_counter_, 1); TRACE_ISOLATE(constructor); memset(isolate_addresses_, 0, sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1)); heap_.isolate_ = this; stack_guard_.isolate_ = this; // ThreadManager is initialized early to support locking an isolate // before it is entered. thread_manager_ = new ThreadManager(); thread_manager_->isolate_ = this; #if V8_TARGET_ARCH_ARM && !defined(__arm__) || \ V8_TARGET_ARCH_MIPS && !defined(__mips__) simulator_initialized_ = false; simulator_i_cache_ = NULL; simulator_redirection_ = NULL; #endif #ifdef DEBUG // heap_histograms_ initializes itself. memset(&js_spill_information_, 0, sizeof(js_spill_information_)); memset(code_kind_statistics_, 0, sizeof(code_kind_statistics_[0]) * Code::NUMBER_OF_KINDS); #endif #ifdef ENABLE_DEBUGGER_SUPPORT debug_ = NULL; debugger_ = NULL; #endif handle_scope_data_.Initialize(); #define ISOLATE_INIT_EXECUTE(type, name, initial_value) \ name##_ = (initial_value); ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE) #undef ISOLATE_INIT_EXECUTE #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \ memset(name##_, 0, sizeof(type) * length); ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE) #undef ISOLATE_INIT_ARRAY_EXECUTE } void Isolate::TearDown() { TRACE_ISOLATE(tear_down); // Temporarily set this isolate as current so that various parts of // the isolate can access it in their destructors without having a // direct pointer. We don't use Enter/Exit here to avoid // initializing the thread data. PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData(); Isolate* saved_isolate = UncheckedCurrent(); SetIsolateThreadLocals(this, NULL); Deinit(); { LockGuard<Mutex> lock_guard(&process_wide_mutex_); thread_data_table_->RemoveAllThreads(this); } if (serialize_partial_snapshot_cache_ != NULL) { delete[] serialize_partial_snapshot_cache_; serialize_partial_snapshot_cache_ = NULL; } if (!IsDefaultIsolate()) { delete this; } // Restore the previous current isolate. SetIsolateThreadLocals(saved_isolate, saved_data); } void Isolate::GlobalTearDown() { delete thread_data_table_; } void Isolate::Deinit() { if (state_ == INITIALIZED) { TRACE_ISOLATE(deinit); #ifdef ENABLE_DEBUGGER_SUPPORT debugger()->UnloadDebugger(); #endif if (concurrent_recompilation_enabled()) { optimizing_compiler_thread_->Stop(); delete optimizing_compiler_thread_; optimizing_compiler_thread_ = NULL; } for (int i = 0; i < num_sweeper_threads_; i++) { sweeper_thread_[i]->Stop(); delete sweeper_thread_[i]; sweeper_thread_[i] = NULL; } delete[] sweeper_thread_; sweeper_thread_ = NULL; if (FLAG_hydrogen_stats) GetHStatistics()->Print(); if (FLAG_print_deopt_stress) { PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_); } // We must stop the logger before we tear down other components. Sampler* sampler = logger_->sampler(); if (sampler && sampler->IsActive()) sampler->Stop(); delete deoptimizer_data_; deoptimizer_data_ = NULL; builtins_.TearDown(); bootstrapper_->TearDown(); if (runtime_profiler_ != NULL) { runtime_profiler_->TearDown(); delete runtime_profiler_; runtime_profiler_ = NULL; } heap_.TearDown(); logger_->TearDown(); delete heap_profiler_; heap_profiler_ = NULL; delete cpu_profiler_; cpu_profiler_ = NULL; // The default isolate is re-initializable due to legacy API. state_ = UNINITIALIZED; } } void Isolate::PushToPartialSnapshotCache(Object* obj) { int length = serialize_partial_snapshot_cache_length(); int capacity = serialize_partial_snapshot_cache_capacity(); if (length >= capacity) { int new_capacity = static_cast<int>((capacity + 10) * 1.2); Object** new_array = new Object*[new_capacity]; for (int i = 0; i < length; i++) { new_array[i] = serialize_partial_snapshot_cache()[i]; } if (capacity != 0) delete[] serialize_partial_snapshot_cache(); set_serialize_partial_snapshot_cache(new_array); set_serialize_partial_snapshot_cache_capacity(new_capacity); } serialize_partial_snapshot_cache()[length] = obj; set_serialize_partial_snapshot_cache_length(length + 1); } void Isolate::SetIsolateThreadLocals(Isolate* isolate, PerIsolateThreadData* data) { Thread::SetThreadLocal(isolate_key_, isolate); Thread::SetThreadLocal(per_isolate_thread_data_key_, data); } Isolate::~Isolate() { TRACE_ISOLATE(destructor); // Has to be called while counters_ are still alive runtime_zone_.DeleteKeptSegment(); // The entry stack must be empty when we get here, // except for the default isolate, where it can // still contain up to one entry stack item ASSERT(entry_stack_ == NULL || this == default_isolate_); ASSERT(entry_stack_ == NULL || entry_stack_->previous_item == NULL); delete entry_stack_; entry_stack_ = NULL; delete[] assembler_spare_buffer_; assembler_spare_buffer_ = NULL; delete unicode_cache_; unicode_cache_ = NULL; delete date_cache_; date_cache_ = NULL; delete[] code_stub_interface_descriptors_; code_stub_interface_descriptors_ = NULL; delete regexp_stack_; regexp_stack_ = NULL; delete descriptor_lookup_cache_; descriptor_lookup_cache_ = NULL; delete context_slot_cache_; context_slot_cache_ = NULL; delete keyed_lookup_cache_; keyed_lookup_cache_ = NULL; delete transcendental_cache_; transcendental_cache_ = NULL; delete stub_cache_; stub_cache_ = NULL; delete stats_table_; stats_table_ = NULL; delete logger_; logger_ = NULL; delete counters_; counters_ = NULL; delete handle_scope_implementer_; handle_scope_implementer_ = NULL; delete compilation_cache_; compilation_cache_ = NULL; delete bootstrapper_; bootstrapper_ = NULL; delete inner_pointer_to_code_cache_; inner_pointer_to_code_cache_ = NULL; delete write_iterator_; write_iterator_ = NULL; delete thread_manager_; thread_manager_ = NULL; delete string_tracker_; string_tracker_ = NULL; delete memory_allocator_; memory_allocator_ = NULL; delete code_range_; code_range_ = NULL; delete global_handles_; global_handles_ = NULL; delete eternal_handles_; eternal_handles_ = NULL; delete string_stream_debug_object_cache_; string_stream_debug_object_cache_ = NULL; delete external_reference_table_; external_reference_table_ = NULL; delete random_number_generator_; random_number_generator_ = NULL; #ifdef ENABLE_DEBUGGER_SUPPORT delete debugger_; debugger_ = NULL; delete debug_; debug_ = NULL; #endif } void Isolate::InitializeThreadLocal() { thread_local_top_.isolate_ = this; thread_local_top_.Initialize(); } void Isolate::PropagatePendingExceptionToExternalTryCatch() { ASSERT(has_pending_exception()); bool external_caught = IsExternallyCaught(); thread_local_top_.external_caught_exception_ = external_caught; if (!external_caught) return; if (thread_local_top_.pending_exception_->IsOutOfMemory()) { // Do not propagate OOM exception: we should kill VM asap. } else if (thread_local_top_.pending_exception_ == heap()->termination_exception()) { try_catch_handler()->can_continue_ = false; try_catch_handler()->has_terminated_ = true; try_catch_handler()->exception_ = heap()->null_value(); } else { v8::TryCatch* handler = try_catch_handler(); // At this point all non-object (failure) exceptions have // been dealt with so this shouldn't fail. ASSERT(!pending_exception()->IsFailure()); ASSERT(thread_local_top_.pending_message_obj_->IsJSMessageObject() || thread_local_top_.pending_message_obj_->IsTheHole()); ASSERT(thread_local_top_.pending_message_script_->IsScript() || thread_local_top_.pending_message_script_->IsTheHole()); handler->can_continue_ = true; handler->has_terminated_ = false; handler->exception_ = pending_exception(); // Propagate to the external try-catch only if we got an actual message. if (thread_local_top_.pending_message_obj_->IsTheHole()) return; handler->message_obj_ = thread_local_top_.pending_message_obj_; handler->message_script_ = thread_local_top_.pending_message_script_; handler->message_start_pos_ = thread_local_top_.pending_message_start_pos_; handler->message_end_pos_ = thread_local_top_.pending_message_end_pos_; } } void Isolate::InitializeLoggingAndCounters() { if (logger_ == NULL) { logger_ = new Logger(this); } if (counters_ == NULL) { counters_ = new Counters(this); } } void Isolate::InitializeDebugger() { #ifdef ENABLE_DEBUGGER_SUPPORT LockGuard<RecursiveMutex> lock_guard(debugger_access()); if (NoBarrier_Load(&debugger_initialized_)) return; InitializeLoggingAndCounters(); debug_ = new Debug(this); debugger_ = new Debugger(this); Release_Store(&debugger_initialized_, true); #endif } bool Isolate::Init(Deserializer* des) { ASSERT(state_ != INITIALIZED); TRACE_ISOLATE(init); stress_deopt_count_ = FLAG_deopt_every_n_times; has_fatal_error_ = false; use_crankshaft_ = FLAG_crankshaft && !Serializer::enabled() && CPU::SupportsCrankshaft(); if (function_entry_hook() != NULL) { // When function entry hooking is in effect, we have to create the code // stubs from scratch to get entry hooks, rather than loading the previously // generated stubs from disk. // If this assert fires, the initialization path has regressed. ASSERT(des == NULL); } // The initialization process does not handle memory exhaustion. DisallowAllocationFailure disallow_allocation_failure; InitializeLoggingAndCounters(); InitializeDebugger(); memory_allocator_ = new MemoryAllocator(this); code_range_ = new CodeRange(this); // Safe after setting Heap::isolate_, and initializing StackGuard heap_.SetStackLimits(); #define ASSIGN_ELEMENT(CamelName, hacker_name) \ isolate_addresses_[Isolate::k##CamelName##Address] = \ reinterpret_cast<Address>(hacker_name##_address()); FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT) #undef ASSIGN_ELEMENT string_tracker_ = new StringTracker(); string_tracker_->isolate_ = this; compilation_cache_ = new CompilationCache(this); transcendental_cache_ = new TranscendentalCache(this); keyed_lookup_cache_ = new KeyedLookupCache(); context_slot_cache_ = new ContextSlotCache(); descriptor_lookup_cache_ = new DescriptorLookupCache(); unicode_cache_ = new UnicodeCache(); inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this); write_iterator_ = new ConsStringIteratorOp(); global_handles_ = new GlobalHandles(this); eternal_handles_ = new EternalHandles(); bootstrapper_ = new Bootstrapper(this); handle_scope_implementer_ = new HandleScopeImplementer(this); stub_cache_ = new StubCache(this); regexp_stack_ = new RegExpStack(); regexp_stack_->isolate_ = this; date_cache_ = new DateCache(); code_stub_interface_descriptors_ = new CodeStubInterfaceDescriptor[CodeStub::NUMBER_OF_IDS]; cpu_profiler_ = new CpuProfiler(this); heap_profiler_ = new HeapProfiler(heap()); // Enable logging before setting up the heap logger_->SetUp(this); // Initialize other runtime facilities #if defined(USE_SIMULATOR) #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS Simulator::Initialize(this); #endif #endif { // NOLINT // Ensure that the thread has a valid stack guard. The v8::Locker object // will ensure this too, but we don't have to use lockers if we are only // using one thread. ExecutionAccess lock(this); stack_guard_.InitThread(lock); } // SetUp the object heap. ASSERT(!heap_.HasBeenSetUp()); if (!heap_.SetUp()) { V8::FatalProcessOutOfMemory("heap setup"); return false; } deoptimizer_data_ = new DeoptimizerData(memory_allocator_); const bool create_heap_objects = (des == NULL); if (create_heap_objects && !heap_.CreateHeapObjects()) { V8::FatalProcessOutOfMemory("heap object creation"); return false; } if (create_heap_objects) { // Terminate the cache array with the sentinel so we can iterate. PushToPartialSnapshotCache(heap_.undefined_value()); } InitializeThreadLocal(); bootstrapper_->Initialize(create_heap_objects); builtins_.SetUp(this, create_heap_objects); if (create_heap_objects) heap_.CreateStubsRequiringBuiltins(); // Set default value if not yet set. // TODO(yangguo): move this to ResourceConstraints::ConfigureDefaults // once ResourceConstraints becomes an argument to the Isolate constructor. if (max_available_threads_ < 1) { // Choose the default between 1 and 4. max_available_threads_ = Max(Min(CPU::NumberOfProcessorsOnline(), 4), 1); } num_sweeper_threads_ = SweeperThread::NumberOfThreads(max_available_threads_); if (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs) { PrintF("Concurrent recompilation has been disabled for tracing.\n"); } else if (OptimizingCompilerThread::Enabled(max_available_threads_)) { optimizing_compiler_thread_ = new OptimizingCompilerThread(this); optimizing_compiler_thread_->Start(); } if (num_sweeper_threads_ > 0) { sweeper_thread_ = new SweeperThread*[num_sweeper_threads_]; for (int i = 0; i < num_sweeper_threads_; i++) { sweeper_thread_[i] = new SweeperThread(this); sweeper_thread_[i]->Start(); } } #ifdef ENABLE_DEBUGGER_SUPPORT debug_->SetUp(create_heap_objects); #endif // If we are deserializing, read the state into the now-empty heap. if (!create_heap_objects) { des->Deserialize(this); } stub_cache_->Initialize(); // Finish initialization of ThreadLocal after deserialization is done. clear_pending_exception(); clear_pending_message(); clear_scheduled_exception(); // Deserializing may put strange things in the root array's copy of the // stack guard. heap_.SetStackLimits(); // Quiet the heap NaN if needed on target platform. if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value()); runtime_profiler_ = new RuntimeProfiler(this); runtime_profiler_->SetUp(); // If we are deserializing, log non-function code objects and compiled // functions found in the snapshot. if (!create_heap_objects && (FLAG_log_code || FLAG_ll_prof || FLAG_perf_jit_prof || FLAG_perf_basic_prof || logger_->is_logging_code_events())) { HandleScope scope(this); LOG(this, LogCodeObjects()); LOG(this, LogCompiledFunctions()); } // If we are profiling with the Linux perf tool, we need to disable // code relocation. if (FLAG_perf_jit_prof || FLAG_perf_basic_prof) { FLAG_compact_code_space = false; } CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)), Internals::kIsolateEmbedderDataOffset); CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)), Internals::kIsolateRootsOffset); state_ = INITIALIZED; time_millis_at_init_ = OS::TimeCurrentMillis(); if (!create_heap_objects) { // Now that the heap is consistent, it's OK to generate the code for the // deopt entry table that might have been referred to by optimized code in // the snapshot. HandleScope scope(this); Deoptimizer::EnsureCodeForDeoptimizationEntry( this, Deoptimizer::LAZY, kDeoptTableSerializeEntryCount - 1); } if (!Serializer::enabled()) { // Ensure that all stubs which need to be generated ahead of time, but // cannot be serialized into the snapshot have been generated. HandleScope scope(this); CodeStub::GenerateFPStubs(this); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this); StubFailureTrampolineStub::GenerateAheadOfTime(this); StubFailureTailCallTrampolineStub::GenerateAheadOfTime(this); // TODO(mstarzinger): The following is an ugly hack to make sure the // interface descriptor is initialized even when stubs have been // deserialized out of the snapshot without the graph builder. FastCloneShallowArrayStub stub(FastCloneShallowArrayStub::CLONE_ELEMENTS, DONT_TRACK_ALLOCATION_SITE, 0); stub.InitializeInterfaceDescriptor( this, code_stub_interface_descriptor(CodeStub::FastCloneShallowArray)); BinaryOpICStub::InstallDescriptors(this); CompareNilICStub::InitializeForIsolate(this); ToBooleanStub::InitializeForIsolate(this); ArrayConstructorStubBase::InstallDescriptors(this); InternalArrayConstructorStubBase::InstallDescriptors(this); FastNewClosureStub::InstallDescriptors(this); NumberToStringStub::InstallDescriptors(this); NewStringAddStub::InstallDescriptors(this); } initialized_from_snapshot_ = (des != NULL); return true; } // Initialized lazily to allow early // v8::V8::SetAddHistogramSampleFunction calls. StatsTable* Isolate::stats_table() { if (stats_table_ == NULL) { stats_table_ = new StatsTable; } return stats_table_; } void Isolate::Enter() { Isolate* current_isolate = NULL; PerIsolateThreadData* current_data = CurrentPerIsolateThreadData(); if (current_data != NULL) { current_isolate = current_data->isolate_; ASSERT(current_isolate != NULL); if (current_isolate == this) { ASSERT(Current() == this); ASSERT(entry_stack_ != NULL); ASSERT(entry_stack_->previous_thread_data == NULL || entry_stack_->previous_thread_data->thread_id().Equals( ThreadId::Current())); // Same thread re-enters the isolate, no need to re-init anything. entry_stack_->entry_count++; return; } } // Threads can have default isolate set into TLS as Current but not yet have // PerIsolateThreadData for it, as it requires more advanced phase of the // initialization. For example, a thread might be the one that system used for // static initializers - in this case the default isolate is set in TLS but // the thread did not yet Enter the isolate. If PerisolateThreadData is not // there, use the isolate set in TLS. if (current_isolate == NULL) { current_isolate = Isolate::UncheckedCurrent(); } PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread(); ASSERT(data != NULL); ASSERT(data->isolate_ == this); EntryStackItem* item = new EntryStackItem(current_data, current_isolate, entry_stack_); entry_stack_ = item; SetIsolateThreadLocals(this, data); // In case it's the first time some thread enters the isolate. set_thread_id(data->thread_id()); } void Isolate::Exit() { ASSERT(entry_stack_ != NULL); ASSERT(entry_stack_->previous_thread_data == NULL || entry_stack_->previous_thread_data->thread_id().Equals( ThreadId::Current())); if (--entry_stack_->entry_count > 0) return; ASSERT(CurrentPerIsolateThreadData() != NULL); ASSERT(CurrentPerIsolateThreadData()->isolate_ == this); // Pop the stack. EntryStackItem* item = entry_stack_; entry_stack_ = item->previous_item; PerIsolateThreadData* previous_thread_data = item->previous_thread_data; Isolate* previous_isolate = item->previous_isolate; delete item; // Reinit the current thread for the isolate it was running before this one. SetIsolateThreadLocals(previous_isolate, previous_thread_data); } void Isolate::LinkDeferredHandles(DeferredHandles* deferred) { deferred->next_ = deferred_handles_head_; if (deferred_handles_head_ != NULL) { deferred_handles_head_->previous_ = deferred; } deferred_handles_head_ = deferred; } void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) { #ifdef DEBUG // In debug mode assert that the linked list is well-formed. DeferredHandles* deferred_iterator = deferred; while (deferred_iterator->previous_ != NULL) { deferred_iterator = deferred_iterator->previous_; } ASSERT(deferred_handles_head_ == deferred_iterator); #endif if (deferred_handles_head_ == deferred) { deferred_handles_head_ = deferred_handles_head_->next_; } if (deferred->next_ != NULL) { deferred->next_->previous_ = deferred->previous_; } if (deferred->previous_ != NULL) { deferred->previous_->next_ = deferred->next_; } } HStatistics* Isolate::GetHStatistics() { if (hstatistics() == NULL) set_hstatistics(new HStatistics()); return hstatistics(); } HTracer* Isolate::GetHTracer() { if (htracer() == NULL) set_htracer(new HTracer(id())); return htracer(); } CodeTracer* Isolate::GetCodeTracer() { if (code_tracer() == NULL) set_code_tracer(new CodeTracer(id())); return code_tracer(); } Map* Isolate::get_initial_js_array_map(ElementsKind kind) { Context* native_context = context()->native_context(); Object* maybe_map_array = native_context->js_array_maps(); if (!maybe_map_array->IsUndefined()) { Object* maybe_transitioned_map = FixedArray::cast(maybe_map_array)->get(kind); if (!maybe_transitioned_map->IsUndefined()) { return Map::cast(maybe_transitioned_map); } } return NULL; } bool Isolate::IsFastArrayConstructorPrototypeChainIntact() { Map* root_array_map = get_initial_js_array_map(GetInitialFastElementsKind()); ASSERT(root_array_map != NULL); JSObject* initial_array_proto = JSObject::cast(*initial_array_prototype()); // Check that the array prototype hasn't been altered WRT empty elements. if (root_array_map->prototype() != initial_array_proto) return false; if (initial_array_proto->elements() != heap()->empty_fixed_array()) { return false; } // Check that the object prototype hasn't been altered WRT empty elements. JSObject* initial_object_proto = JSObject::cast(*initial_object_prototype()); Object* root_array_map_proto = initial_array_proto->GetPrototype(); if (root_array_map_proto != initial_object_proto) return false; if (initial_object_proto->elements() != heap()->empty_fixed_array()) { return false; } return initial_object_proto->GetPrototype()->IsNull(); } CodeStubInterfaceDescriptor* Isolate::code_stub_interface_descriptor(int index) { return code_stub_interface_descriptors_ + index; } Object* Isolate::FindCodeObject(Address a) { return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a); } #ifdef DEBUG #define ISOLATE_FIELD_OFFSET(type, name, ignored) \ const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_); ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET) ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET) #undef ISOLATE_FIELD_OFFSET #endif } } // namespace v8::internal