// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include <limits> #include "v8.h" #include "accessors.h" #include "allocation-site-scopes.h" #include "api.h" #include "arguments.h" #include "bootstrapper.h" #include "codegen.h" #include "compilation-cache.h" #include "compiler.h" #include "cpu.h" #include "cpu-profiler.h" #include "dateparser-inl.h" #include "debug.h" #include "deoptimizer.h" #include "date.h" #include "execution.h" #include "full-codegen.h" #include "global-handles.h" #include "isolate-inl.h" #include "jsregexp.h" #include "jsregexp-inl.h" #include "json-parser.h" #include "json-stringifier.h" #include "liveedit.h" #include "misc-intrinsics.h" #include "parser.h" #include "platform.h" #include "runtime-profiler.h" #include "runtime.h" #include "scopeinfo.h" #include "smart-pointers.h" #include "string-search.h" #include "stub-cache.h" #include "uri.h" #include "v8conversions.h" #include "v8threads.h" #include "vm-state-inl.h" #ifdef V8_I18N_SUPPORT #include "i18n.h" #include "unicode/brkiter.h" #include "unicode/calendar.h" #include "unicode/coll.h" #include "unicode/curramt.h" #include "unicode/datefmt.h" #include "unicode/dcfmtsym.h" #include "unicode/decimfmt.h" #include "unicode/dtfmtsym.h" #include "unicode/dtptngen.h" #include "unicode/locid.h" #include "unicode/numfmt.h" #include "unicode/numsys.h" #include "unicode/rbbi.h" #include "unicode/smpdtfmt.h" #include "unicode/timezone.h" #include "unicode/uchar.h" #include "unicode/ucol.h" #include "unicode/ucurr.h" #include "unicode/uloc.h" #include "unicode/unum.h" #include "unicode/uversion.h" #endif #ifndef _STLP_VENDOR_CSTD // STLPort doesn't import fpclassify and isless into the std namespace. using std::fpclassify; using std::isless; #endif namespace v8 { namespace internal { #define RUNTIME_ASSERT(value) \ if (!(value)) return isolate->ThrowIllegalOperation(); // Cast the given object to a value of the specified type and store // it in a variable with the given name. If the object is not of the // expected type call IllegalOperation and return. #define CONVERT_ARG_CHECKED(Type, name, index) \ RUNTIME_ASSERT(args[index]->Is##Type()); \ Type* name = Type::cast(args[index]); #define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \ RUNTIME_ASSERT(args[index]->Is##Type()); \ Handle<Type> name = args.at<Type>(index); // Cast the given object to a boolean and store it in a variable with // the given name. If the object is not a boolean call IllegalOperation // and return. #define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsBoolean()); \ bool name = args[index]->IsTrue(); // Cast the given argument to a Smi and store its value in an int variable // with the given name. If the argument is not a Smi call IllegalOperation // and return. #define CONVERT_SMI_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsSmi()); \ int name = args.smi_at(index); // Cast the given argument to a double and store it in a variable with // the given name. If the argument is not a number (as opposed to // the number not-a-number) call IllegalOperation and return. #define CONVERT_DOUBLE_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsNumber()); \ double name = args.number_at(index); // Call the specified converter on the object *comand store the result in // a variable of the specified type with the given name. If the // object is not a Number call IllegalOperation and return. #define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \ RUNTIME_ASSERT(obj->IsNumber()); \ type name = NumberTo##Type(obj); // Cast the given argument to PropertyDetails and store its value in a // variable with the given name. If the argument is not a Smi call // IllegalOperation and return. #define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsSmi()); \ PropertyDetails name = PropertyDetails(Smi::cast(args[index])); // Assert that the given argument has a valid value for a StrictModeFlag // and store it in a StrictModeFlag variable with the given name. #define CONVERT_STRICT_MODE_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsSmi()); \ RUNTIME_ASSERT(args.smi_at(index) == kStrictMode || \ args.smi_at(index) == kNonStrictMode); \ StrictModeFlag name = \ static_cast<StrictModeFlag>(args.smi_at(index)); // Assert that the given argument has a valid value for a LanguageMode // and store it in a LanguageMode variable with the given name. #define CONVERT_LANGUAGE_MODE_ARG(name, index) \ ASSERT(args[index]->IsSmi()); \ ASSERT(args.smi_at(index) == CLASSIC_MODE || \ args.smi_at(index) == STRICT_MODE || \ args.smi_at(index) == EXTENDED_MODE); \ LanguageMode name = \ static_cast<LanguageMode>(args.smi_at(index)); static Handle<Map> ComputeObjectLiteralMap( Handle<Context> context, Handle<FixedArray> constant_properties, bool* is_result_from_cache) { Isolate* isolate = context->GetIsolate(); int properties_length = constant_properties->length(); int number_of_properties = properties_length / 2; // Check that there are only internal strings and array indices among keys. int number_of_string_keys = 0; for (int p = 0; p != properties_length; p += 2) { Object* key = constant_properties->get(p); uint32_t element_index = 0; if (key->IsInternalizedString()) { number_of_string_keys++; } else if (key->ToArrayIndex(&element_index)) { // An index key does not require space in the property backing store. number_of_properties--; } else { // Bail out as a non-internalized-string non-index key makes caching // impossible. // ASSERT to make sure that the if condition after the loop is false. ASSERT(number_of_string_keys != number_of_properties); break; } } // If we only have internalized strings and array indices among keys then we // can use the map cache in the native context. const int kMaxKeys = 10; if ((number_of_string_keys == number_of_properties) && (number_of_string_keys < kMaxKeys)) { // Create the fixed array with the key. Handle<FixedArray> keys = isolate->factory()->NewFixedArray(number_of_string_keys); if (number_of_string_keys > 0) { int index = 0; for (int p = 0; p < properties_length; p += 2) { Object* key = constant_properties->get(p); if (key->IsInternalizedString()) { keys->set(index++, key); } } ASSERT(index == number_of_string_keys); } *is_result_from_cache = true; return isolate->factory()->ObjectLiteralMapFromCache(context, keys); } *is_result_from_cache = false; return isolate->factory()->CopyMap( Handle<Map>(context->object_function()->initial_map()), number_of_properties); } static Handle<Object> CreateLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> constant_properties); static Handle<Object> CreateObjectLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> constant_properties, bool should_have_fast_elements, bool has_function_literal) { // Get the native context from the literals array. This is the // context in which the function was created and we use the object // function from this context to create the object literal. We do // not use the object function from the current native context // because this might be the object function from another context // which we should not have access to. Handle<Context> context = Handle<Context>(JSFunction::NativeContextFromLiterals(*literals)); // In case we have function literals, we want the object to be in // slow properties mode for now. We don't go in the map cache because // maps with constant functions can't be shared if the functions are // not the same (which is the common case). bool is_result_from_cache = false; Handle<Map> map = has_function_literal ? Handle<Map>(context->object_function()->initial_map()) : ComputeObjectLiteralMap(context, constant_properties, &is_result_from_cache); Handle<JSObject> boilerplate = isolate->factory()->NewJSObjectFromMap( map, isolate->heap()->GetPretenureMode()); // Normalize the elements of the boilerplate to save space if needed. if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate); // Add the constant properties to the boilerplate. int length = constant_properties->length(); bool should_transform = !is_result_from_cache && boilerplate->HasFastProperties(); if (should_transform || has_function_literal) { // Normalize the properties of object to avoid n^2 behavior // when extending the object multiple properties. Indicate the number of // properties to be added. JSObject::NormalizeProperties( boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2); } // TODO(verwaest): Support tracking representations in the boilerplate. for (int index = 0; index < length; index +=2) { Handle<Object> key(constant_properties->get(index+0), isolate); Handle<Object> value(constant_properties->get(index+1), isolate); if (value->IsFixedArray()) { // The value contains the constant_properties of a // simple object or array literal. Handle<FixedArray> array = Handle<FixedArray>::cast(value); value = CreateLiteralBoilerplate(isolate, literals, array); if (value.is_null()) return value; } Handle<Object> result; uint32_t element_index = 0; StoreMode mode = value->IsJSObject() ? FORCE_FIELD : ALLOW_AS_CONSTANT; if (key->IsInternalizedString()) { if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) { // Array index as string (uint32). result = JSObject::SetOwnElement( boilerplate, element_index, value, kNonStrictMode); } else { Handle<String> name(String::cast(*key)); ASSERT(!name->AsArrayIndex(&element_index)); result = JSObject::SetLocalPropertyIgnoreAttributes( boilerplate, name, value, NONE, Object::OPTIMAL_REPRESENTATION, mode); } } else if (key->ToArrayIndex(&element_index)) { // Array index (uint32). result = JSObject::SetOwnElement( boilerplate, element_index, value, kNonStrictMode); } else { // Non-uint32 number. ASSERT(key->IsNumber()); double num = key->Number(); char arr[100]; Vector<char> buffer(arr, ARRAY_SIZE(arr)); const char* str = DoubleToCString(num, buffer); Handle<String> name = isolate->factory()->NewStringFromAscii(CStrVector(str)); result = JSObject::SetLocalPropertyIgnoreAttributes( boilerplate, name, value, NONE, Object::OPTIMAL_REPRESENTATION, mode); } // If setting the property on the boilerplate throws an // exception, the exception is converted to an empty handle in // the handle based operations. In that case, we need to // convert back to an exception. if (result.is_null()) return result; } // Transform to fast properties if necessary. For object literals with // containing function literals we defer this operation until after all // computed properties have been assigned so that we can generate // constant function properties. if (should_transform && !has_function_literal) { JSObject::TransformToFastProperties( boilerplate, boilerplate->map()->unused_property_fields()); } return boilerplate; } MaybeObject* TransitionElements(Handle<Object> object, ElementsKind to_kind, Isolate* isolate) { HandleScope scope(isolate); if (!object->IsJSObject()) return isolate->ThrowIllegalOperation(); ElementsKind from_kind = Handle<JSObject>::cast(object)->map()->elements_kind(); if (Map::IsValidElementsTransition(from_kind, to_kind)) { JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), to_kind); return *object; } return isolate->ThrowIllegalOperation(); } static const int kSmiLiteralMinimumLength = 1024; Handle<Object> Runtime::CreateArrayLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> elements) { // Create the JSArray. Handle<JSFunction> constructor( JSFunction::NativeContextFromLiterals(*literals)->array_function()); Handle<JSArray> object = Handle<JSArray>::cast( isolate->factory()->NewJSObject( constructor, isolate->heap()->GetPretenureMode())); ElementsKind constant_elements_kind = static_cast<ElementsKind>(Smi::cast(elements->get(0))->value()); Handle<FixedArrayBase> constant_elements_values( FixedArrayBase::cast(elements->get(1))); ASSERT(IsFastElementsKind(constant_elements_kind)); Context* native_context = isolate->context()->native_context(); Object* maybe_maps_array = native_context->js_array_maps(); ASSERT(!maybe_maps_array->IsUndefined()); Object* maybe_map = FixedArray::cast(maybe_maps_array)->get( constant_elements_kind); ASSERT(maybe_map->IsMap()); object->set_map(Map::cast(maybe_map)); Handle<FixedArrayBase> copied_elements_values; if (IsFastDoubleElementsKind(constant_elements_kind)) { ASSERT(FLAG_smi_only_arrays); copied_elements_values = isolate->factory()->CopyFixedDoubleArray( Handle<FixedDoubleArray>::cast(constant_elements_values)); } else { ASSERT(IsFastSmiOrObjectElementsKind(constant_elements_kind)); const bool is_cow = (constant_elements_values->map() == isolate->heap()->fixed_cow_array_map()); if (is_cow) { copied_elements_values = constant_elements_values; #if DEBUG Handle<FixedArray> fixed_array_values = Handle<FixedArray>::cast(copied_elements_values); for (int i = 0; i < fixed_array_values->length(); i++) { ASSERT(!fixed_array_values->get(i)->IsFixedArray()); } #endif } else { Handle<FixedArray> fixed_array_values = Handle<FixedArray>::cast(constant_elements_values); Handle<FixedArray> fixed_array_values_copy = isolate->factory()->CopyFixedArray(fixed_array_values); copied_elements_values = fixed_array_values_copy; for (int i = 0; i < fixed_array_values->length(); i++) { Object* current = fixed_array_values->get(i); if (current->IsFixedArray()) { // The value contains the constant_properties of a // simple object or array literal. Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i))); Handle<Object> result = CreateLiteralBoilerplate(isolate, literals, fa); if (result.is_null()) return result; fixed_array_values_copy->set(i, *result); } } } } object->set_elements(*copied_elements_values); object->set_length(Smi::FromInt(copied_elements_values->length())); // Ensure that the boilerplate object has FAST_*_ELEMENTS, unless the flag is // on or the object is larger than the threshold. if (!FLAG_smi_only_arrays && constant_elements_values->length() < kSmiLiteralMinimumLength) { ElementsKind elements_kind = object->GetElementsKind(); if (!IsFastObjectElementsKind(elements_kind)) { if (IsFastHoleyElementsKind(elements_kind)) { CHECK(!TransitionElements(object, FAST_HOLEY_ELEMENTS, isolate)->IsFailure()); } else { CHECK(!TransitionElements(object, FAST_ELEMENTS, isolate)->IsFailure()); } } } object->ValidateElements(); return object; } static Handle<Object> CreateLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> array) { Handle<FixedArray> elements = CompileTimeValue::GetElements(array); const bool kHasNoFunctionLiteral = false; switch (CompileTimeValue::GetLiteralType(array)) { case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS: return CreateObjectLiteralBoilerplate(isolate, literals, elements, true, kHasNoFunctionLiteral); case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS: return CreateObjectLiteralBoilerplate(isolate, literals, elements, false, kHasNoFunctionLiteral); case CompileTimeValue::ARRAY_LITERAL: return Runtime::CreateArrayLiteralBoilerplate( isolate, literals, elements); default: UNREACHABLE(); return Handle<Object>::null(); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteral) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); CONVERT_SMI_ARG_CHECKED(literals_index, 1); CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2); CONVERT_SMI_ARG_CHECKED(flags, 3); bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0; bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0; // Check if boilerplate exists. If not, create it first. Handle<Object> literal_site(literals->get(literals_index), isolate); Handle<AllocationSite> site; Handle<JSObject> boilerplate; if (*literal_site == isolate->heap()->undefined_value()) { Handle<Object> raw_boilerplate = CreateObjectLiteralBoilerplate( isolate, literals, constant_properties, should_have_fast_elements, has_function_literal); RETURN_IF_EMPTY_HANDLE(isolate, raw_boilerplate); boilerplate = Handle<JSObject>::cast(raw_boilerplate); AllocationSiteCreationContext creation_context(isolate); site = creation_context.EnterNewScope(); RETURN_IF_EMPTY_HANDLE(isolate, JSObject::DeepWalk(boilerplate, &creation_context)); creation_context.ExitScope(site, boilerplate); // Update the functions literal and return the boilerplate. literals->set(literals_index, *site); } else { site = Handle<AllocationSite>::cast(literal_site); boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()), isolate); } AllocationSiteUsageContext usage_context(isolate, site, true); usage_context.EnterNewScope(); Handle<Object> copy = JSObject::DeepCopy(boilerplate, &usage_context); usage_context.ExitScope(site, boilerplate); RETURN_IF_EMPTY_HANDLE(isolate, copy); return *copy; } static Handle<AllocationSite> GetLiteralAllocationSite( Isolate* isolate, Handle<FixedArray> literals, int literals_index, Handle<FixedArray> elements) { // Check if boilerplate exists. If not, create it first. Handle<Object> literal_site(literals->get(literals_index), isolate); Handle<AllocationSite> site; if (*literal_site == isolate->heap()->undefined_value()) { ASSERT(*elements != isolate->heap()->empty_fixed_array()); Handle<Object> boilerplate = Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements); if (boilerplate.is_null()) return Handle<AllocationSite>::null(); AllocationSiteCreationContext creation_context(isolate); site = creation_context.EnterNewScope(); if (JSObject::DeepWalk(Handle<JSObject>::cast(boilerplate), &creation_context).is_null()) { return Handle<AllocationSite>::null(); } creation_context.ExitScope(site, Handle<JSObject>::cast(boilerplate)); literals->set(literals_index, *site); } else { site = Handle<AllocationSite>::cast(literal_site); } return site; } static MaybeObject* CreateArrayLiteralImpl(Isolate* isolate, Handle<FixedArray> literals, int literals_index, Handle<FixedArray> elements, int flags) { Handle<AllocationSite> site = GetLiteralAllocationSite(isolate, literals, literals_index, elements); RETURN_IF_EMPTY_HANDLE(isolate, site); bool enable_mementos = (flags & ArrayLiteral::kDisableMementos) == 0; Handle<JSObject> boilerplate(JSObject::cast(site->transition_info())); AllocationSiteUsageContext usage_context(isolate, site, enable_mementos); usage_context.EnterNewScope(); JSObject::DeepCopyHints hints = (flags & ArrayLiteral::kShallowElements) == 0 ? JSObject::kNoHints : JSObject::kObjectIsShallowArray; Handle<JSObject> copy = JSObject::DeepCopy(boilerplate, &usage_context, hints); usage_context.ExitScope(site, boilerplate); RETURN_IF_EMPTY_HANDLE(isolate, copy); return *copy; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteral) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); CONVERT_SMI_ARG_CHECKED(literals_index, 1); CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2); CONVERT_SMI_ARG_CHECKED(flags, 3); return CreateArrayLiteralImpl(isolate, literals, literals_index, elements, flags); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteralStubBailout) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); CONVERT_SMI_ARG_CHECKED(literals_index, 1); CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2); return CreateArrayLiteralImpl(isolate, literals, literals_index, elements, ArrayLiteral::kShallowElements); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateSymbol) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> name(args[0], isolate); RUNTIME_ASSERT(name->IsString() || name->IsUndefined()); Symbol* symbol; MaybeObject* maybe = isolate->heap()->AllocateSymbol(); if (!maybe->To(&symbol)) return maybe; if (name->IsString()) symbol->set_name(*name); return symbol; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreatePrivateSymbol) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> name(args[0], isolate); RUNTIME_ASSERT(name->IsString() || name->IsUndefined()); Symbol* symbol; MaybeObject* maybe = isolate->heap()->AllocatePrivateSymbol(); if (!maybe->To(&symbol)) return maybe; if (name->IsString()) symbol->set_name(*name); return symbol; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SymbolName) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(Symbol, symbol, 0); return symbol->name(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SymbolIsPrivate) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(Symbol, symbol, 0); return isolate->heap()->ToBoolean(symbol->is_private()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateJSProxy) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSReceiver, handler, 0); Object* prototype = args[1]; Object* used_prototype = prototype->IsJSReceiver() ? prototype : isolate->heap()->null_value(); return isolate->heap()->AllocateJSProxy(handler, used_prototype); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateJSFunctionProxy) { SealHandleScope shs(isolate); ASSERT(args.length() == 4); CONVERT_ARG_CHECKED(JSReceiver, handler, 0); Object* call_trap = args[1]; RUNTIME_ASSERT(call_trap->IsJSFunction() || call_trap->IsJSFunctionProxy()); CONVERT_ARG_CHECKED(JSFunction, construct_trap, 2); Object* prototype = args[3]; Object* used_prototype = prototype->IsJSReceiver() ? prototype : isolate->heap()->null_value(); return isolate->heap()->AllocateJSFunctionProxy( handler, call_trap, construct_trap, used_prototype); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsJSProxy) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* obj = args[0]; return isolate->heap()->ToBoolean(obj->IsJSProxy()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsJSFunctionProxy) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* obj = args[0]; return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetHandler) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSProxy, proxy, 0); return proxy->handler(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetCallTrap) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0); return proxy->call_trap(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetConstructTrap) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0); return proxy->construct_trap(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Fix) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSProxy, proxy, 0); JSProxy::Fix(proxy); return isolate->heap()->undefined_value(); } void Runtime::FreeArrayBuffer(Isolate* isolate, JSArrayBuffer* phantom_array_buffer) { if (phantom_array_buffer->should_be_freed()) { ASSERT(phantom_array_buffer->is_external()); free(phantom_array_buffer->backing_store()); } if (phantom_array_buffer->is_external()) return; size_t allocated_length = NumberToSize( isolate, phantom_array_buffer->byte_length()); isolate->heap()->AdjustAmountOfExternalAllocatedMemory( -static_cast<int64_t>(allocated_length)); CHECK(V8::ArrayBufferAllocator() != NULL); V8::ArrayBufferAllocator()->Free( phantom_array_buffer->backing_store(), allocated_length); } void Runtime::SetupArrayBuffer(Isolate* isolate, Handle<JSArrayBuffer> array_buffer, bool is_external, void* data, size_t allocated_length) { ASSERT(array_buffer->GetInternalFieldCount() == v8::ArrayBuffer::kInternalFieldCount); for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) { array_buffer->SetInternalField(i, Smi::FromInt(0)); } array_buffer->set_backing_store(data); array_buffer->set_flag(Smi::FromInt(0)); array_buffer->set_is_external(is_external); Handle<Object> byte_length = isolate->factory()->NewNumberFromSize(allocated_length); CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber()); array_buffer->set_byte_length(*byte_length); array_buffer->set_weak_next(isolate->heap()->array_buffers_list()); isolate->heap()->set_array_buffers_list(*array_buffer); array_buffer->set_weak_first_view(isolate->heap()->undefined_value()); } bool Runtime::SetupArrayBufferAllocatingData( Isolate* isolate, Handle<JSArrayBuffer> array_buffer, size_t allocated_length, bool initialize) { void* data; CHECK(V8::ArrayBufferAllocator() != NULL); if (allocated_length != 0) { if (initialize) { data = V8::ArrayBufferAllocator()->Allocate(allocated_length); } else { data = V8::ArrayBufferAllocator()->AllocateUninitialized(allocated_length); } if (data == NULL) return false; } else { data = NULL; } SetupArrayBuffer(isolate, array_buffer, false, data, allocated_length); isolate->heap()->AdjustAmountOfExternalAllocatedMemory(allocated_length); return true; } RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayBufferInitialize) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, byteLength, 1); size_t allocated_length; if (byteLength->IsSmi()) { allocated_length = Smi::cast(*byteLength)->value(); } else { ASSERT(byteLength->IsHeapNumber()); double value = HeapNumber::cast(*byteLength)->value(); ASSERT(value >= 0); if (value > std::numeric_limits<size_t>::max()) { return isolate->Throw( *isolate->factory()->NewRangeError("invalid_array_buffer_length", HandleVector<Object>(NULL, 0))); } allocated_length = static_cast<size_t>(value); } if (!Runtime::SetupArrayBufferAllocatingData(isolate, holder, allocated_length)) { return isolate->Throw(*isolate->factory()-> NewRangeError("invalid_array_buffer_length", HandleVector<Object>(NULL, 0))); } return *holder; } RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayBufferGetByteLength) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSArrayBuffer, holder, 0); return holder->byte_length(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayBufferSliceImpl) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, source, 0); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, target, 1); CONVERT_DOUBLE_ARG_CHECKED(first, 2); size_t start = static_cast<size_t>(first); size_t target_length = NumberToSize(isolate, target->byte_length()); if (target_length == 0) return isolate->heap()->undefined_value(); ASSERT(NumberToSize(isolate, source->byte_length()) - target_length >= start); uint8_t* source_data = reinterpret_cast<uint8_t*>(source->backing_store()); uint8_t* target_data = reinterpret_cast<uint8_t*>(target->backing_store()); CopyBytes(target_data, source_data + start, target_length); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayBufferIsView) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(Object, object, 0); return object->IsJSArrayBufferView() ? isolate->heap()->true_value() : isolate->heap()->false_value(); } void Runtime::ArrayIdToTypeAndSize( int arrayId, ExternalArrayType* array_type, size_t* element_size) { switch (arrayId) { case ARRAY_ID_UINT8: *array_type = kExternalUnsignedByteArray; *element_size = 1; break; case ARRAY_ID_INT8: *array_type = kExternalByteArray; *element_size = 1; break; case ARRAY_ID_UINT16: *array_type = kExternalUnsignedShortArray; *element_size = 2; break; case ARRAY_ID_INT16: *array_type = kExternalShortArray; *element_size = 2; break; case ARRAY_ID_UINT32: *array_type = kExternalUnsignedIntArray; *element_size = 4; break; case ARRAY_ID_INT32: *array_type = kExternalIntArray; *element_size = 4; break; case ARRAY_ID_FLOAT32: *array_type = kExternalFloatArray; *element_size = 4; break; case ARRAY_ID_FLOAT64: *array_type = kExternalDoubleArray; *element_size = 8; break; case ARRAY_ID_UINT8C: *array_type = kExternalPixelArray; *element_size = 1; break; default: UNREACHABLE(); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_TypedArrayInitialize) { HandleScope scope(isolate); ASSERT(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0); CONVERT_SMI_ARG_CHECKED(arrayId, 1); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 2); CONVERT_ARG_HANDLE_CHECKED(Object, byte_offset_object, 3); CONVERT_ARG_HANDLE_CHECKED(Object, byte_length_object, 4); ASSERT(holder->GetInternalFieldCount() == v8::ArrayBufferView::kInternalFieldCount); for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) { holder->SetInternalField(i, Smi::FromInt(0)); } ExternalArrayType array_type = kExternalByteArray; // Bogus initialization. size_t element_size = 1; // Bogus initialization. Runtime::ArrayIdToTypeAndSize(arrayId, &array_type, &element_size); holder->set_buffer(*buffer); holder->set_byte_offset(*byte_offset_object); holder->set_byte_length(*byte_length_object); size_t byte_offset = NumberToSize(isolate, *byte_offset_object); size_t byte_length = NumberToSize(isolate, *byte_length_object); ASSERT(byte_length % element_size == 0); size_t length = byte_length / element_size; if (length > static_cast<unsigned>(Smi::kMaxValue)) { return isolate->Throw(*isolate->factory()-> NewRangeError("invalid_typed_array_length", HandleVector<Object>(NULL, 0))); } Handle<Object> length_obj = isolate->factory()->NewNumberFromSize(length); holder->set_length(*length_obj); holder->set_weak_next(buffer->weak_first_view()); buffer->set_weak_first_view(*holder); Handle<ExternalArray> elements = isolate->factory()->NewExternalArray( static_cast<int>(length), array_type, static_cast<uint8_t*>(buffer->backing_store()) + byte_offset); holder->set_elements(*elements); return isolate->heap()->undefined_value(); } // Initializes a typed array from an array-like object. // If an array-like object happens to be a typed array of the same type, // initializes backing store using memove. // // Returns true if backing store was initialized or false otherwise. RUNTIME_FUNCTION(MaybeObject*, Runtime_TypedArrayInitializeFromArrayLike) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0); CONVERT_SMI_ARG_CHECKED(arrayId, 1); CONVERT_ARG_HANDLE_CHECKED(Object, source, 2); CONVERT_ARG_HANDLE_CHECKED(Object, length_obj, 3); ASSERT(holder->GetInternalFieldCount() == v8::ArrayBufferView::kInternalFieldCount); for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) { holder->SetInternalField(i, Smi::FromInt(0)); } ExternalArrayType array_type = kExternalByteArray; // Bogus initialization. size_t element_size = 1; // Bogus initialization. Runtime::ArrayIdToTypeAndSize(arrayId, &array_type, &element_size); Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer(); if (source->IsJSTypedArray() && JSTypedArray::cast(*source)->type() == array_type) { length_obj = Handle<Object>(JSTypedArray::cast(*source)->length(), isolate); } size_t length = NumberToSize(isolate, *length_obj); if ((length > static_cast<unsigned>(Smi::kMaxValue)) || (length > (kMaxInt / element_size))) { return isolate->Throw(*isolate->factory()-> NewRangeError("invalid_typed_array_length", HandleVector<Object>(NULL, 0))); } size_t byte_length = length * element_size; // NOTE: not initializing backing store. // We assume that the caller of this function will initialize holder // with the loop // for(i = 0; i < length; i++) { holder[i] = source[i]; } // We assume that the caller of this function is always a typed array // constructor. // If source is a typed array, this loop will always run to completion, // so we are sure that the backing store will be initialized. // Otherwise, the indexing operation might throw, so the loop will not // run to completion and the typed array might remain partly initialized. // However we further assume that the caller of this function is a typed array // constructor, and the exception will propagate out of the constructor, // therefore uninitialized memory will not be accessible by a user program. // // TODO(dslomov): revise this once we support subclassing. if (!Runtime::SetupArrayBufferAllocatingData( isolate, buffer, byte_length, false)) { return isolate->Throw(*isolate->factory()-> NewRangeError("invalid_array_buffer_length", HandleVector<Object>(NULL, 0))); } holder->set_buffer(*buffer); holder->set_byte_offset(Smi::FromInt(0)); Handle<Object> byte_length_obj( isolate->factory()->NewNumberFromSize(byte_length)); holder->set_byte_length(*byte_length_obj); holder->set_length(*length_obj); holder->set_weak_next(buffer->weak_first_view()); buffer->set_weak_first_view(*holder); Handle<ExternalArray> elements = isolate->factory()->NewExternalArray( static_cast<int>(length), array_type, static_cast<uint8_t*>(buffer->backing_store())); holder->set_elements(*elements); if (source->IsJSTypedArray()) { Handle<JSTypedArray> typed_array(JSTypedArray::cast(*source)); if (typed_array->type() == holder->type()) { uint8_t* backing_store = static_cast<uint8_t*>( JSArrayBuffer::cast(typed_array->buffer())->backing_store()); size_t source_byte_offset = NumberToSize(isolate, typed_array->byte_offset()); memcpy( buffer->backing_store(), backing_store + source_byte_offset, byte_length); return *isolate->factory()->true_value(); } else { return *isolate->factory()->false_value(); } } return *isolate->factory()->false_value(); } #define TYPED_ARRAY_GETTER(getter, accessor) \ RUNTIME_FUNCTION(MaybeObject*, Runtime_TypedArrayGet##getter) { \ HandleScope scope(isolate); \ ASSERT(args.length() == 1); \ CONVERT_ARG_HANDLE_CHECKED(Object, holder, 0); \ if (!holder->IsJSTypedArray()) \ return isolate->Throw(*isolate->factory()->NewTypeError( \ "not_typed_array", HandleVector<Object>(NULL, 0))); \ Handle<JSTypedArray> typed_array(JSTypedArray::cast(*holder)); \ return typed_array->accessor(); \ } TYPED_ARRAY_GETTER(Buffer, buffer) TYPED_ARRAY_GETTER(ByteLength, byte_length) TYPED_ARRAY_GETTER(ByteOffset, byte_offset) TYPED_ARRAY_GETTER(Length, length) #undef TYPED_ARRAY_GETTER // Return codes for Runtime_TypedArraySetFastCases. // Should be synchronized with typedarray.js natives. enum TypedArraySetResultCodes { // Set from typed array of the same type. // This is processed by TypedArraySetFastCases TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE = 0, // Set from typed array of the different type, overlapping in memory. TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING = 1, // Set from typed array of the different type, non-overlapping. TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING = 2, // Set from non-typed array. TYPED_ARRAY_SET_NON_TYPED_ARRAY = 3 }; RUNTIME_FUNCTION(MaybeObject*, Runtime_TypedArraySetFastCases) { HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(Object, target_obj, 0); CONVERT_ARG_HANDLE_CHECKED(Object, source_obj, 1); CONVERT_ARG_HANDLE_CHECKED(Object, offset_obj, 2); if (!target_obj->IsJSTypedArray()) return isolate->Throw(*isolate->factory()->NewTypeError( "not_typed_array", HandleVector<Object>(NULL, 0))); if (!source_obj->IsJSTypedArray()) return Smi::FromInt(TYPED_ARRAY_SET_NON_TYPED_ARRAY); Handle<JSTypedArray> target(JSTypedArray::cast(*target_obj)); Handle<JSTypedArray> source(JSTypedArray::cast(*source_obj)); size_t offset = NumberToSize(isolate, *offset_obj); size_t target_length = NumberToSize(isolate, target->length()); size_t source_length = NumberToSize(isolate, source->length()); size_t target_byte_length = NumberToSize(isolate, target->byte_length()); size_t source_byte_length = NumberToSize(isolate, source->byte_length()); if (offset > target_length || offset + source_length > target_length || offset + source_length < offset) // overflow return isolate->Throw(*isolate->factory()->NewRangeError( "typed_array_set_source_too_large", HandleVector<Object>(NULL, 0))); size_t target_offset = NumberToSize(isolate, target->byte_offset()); size_t source_offset = NumberToSize(isolate, source->byte_offset()); uint8_t* target_base = static_cast<uint8_t*>( JSArrayBuffer::cast(target->buffer())->backing_store()) + target_offset; uint8_t* source_base = static_cast<uint8_t*>( JSArrayBuffer::cast(source->buffer())->backing_store()) + source_offset; // Typed arrays of the same type: use memmove. if (target->type() == source->type()) { memmove(target_base + offset * target->element_size(), source_base, source_byte_length); return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE); } // Typed arrays of different types over the same backing store if ((source_base <= target_base && source_base + source_byte_length > target_base) || (target_base <= source_base && target_base + target_byte_length > source_base)) { // We do not support overlapping ArrayBuffers ASSERT( JSArrayBuffer::cast(target->buffer())->backing_store() == JSArrayBuffer::cast(source->buffer())->backing_store()); return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING); } else { // Non-overlapping typed arrays return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewInitialize) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 1); CONVERT_ARG_HANDLE_CHECKED(Object, byte_offset, 2); CONVERT_ARG_HANDLE_CHECKED(Object, byte_length, 3); ASSERT(holder->GetInternalFieldCount() == v8::ArrayBufferView::kInternalFieldCount); for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) { holder->SetInternalField(i, Smi::FromInt(0)); } holder->set_buffer(*buffer); ASSERT(byte_offset->IsNumber()); ASSERT( NumberToSize(isolate, buffer->byte_length()) >= NumberToSize(isolate, *byte_offset) + NumberToSize(isolate, *byte_length)); holder->set_byte_offset(*byte_offset); ASSERT(byte_length->IsNumber()); holder->set_byte_length(*byte_length); holder->set_weak_next(buffer->weak_first_view()); buffer->set_weak_first_view(*holder); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewGetBuffer) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSDataView, data_view, 0); return data_view->buffer(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewGetByteOffset) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSDataView, data_view, 0); return data_view->byte_offset(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewGetByteLength) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSDataView, data_view, 0); return data_view->byte_length(); } inline static bool NeedToFlipBytes(bool is_little_endian) { #ifdef V8_TARGET_LITTLE_ENDIAN return !is_little_endian; #else return is_little_endian; #endif } template<int n> inline void CopyBytes(uint8_t* target, uint8_t* source) { for (int i = 0; i < n; i++) { *(target++) = *(source++); } } template<int n> inline void FlipBytes(uint8_t* target, uint8_t* source) { source = source + (n-1); for (int i = 0; i < n; i++) { *(target++) = *(source--); } } template<typename T> inline static bool DataViewGetValue( Isolate* isolate, Handle<JSDataView> data_view, Handle<Object> byte_offset_obj, bool is_little_endian, T* result) { size_t byte_offset = 0; if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) { return false; } Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer())); size_t data_view_byte_offset = NumberToSize(isolate, data_view->byte_offset()); size_t data_view_byte_length = NumberToSize(isolate, data_view->byte_length()); if (byte_offset + sizeof(T) > data_view_byte_length || byte_offset + sizeof(T) < byte_offset) { // overflow return false; } union Value { T data; uint8_t bytes[sizeof(T)]; }; Value value; size_t buffer_offset = data_view_byte_offset + byte_offset; ASSERT( NumberToSize(isolate, buffer->byte_length()) >= buffer_offset + sizeof(T)); uint8_t* source = static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset; if (NeedToFlipBytes(is_little_endian)) { FlipBytes<sizeof(T)>(value.bytes, source); } else { CopyBytes<sizeof(T)>(value.bytes, source); } *result = value.data; return true; } template<typename T> static bool DataViewSetValue( Isolate* isolate, Handle<JSDataView> data_view, Handle<Object> byte_offset_obj, bool is_little_endian, T data) { size_t byte_offset = 0; if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) { return false; } Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer())); size_t data_view_byte_offset = NumberToSize(isolate, data_view->byte_offset()); size_t data_view_byte_length = NumberToSize(isolate, data_view->byte_length()); if (byte_offset + sizeof(T) > data_view_byte_length || byte_offset + sizeof(T) < byte_offset) { // overflow return false; } union Value { T data; uint8_t bytes[sizeof(T)]; }; Value value; value.data = data; size_t buffer_offset = data_view_byte_offset + byte_offset; ASSERT( NumberToSize(isolate, buffer->byte_length()) >= buffer_offset + sizeof(T)); uint8_t* target = static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset; if (NeedToFlipBytes(is_little_endian)) { FlipBytes<sizeof(T)>(target, value.bytes); } else { CopyBytes<sizeof(T)>(target, value.bytes); } return true; } #define DATA_VIEW_GETTER(TypeName, Type, Converter) \ RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewGet##TypeName) { \ HandleScope scope(isolate); \ ASSERT(args.length() == 3); \ CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \ CONVERT_ARG_HANDLE_CHECKED(Object, offset, 1); \ CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 2); \ Type result; \ if (DataViewGetValue( \ isolate, holder, offset, is_little_endian, &result)) { \ return isolate->heap()->Converter(result); \ } else { \ return isolate->Throw(*isolate->factory()->NewRangeError( \ "invalid_data_view_accessor_offset", \ HandleVector<Object>(NULL, 0))); \ } \ } DATA_VIEW_GETTER(Uint8, uint8_t, NumberFromUint32) DATA_VIEW_GETTER(Int8, int8_t, NumberFromInt32) DATA_VIEW_GETTER(Uint16, uint16_t, NumberFromUint32) DATA_VIEW_GETTER(Int16, int16_t, NumberFromInt32) DATA_VIEW_GETTER(Uint32, uint32_t, NumberFromUint32) DATA_VIEW_GETTER(Int32, int32_t, NumberFromInt32) DATA_VIEW_GETTER(Float32, float, NumberFromDouble) DATA_VIEW_GETTER(Float64, double, NumberFromDouble) #undef DATA_VIEW_GETTER template <typename T> static T DataViewConvertValue(double value); template <> int8_t DataViewConvertValue<int8_t>(double value) { return static_cast<int8_t>(DoubleToInt32(value)); } template <> int16_t DataViewConvertValue<int16_t>(double value) { return static_cast<int16_t>(DoubleToInt32(value)); } template <> int32_t DataViewConvertValue<int32_t>(double value) { return DoubleToInt32(value); } template <> uint8_t DataViewConvertValue<uint8_t>(double value) { return static_cast<uint8_t>(DoubleToUint32(value)); } template <> uint16_t DataViewConvertValue<uint16_t>(double value) { return static_cast<uint16_t>(DoubleToUint32(value)); } template <> uint32_t DataViewConvertValue<uint32_t>(double value) { return DoubleToUint32(value); } template <> float DataViewConvertValue<float>(double value) { return static_cast<float>(value); } template <> double DataViewConvertValue<double>(double value) { return value; } #define DATA_VIEW_SETTER(TypeName, Type) \ RUNTIME_FUNCTION(MaybeObject*, Runtime_DataViewSet##TypeName) { \ HandleScope scope(isolate); \ ASSERT(args.length() == 4); \ CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \ CONVERT_ARG_HANDLE_CHECKED(Object, offset, 1); \ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); \ CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 3); \ Type v = DataViewConvertValue<Type>(value->Number()); \ if (DataViewSetValue( \ isolate, holder, offset, is_little_endian, v)) { \ return isolate->heap()->undefined_value(); \ } else { \ return isolate->Throw(*isolate->factory()->NewRangeError( \ "invalid_data_view_accessor_offset", \ HandleVector<Object>(NULL, 0))); \ } \ } DATA_VIEW_SETTER(Uint8, uint8_t) DATA_VIEW_SETTER(Int8, int8_t) DATA_VIEW_SETTER(Uint16, uint16_t) DATA_VIEW_SETTER(Int16, int16_t) DATA_VIEW_SETTER(Uint32, uint32_t) DATA_VIEW_SETTER(Int32, int32_t) DATA_VIEW_SETTER(Float32, float) DATA_VIEW_SETTER(Float64, double) #undef DATA_VIEW_SETTER RUNTIME_FUNCTION(MaybeObject*, Runtime_SetInitialize) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); Handle<ObjectHashSet> table = isolate->factory()->NewObjectHashSet(0); holder->set_table(*table); return *holder; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetAdd) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); Handle<Object> key(args[1], isolate); Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table())); table = ObjectHashSet::Add(table, key); holder->set_table(*table); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetHas) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); Handle<Object> key(args[1], isolate); Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table())); return isolate->heap()->ToBoolean(table->Contains(*key)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDelete) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); Handle<Object> key(args[1], isolate); Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table())); table = ObjectHashSet::Remove(table, key); holder->set_table(*table); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetGetSize) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table())); return Smi::FromInt(table->NumberOfElements()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MapInitialize) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); Handle<ObjectHashTable> table = isolate->factory()->NewObjectHashTable(0); holder->set_table(*table); return *holder; } RUNTIME_FUNCTION(MaybeObject*, Runtime_MapGet) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table())); Handle<Object> lookup(table->Lookup(*key), isolate); return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup; } RUNTIME_FUNCTION(MaybeObject*, Runtime_MapHas) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table())); Handle<Object> lookup(table->Lookup(*key), isolate); return isolate->heap()->ToBoolean(!lookup->IsTheHole()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MapDelete) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table())); Handle<Object> lookup(table->Lookup(*key), isolate); Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, isolate->factory()->the_hole_value()); holder->set_table(*new_table); return isolate->heap()->ToBoolean(!lookup->IsTheHole()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MapSet) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table())); Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, value); holder->set_table(*new_table); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MapGetSize) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table())); return Smi::FromInt(table->NumberOfElements()); } static JSWeakCollection* WeakCollectionInitialize(Isolate* isolate, Handle<JSWeakCollection> weak_collection) { ASSERT(weak_collection->map()->inobject_properties() == 0); Handle<ObjectHashTable> table = isolate->factory()->NewObjectHashTable(0); weak_collection->set_table(*table); weak_collection->set_next(Smi::FromInt(0)); return *weak_collection; } RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakCollectionInitialize) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); return WeakCollectionInitialize(isolate, weak_collection); } RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakCollectionGet) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<ObjectHashTable> table( ObjectHashTable::cast(weak_collection->table())); Handle<Object> lookup(table->Lookup(*key), isolate); return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup; } RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakCollectionHas) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<ObjectHashTable> table( ObjectHashTable::cast(weak_collection->table())); Handle<Object> lookup(table->Lookup(*key), isolate); return isolate->heap()->ToBoolean(!lookup->IsTheHole()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakCollectionDelete) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<ObjectHashTable> table(ObjectHashTable::cast( weak_collection->table())); Handle<Object> lookup(table->Lookup(*key), isolate); Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, isolate->factory()->the_hole_value()); weak_collection->set_table(*new_table); return isolate->heap()->ToBoolean(!lookup->IsTheHole()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakCollectionSet) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<Object> value(args[2], isolate); Handle<ObjectHashTable> table( ObjectHashTable::cast(weak_collection->table())); Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, value); weak_collection->set_table(*new_table); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ClassOf) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* obj = args[0]; if (!obj->IsJSObject()) return isolate->heap()->null_value(); return JSObject::cast(obj)->class_name(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPrototype) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0); // We don't expect access checks to be needed on JSProxy objects. ASSERT(!obj->IsAccessCheckNeeded() || obj->IsJSObject()); do { if (obj->IsAccessCheckNeeded() && !isolate->MayNamedAccessWrapper(Handle<JSObject>::cast(obj), isolate->factory()->proto_string(), v8::ACCESS_GET)) { isolate->ReportFailedAccessCheck(JSObject::cast(*obj), v8::ACCESS_GET); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return isolate->heap()->undefined_value(); } obj = handle(obj->GetPrototype(isolate), isolate); } while (obj->IsJSObject() && JSObject::cast(*obj)->map()->is_hidden_prototype()); return *obj; } static inline Object* GetPrototypeSkipHiddenPrototypes(Isolate* isolate, Object* receiver) { Object* current = receiver->GetPrototype(isolate); while (current->IsJSObject() && JSObject::cast(current)->map()->is_hidden_prototype()) { current = current->GetPrototype(isolate); } return current; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetPrototype) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1); if (FLAG_harmony_observation && obj->map()->is_observed()) { Handle<Object> old_value( GetPrototypeSkipHiddenPrototypes(isolate, *obj), isolate); Handle<Object> result = JSObject::SetPrototype(obj, prototype, true); RETURN_IF_EMPTY_HANDLE(isolate, result); Handle<Object> new_value( GetPrototypeSkipHiddenPrototypes(isolate, *obj), isolate); if (!new_value->SameValue(*old_value)) { JSObject::EnqueueChangeRecord(obj, "setPrototype", isolate->factory()->proto_string(), old_value); } return *result; } Handle<Object> result = JSObject::SetPrototype(obj, prototype, true); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsInPrototypeChain) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8). Object* O = args[0]; Object* V = args[1]; while (true) { Object* prototype = V->GetPrototype(isolate); if (prototype->IsNull()) return isolate->heap()->false_value(); if (O == prototype) return isolate->heap()->true_value(); V = prototype; } } static bool CheckAccessException(Object* callback, v8::AccessType access_type) { DisallowHeapAllocation no_gc; if (callback->IsAccessorInfo()) { AccessorInfo* info = AccessorInfo::cast(callback); return (access_type == v8::ACCESS_HAS && (info->all_can_read() || info->all_can_write())) || (access_type == v8::ACCESS_GET && info->all_can_read()) || (access_type == v8::ACCESS_SET && info->all_can_write()); } if (callback->IsAccessorPair()) { AccessorPair* info = AccessorPair::cast(callback); return (access_type == v8::ACCESS_HAS && (info->all_can_read() || info->all_can_write())) || (access_type == v8::ACCESS_GET && info->all_can_read()) || (access_type == v8::ACCESS_SET && info->all_can_write()); } return false; } template<class Key> static bool CheckGenericAccess( Handle<JSObject> receiver, Handle<JSObject> holder, Key key, v8::AccessType access_type, bool (Isolate::*mayAccess)(Handle<JSObject>, Key, v8::AccessType)) { Isolate* isolate = receiver->GetIsolate(); for (Handle<JSObject> current = receiver; true; current = handle(JSObject::cast(current->GetPrototype()), isolate)) { if (current->IsAccessCheckNeeded() && !(isolate->*mayAccess)(current, key, access_type)) { return false; } if (current.is_identical_to(holder)) break; } return true; } enum AccessCheckResult { ACCESS_FORBIDDEN, ACCESS_ALLOWED, ACCESS_ABSENT }; static AccessCheckResult CheckPropertyAccess(Handle<JSObject> obj, Handle<Name> name, v8::AccessType access_type) { uint32_t index; if (name->AsArrayIndex(&index)) { // TODO(1095): we should traverse hidden prototype hierachy as well. if (CheckGenericAccess( obj, obj, index, access_type, &Isolate::MayIndexedAccessWrapper)) { return ACCESS_ALLOWED; } obj->GetIsolate()->ReportFailedAccessCheck(*obj, access_type); return ACCESS_FORBIDDEN; } Isolate* isolate = obj->GetIsolate(); LookupResult lookup(isolate); obj->LocalLookup(*name, &lookup, true); if (!lookup.IsProperty()) return ACCESS_ABSENT; Handle<JSObject> holder(lookup.holder(), isolate); if (CheckGenericAccess<Handle<Object> >( obj, holder, name, access_type, &Isolate::MayNamedAccessWrapper)) { return ACCESS_ALLOWED; } // Access check callback denied the access, but some properties // can have a special permissions which override callbacks descision // (currently see v8::AccessControl). // API callbacks can have per callback access exceptions. switch (lookup.type()) { case CALLBACKS: if (CheckAccessException(lookup.GetCallbackObject(), access_type)) { return ACCESS_ALLOWED; } break; case INTERCEPTOR: // If the object has an interceptor, try real named properties. // Overwrite the result to fetch the correct property later. holder->LookupRealNamedProperty(*name, &lookup); if (lookup.IsProperty() && lookup.IsPropertyCallbacks()) { if (CheckAccessException(lookup.GetCallbackObject(), access_type)) { return ACCESS_ALLOWED; } } break; default: break; } isolate->ReportFailedAccessCheck(*obj, access_type); return ACCESS_FORBIDDEN; } // Enumerator used as indices into the array returned from GetOwnProperty enum PropertyDescriptorIndices { IS_ACCESSOR_INDEX, VALUE_INDEX, GETTER_INDEX, SETTER_INDEX, WRITABLE_INDEX, ENUMERABLE_INDEX, CONFIGURABLE_INDEX, DESCRIPTOR_SIZE }; static Handle<Object> GetOwnProperty(Isolate* isolate, Handle<JSObject> obj, Handle<Name> name) { Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); // Due to some WebKit tests, we want to make sure that we do not log // more than one access failure here. AccessCheckResult access_check_result = CheckPropertyAccess(obj, name, v8::ACCESS_HAS); RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object); switch (access_check_result) { case ACCESS_FORBIDDEN: return factory->false_value(); case ACCESS_ALLOWED: break; case ACCESS_ABSENT: return factory->undefined_value(); } PropertyAttributes attrs = obj->GetLocalPropertyAttribute(*name); if (attrs == ABSENT) { RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object); return factory->undefined_value(); } ASSERT(!isolate->has_scheduled_exception()); AccessorPair* raw_accessors = obj->GetLocalPropertyAccessorPair(*name); Handle<AccessorPair> accessors(raw_accessors, isolate); Handle<FixedArray> elms = isolate->factory()->NewFixedArray(DESCRIPTOR_SIZE); elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0)); elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0)); elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(raw_accessors != NULL)); if (raw_accessors == NULL) { elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0)); // GetProperty does access check. Handle<Object> value = GetProperty(isolate, obj, name); RETURN_IF_EMPTY_HANDLE_VALUE(isolate, value, Handle<Object>::null()); elms->set(VALUE_INDEX, *value); } else { // Access checks are performed for both accessors separately. // When they fail, the respective field is not set in the descriptor. Handle<Object> getter(accessors->GetComponent(ACCESSOR_GETTER), isolate); Handle<Object> setter(accessors->GetComponent(ACCESSOR_SETTER), isolate); if (!getter->IsMap() && CheckPropertyAccess(obj, name, v8::ACCESS_GET)) { ASSERT(!isolate->has_scheduled_exception()); elms->set(GETTER_INDEX, *getter); } else { RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object); } if (!setter->IsMap() && CheckPropertyAccess(obj, name, v8::ACCESS_SET)) { ASSERT(!isolate->has_scheduled_exception()); elms->set(SETTER_INDEX, *setter); } else { RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object); } } return isolate->factory()->NewJSArrayWithElements(elms); } // Returns an array with the property description: // if args[1] is not a property on args[0] // returns undefined // if args[1] is a data property on args[0] // [false, value, Writeable, Enumerable, Configurable] // if args[1] is an accessor on args[0] // [true, GetFunction, SetFunction, Enumerable, Configurable] RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOwnProperty) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); Handle<Object> result = GetOwnProperty(isolate, obj, name); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_PreventExtensions) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); Handle<Object> result = JSObject::PreventExtensions(obj); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsExtensible) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, obj, 0); if (obj->IsJSGlobalProxy()) { Object* proto = obj->GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); obj = JSObject::cast(proto); } return isolate->heap()->ToBoolean(obj->map()->is_extensible()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpCompile) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, re, 0); CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1); CONVERT_ARG_HANDLE_CHECKED(String, flags, 2); Handle<Object> result = RegExpImpl::Compile(re, pattern, flags); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateApiFunction) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0); return *isolate->factory()->CreateApiFunction(data); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsTemplate) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* arg = args[0]; bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo(); return isolate->heap()->ToBoolean(result); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetTemplateField) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(HeapObject, templ, 0); CONVERT_SMI_ARG_CHECKED(index, 1) int offset = index * kPointerSize + HeapObject::kHeaderSize; InstanceType type = templ->map()->instance_type(); RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE || type == OBJECT_TEMPLATE_INFO_TYPE); RUNTIME_ASSERT(offset > 0); if (type == FUNCTION_TEMPLATE_INFO_TYPE) { RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize); } else { RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize); } return *HeapObject::RawField(templ, offset); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DisableAccessChecks) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(HeapObject, object, 0); Map* old_map = object->map(); bool needs_access_checks = old_map->is_access_check_needed(); if (needs_access_checks) { // Copy map so it won't interfere constructor's initial map. Map* new_map; MaybeObject* maybe_new_map = old_map->Copy(); if (!maybe_new_map->To(&new_map)) return maybe_new_map; new_map->set_is_access_check_needed(false); object->set_map(new_map); } return isolate->heap()->ToBoolean(needs_access_checks); } RUNTIME_FUNCTION(MaybeObject*, Runtime_EnableAccessChecks) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(HeapObject, object, 0); Map* old_map = object->map(); if (!old_map->is_access_check_needed()) { // Copy map so it won't interfere constructor's initial map. Map* new_map; MaybeObject* maybe_new_map = old_map->Copy(); if (!maybe_new_map->To(&new_map)) return maybe_new_map; new_map->set_is_access_check_needed(true); object->set_map(new_map); } return isolate->heap()->undefined_value(); } // Transform getter or setter into something DefineAccessor can handle. static Handle<Object> InstantiateAccessorComponent(Isolate* isolate, Handle<Object> component) { if (component->IsUndefined()) return isolate->factory()->null_value(); Handle<FunctionTemplateInfo> info = Handle<FunctionTemplateInfo>::cast(component); return Utils::OpenHandle(*Utils::ToLocal(info)->GetFunction()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetAccessorProperty) { HandleScope scope(isolate); ASSERT(args.length() == 6); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2); CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3); CONVERT_SMI_ARG_CHECKED(attribute, 4); CONVERT_SMI_ARG_CHECKED(access_control, 5); JSObject::DefineAccessor(object, name, InstantiateAccessorComponent(isolate, getter), InstantiateAccessorComponent(isolate, setter), static_cast<PropertyAttributes>(attribute), static_cast<v8::AccessControl>(access_control)); return isolate->heap()->undefined_value(); } static Failure* ThrowRedeclarationError(Isolate* isolate, const char* type, Handle<String> name) { HandleScope scope(isolate); Handle<Object> type_handle = isolate->factory()->NewStringFromAscii(CStrVector(type)); Handle<Object> args[2] = { type_handle, name }; Handle<Object> error = isolate->factory()->NewTypeError("redeclaration", HandleVector(args, 2)); return isolate->Throw(*error); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareGlobals) { HandleScope scope(isolate); ASSERT(args.length() == 3); Handle<GlobalObject> global = Handle<GlobalObject>( isolate->context()->global_object()); Handle<Context> context = args.at<Context>(0); CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1); CONVERT_SMI_ARG_CHECKED(flags, 2); // Traverse the name/value pairs and set the properties. int length = pairs->length(); for (int i = 0; i < length; i += 2) { HandleScope scope(isolate); Handle<String> name(String::cast(pairs->get(i))); Handle<Object> value(pairs->get(i + 1), isolate); // We have to declare a global const property. To capture we only // assign to it when evaluating the assignment for "const x = // <expr>" the initial value is the hole. bool is_var = value->IsUndefined(); bool is_const = value->IsTheHole(); bool is_function = value->IsSharedFunctionInfo(); ASSERT(is_var + is_const + is_function == 1); if (is_var || is_const) { // Lookup the property in the global object, and don't set the // value of the variable if the property is already there. // Do the lookup locally only, see ES5 erratum. LookupResult lookup(isolate); if (FLAG_es52_globals) { global->LocalLookup(*name, &lookup, true); } else { global->Lookup(*name, &lookup); } if (lookup.IsFound()) { // We found an existing property. Unless it was an interceptor // that claims the property is absent, skip this declaration. if (!lookup.IsInterceptor()) continue; PropertyAttributes attributes = global->GetPropertyAttribute(*name); if (attributes != ABSENT) continue; // Fall-through and introduce the absent property by using // SetProperty. } } else if (is_function) { // Copy the function and update its context. Use it as value. Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>::cast(value); Handle<JSFunction> function = isolate->factory()->NewFunctionFromSharedFunctionInfo( shared, context, TENURED); value = function; } LookupResult lookup(isolate); global->LocalLookup(*name, &lookup, true); // Compute the property attributes. According to ECMA-262, // the property must be non-configurable except in eval. int attr = NONE; bool is_eval = DeclareGlobalsEvalFlag::decode(flags); if (!is_eval) { attr |= DONT_DELETE; } bool is_native = DeclareGlobalsNativeFlag::decode(flags); if (is_const || (is_native && is_function)) { attr |= READ_ONLY; } LanguageMode language_mode = DeclareGlobalsLanguageMode::decode(flags); if (!lookup.IsFound() || is_function) { // If the local property exists, check that we can reconfigure it // as required for function declarations. if (lookup.IsFound() && lookup.IsDontDelete()) { if (lookup.IsReadOnly() || lookup.IsDontEnum() || lookup.IsPropertyCallbacks()) { return ThrowRedeclarationError(isolate, "function", name); } // If the existing property is not configurable, keep its attributes. attr = lookup.GetAttributes(); } // Define or redefine own property. RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( global, name, value, static_cast<PropertyAttributes>(attr))); } else { // Do a [[Put]] on the existing (own) property. RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetProperty( global, name, value, static_cast<PropertyAttributes>(attr), language_mode == CLASSIC_MODE ? kNonStrictMode : kStrictMode)); } } ASSERT(!isolate->has_pending_exception()); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareContextSlot) { HandleScope scope(isolate); ASSERT(args.length() == 4); // Declarations are always made in a function or native context. In the // case of eval code, the context passed is the context of the caller, // which may be some nested context and not the declaration context. RUNTIME_ASSERT(args[0]->IsContext()); Handle<Context> context(Context::cast(args[0])->declaration_context()); Handle<String> name(String::cast(args[1])); PropertyAttributes mode = static_cast<PropertyAttributes>(args.smi_at(2)); RUNTIME_ASSERT(mode == READ_ONLY || mode == NONE); Handle<Object> initial_value(args[3], isolate); int index; PropertyAttributes attributes; ContextLookupFlags flags = DONT_FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); if (attributes != ABSENT) { // The name was declared before; check for conflicting re-declarations. // Note: this is actually inconsistent with what happens for globals (where // we silently ignore such declarations). if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) { // Functions are not read-only. ASSERT(mode != READ_ONLY || initial_value->IsTheHole()); const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var"; return ThrowRedeclarationError(isolate, type, name); } // Initialize it if necessary. if (*initial_value != NULL) { if (index >= 0) { ASSERT(holder.is_identical_to(context)); if (((attributes & READ_ONLY) == 0) || context->get(index)->IsTheHole()) { context->set(index, *initial_value); } } else { // Slow case: The property is in the context extension object of a // function context or the global object of a native context. Handle<JSObject> object = Handle<JSObject>::cast(holder); RETURN_IF_EMPTY_HANDLE( isolate, JSReceiver::SetProperty(object, name, initial_value, mode, kNonStrictMode)); } } } else { // The property is not in the function context. It needs to be // "declared" in the function context's extension context or as a // property of the the global object. Handle<JSObject> object; if (context->has_extension()) { object = Handle<JSObject>(JSObject::cast(context->extension())); } else { // Context extension objects are allocated lazily. ASSERT(context->IsFunctionContext()); object = isolate->factory()->NewJSObject( isolate->context_extension_function()); context->set_extension(*object); } ASSERT(*object != NULL); // Declare the property by setting it to the initial value if provided, // or undefined, and use the correct mode (e.g. READ_ONLY attribute for // constant declarations). ASSERT(!JSReceiver::HasLocalProperty(object, name)); Handle<Object> value(isolate->heap()->undefined_value(), isolate); if (*initial_value != NULL) value = initial_value; // Declaring a const context slot is a conflicting declaration if // there is a callback with that name in a prototype. It is // allowed to introduce const variables in // JSContextExtensionObjects. They are treated specially in // SetProperty and no setters are invoked for those since they are // not real JSObjects. if (initial_value->IsTheHole() && !object->IsJSContextExtensionObject()) { LookupResult lookup(isolate); object->Lookup(*name, &lookup); if (lookup.IsPropertyCallbacks()) { return ThrowRedeclarationError(isolate, "const", name); } } if (object->IsJSGlobalObject()) { // Define own property on the global object. RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes(object, name, value, mode)); } else { RETURN_IF_EMPTY_HANDLE(isolate, JSReceiver::SetProperty(object, name, value, mode, kNonStrictMode)); } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeVarGlobal) { HandleScope scope(isolate); // args[0] == name // args[1] == language_mode // args[2] == value (optional) // Determine if we need to assign to the variable if it already // exists (based on the number of arguments). RUNTIME_ASSERT(args.length() == 2 || args.length() == 3); bool assign = args.length() == 3; CONVERT_ARG_HANDLE_CHECKED(String, name, 0); RUNTIME_ASSERT(args[1]->IsSmi()); CONVERT_LANGUAGE_MODE_ARG(language_mode, 1); StrictModeFlag strict_mode_flag = (language_mode == CLASSIC_MODE) ? kNonStrictMode : kStrictMode; // According to ECMA-262, section 12.2, page 62, the property must // not be deletable. PropertyAttributes attributes = DONT_DELETE; // Lookup the property locally in the global object. If it isn't // there, there is a property with this name in the prototype chain. // We follow Safari and Firefox behavior and only set the property // locally if there is an explicit initialization value that we have // to assign to the property. // Note that objects can have hidden prototypes, so we need to traverse // the whole chain of hidden prototypes to do a 'local' lookup. LookupResult lookup(isolate); isolate->context()->global_object()->LocalLookup(*name, &lookup, true); if (lookup.IsInterceptor()) { PropertyAttributes intercepted = lookup.holder()->GetPropertyAttribute(*name); if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) { // Found an interceptor that's not read only. if (assign) { CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); Handle<Object> result = JSObject::SetPropertyForResult( handle(lookup.holder()), &lookup, name, value, attributes, strict_mode_flag); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } else { return isolate->heap()->undefined_value(); } } } if (assign) { CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); Handle<GlobalObject> global(isolate->context()->global_object()); Handle<Object> result = JSReceiver::SetProperty( global, name, value, attributes, strict_mode_flag); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstGlobal) { SealHandleScope shs(isolate); // All constants are declared with an initial value. The name // of the constant is the first argument and the initial value // is the second. RUNTIME_ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, name, 0); Handle<Object> value = args.at<Object>(1); // Get the current global object from top. GlobalObject* global = isolate->context()->global_object(); // According to ECMA-262, section 12.2, page 62, the property must // not be deletable. Since it's a const, it must be READ_ONLY too. PropertyAttributes attributes = static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY); // Lookup the property locally in the global object. If it isn't // there, we add the property and take special precautions to always // add it as a local property even in case of callbacks in the // prototype chain (this rules out using SetProperty). // We use SetLocalPropertyIgnoreAttributes instead LookupResult lookup(isolate); global->LocalLookup(*name, &lookup); if (!lookup.IsFound()) { HandleScope handle_scope(isolate); Handle<GlobalObject> global(isolate->context()->global_object()); RETURN_IF_EMPTY_HANDLE( isolate, JSObject::SetLocalPropertyIgnoreAttributes(global, name, value, attributes)); return *value; } if (!lookup.IsReadOnly()) { // Restore global object from context (in case of GC) and continue // with setting the value. HandleScope handle_scope(isolate); Handle<GlobalObject> global(isolate->context()->global_object()); // BUG 1213575: Handle the case where we have to set a read-only // property through an interceptor and only do it if it's // uninitialized, e.g. the hole. Nirk... // Passing non-strict mode because the property is writable. RETURN_IF_EMPTY_HANDLE( isolate, JSReceiver::SetProperty(global, name, value, attributes, kNonStrictMode)); return *value; } // Set the value, but only if we're assigning the initial value to a // constant. For now, we determine this by checking if the // current value is the hole. // Strict mode handling not needed (const is disallowed in strict mode). if (lookup.IsField()) { FixedArray* properties = global->properties(); int index = lookup.GetFieldIndex().field_index(); if (properties->get(index)->IsTheHole() || !lookup.IsReadOnly()) { properties->set(index, *value); } } else if (lookup.IsNormal()) { if (global->GetNormalizedProperty(&lookup)->IsTheHole() || !lookup.IsReadOnly()) { HandleScope scope(isolate); JSObject::SetNormalizedProperty(Handle<JSObject>(global), &lookup, value); } } else { // Ignore re-initialization of constants that have already been // assigned a constant value. ASSERT(lookup.IsReadOnly() && lookup.IsConstant()); } // Use the set value as the result of the operation. return *value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstContextSlot) { HandleScope scope(isolate); ASSERT(args.length() == 3); Handle<Object> value(args[0], isolate); ASSERT(!value->IsTheHole()); // Initializations are always done in a function or native context. RUNTIME_ASSERT(args[1]->IsContext()); Handle<Context> context(Context::cast(args[1])->declaration_context()); Handle<String> name(String::cast(args[2])); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); if (index >= 0) { ASSERT(holder->IsContext()); // Property was found in a context. Perform the assignment if we // found some non-constant or an uninitialized constant. Handle<Context> context = Handle<Context>::cast(holder); if ((attributes & READ_ONLY) == 0 || context->get(index)->IsTheHole()) { context->set(index, *value); } return *value; } // The property could not be found, we introduce it as a property of the // global object. if (attributes == ABSENT) { Handle<JSObject> global = Handle<JSObject>( isolate->context()->global_object()); // Strict mode not needed (const disallowed in strict mode). RETURN_IF_EMPTY_HANDLE( isolate, JSReceiver::SetProperty(global, name, value, NONE, kNonStrictMode)); return *value; } // The property was present in some function's context extension object, // as a property on the subject of a with, or as a property of the global // object. // // In most situations, eval-introduced consts should still be present in // the context extension object. However, because declaration and // initialization are separate, the property might have been deleted // before we reach the initialization point. // // Example: // // function f() { eval("delete x; const x;"); } // // In that case, the initialization behaves like a normal assignment. Handle<JSObject> object = Handle<JSObject>::cast(holder); if (*object == context->extension()) { // This is the property that was introduced by the const declaration. // Set it if it hasn't been set before. NOTE: We cannot use // GetProperty() to get the current value as it 'unholes' the value. LookupResult lookup(isolate); object->LocalLookupRealNamedProperty(*name, &lookup); ASSERT(lookup.IsFound()); // the property was declared ASSERT(lookup.IsReadOnly()); // and it was declared as read-only if (lookup.IsField()) { FixedArray* properties = object->properties(); int index = lookup.GetFieldIndex().field_index(); if (properties->get(index)->IsTheHole()) { properties->set(index, *value); } } else if (lookup.IsNormal()) { if (object->GetNormalizedProperty(&lookup)->IsTheHole()) { JSObject::SetNormalizedProperty(object, &lookup, value); } } else { // We should not reach here. Any real, named property should be // either a field or a dictionary slot. UNREACHABLE(); } } else { // The property was found on some other object. Set it if it is not a // read-only property. if ((attributes & READ_ONLY) == 0) { // Strict mode not needed (const disallowed in strict mode). RETURN_IF_EMPTY_HANDLE( isolate, JSReceiver::SetProperty(object, name, value, attributes, kNonStrictMode)); } } return *value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_OptimizeObjectForAddingMultipleProperties) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_SMI_ARG_CHECKED(properties, 1); if (object->HasFastProperties()) { JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties); } return *object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExec) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); CONVERT_ARG_HANDLE_CHECKED(String, subject, 1); // Due to the way the JS calls are constructed this must be less than the // length of a string, i.e. it is always a Smi. We check anyway for security. CONVERT_SMI_ARG_CHECKED(index, 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3); RUNTIME_ASSERT(index >= 0); RUNTIME_ASSERT(index <= subject->length()); isolate->counters()->regexp_entry_runtime()->Increment(); Handle<Object> result = RegExpImpl::Exec(regexp, subject, index, last_match_info); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpConstructResult) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); CONVERT_SMI_ARG_CHECKED(elements_count, 0); if (elements_count < 0 || elements_count > FixedArray::kMaxLength || !Smi::IsValid(elements_count)) { return isolate->ThrowIllegalOperation(); } Object* new_object; { MaybeObject* maybe_new_object = isolate->heap()->AllocateFixedArray(elements_count); if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object; } FixedArray* elements = FixedArray::cast(new_object); { MaybeObject* maybe_new_object = isolate->heap()->AllocateRaw( JSRegExpResult::kSize, NEW_SPACE, OLD_POINTER_SPACE); if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object; } { DisallowHeapAllocation no_gc; HandleScope scope(isolate); reinterpret_cast<HeapObject*>(new_object)-> set_map(isolate->native_context()->regexp_result_map()); } JSArray* array = JSArray::cast(new_object); array->set_properties(isolate->heap()->empty_fixed_array()); array->set_elements(elements); array->set_length(Smi::FromInt(elements_count)); // Write in-object properties after the length of the array. array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, args[1]); array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, args[2]); return array; } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpInitializeObject) { HandleScope scope(isolate); DisallowHeapAllocation no_allocation; ASSERT(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); CONVERT_ARG_HANDLE_CHECKED(String, source, 1); // If source is the empty string we set it to "(?:)" instead as // suggested by ECMA-262, 5th, section 15.10.4.1. if (source->length() == 0) source = isolate->factory()->query_colon_string(); CONVERT_ARG_HANDLE_CHECKED(Object, global, 2); if (!global->IsTrue()) global = isolate->factory()->false_value(); CONVERT_ARG_HANDLE_CHECKED(Object, ignoreCase, 3); if (!ignoreCase->IsTrue()) ignoreCase = isolate->factory()->false_value(); CONVERT_ARG_HANDLE_CHECKED(Object, multiline, 4); if (!multiline->IsTrue()) multiline = isolate->factory()->false_value(); Map* map = regexp->map(); Object* constructor = map->constructor(); if (constructor->IsJSFunction() && JSFunction::cast(constructor)->initial_map() == map) { // If we still have the original map, set in-object properties directly. regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, *source); // Both true and false are immovable immortal objects so no need for write // barrier. regexp->InObjectPropertyAtPut( JSRegExp::kGlobalFieldIndex, *global, SKIP_WRITE_BARRIER); regexp->InObjectPropertyAtPut( JSRegExp::kIgnoreCaseFieldIndex, *ignoreCase, SKIP_WRITE_BARRIER); regexp->InObjectPropertyAtPut( JSRegExp::kMultilineFieldIndex, *multiline, SKIP_WRITE_BARRIER); regexp->InObjectPropertyAtPut( JSRegExp::kLastIndexFieldIndex, Smi::FromInt(0), SKIP_WRITE_BARRIER); return *regexp; } // Map has changed, so use generic, but slower, method. PropertyAttributes final = static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE); PropertyAttributes writable = static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE); Handle<Object> zero(Smi::FromInt(0), isolate); Factory* factory = isolate->factory(); CHECK_NOT_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( regexp, factory->source_string(), source, final)); CHECK_NOT_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( regexp, factory->global_string(), global, final)); CHECK_NOT_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( regexp, factory->ignore_case_string(), ignoreCase, final)); CHECK_NOT_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( regexp, factory->multiline_string(), multiline, final)); CHECK_NOT_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( regexp, factory->last_index_string(), zero, writable)); return *regexp; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FinishArrayPrototypeSetup) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0); // This is necessary to enable fast checks for absence of elements // on Array.prototype and below. prototype->set_elements(isolate->heap()->empty_fixed_array()); return Smi::FromInt(0); } static Handle<JSFunction> InstallBuiltin(Isolate* isolate, Handle<JSObject> holder, const char* name, Builtins::Name builtin_name) { Handle<String> key = isolate->factory()->InternalizeUtf8String(name); Handle<Code> code(isolate->builtins()->builtin(builtin_name)); Handle<JSFunction> optimized = isolate->factory()->NewFunction(key, JS_OBJECT_TYPE, JSObject::kHeaderSize, code, false); optimized->shared()->DontAdaptArguments(); JSReceiver::SetProperty(holder, key, optimized, NONE, kStrictMode); return optimized; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SpecialArrayFunctions) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, holder, 0); InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop); InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush); InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift); InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift); InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice); InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice); InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat); return *holder; } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsCallable) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsCallable()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsClassicModeFunction) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSReceiver, callable, 0); if (!callable->IsJSFunction()) { HandleScope scope(isolate); bool threw = false; Handle<Object> delegate = Execution::TryGetFunctionDelegate( isolate, Handle<JSReceiver>(callable), &threw); if (threw) return Failure::Exception(); callable = JSFunction::cast(*delegate); } JSFunction* function = JSFunction::cast(callable); SharedFunctionInfo* shared = function->shared(); return isolate->heap()->ToBoolean(shared->is_classic_mode()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetDefaultReceiver) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSReceiver, callable, 0); if (!callable->IsJSFunction()) { HandleScope scope(isolate); bool threw = false; Handle<Object> delegate = Execution::TryGetFunctionDelegate( isolate, Handle<JSReceiver>(callable), &threw); if (threw) return Failure::Exception(); callable = JSFunction::cast(*delegate); } JSFunction* function = JSFunction::cast(callable); SharedFunctionInfo* shared = function->shared(); if (shared->native() || !shared->is_classic_mode()) { return isolate->heap()->undefined_value(); } // Returns undefined for strict or native functions, or // the associated global receiver for "normal" functions. Context* native_context = function->context()->global_object()->native_context(); return native_context->global_object()->global_receiver(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MaterializeRegExpLiteral) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); int index = args.smi_at(1); Handle<String> pattern = args.at<String>(2); Handle<String> flags = args.at<String>(3); // Get the RegExp function from the context in the literals array. // This is the RegExp function from the context in which the // function was created. We do not use the RegExp function from the // current native context because this might be the RegExp function // from another context which we should not have access to. Handle<JSFunction> constructor = Handle<JSFunction>( JSFunction::NativeContextFromLiterals(*literals)->regexp_function()); // Compute the regular expression literal. bool has_pending_exception; Handle<Object> regexp = RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags, &has_pending_exception); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } literals->set(index, *regexp); return *regexp; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetName) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return f->shared()->name(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetName) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, f, 0); CONVERT_ARG_CHECKED(String, name, 1); f->shared()->set_name(name); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionNameShouldPrintAsAnonymous) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean( f->shared()->name_should_print_as_anonymous()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionMarkNameShouldPrintAsAnonymous) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); f->shared()->set_name_should_print_as_anonymous(true); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsGenerator) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean(f->shared()->is_generator()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionRemovePrototype) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); f->RemovePrototype(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScript) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, fun, 0); Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate); if (!script->IsScript()) return isolate->heap()->undefined_value(); return *GetScriptWrapper(Handle<Script>::cast(script)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetSourceCode) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0); Handle<SharedFunctionInfo> shared(f->shared()); return *shared->GetSourceCode(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScriptSourcePosition) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, fun, 0); int pos = fun->shared()->start_position(); return Smi::FromInt(pos); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetPositionForOffset) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(Code, code, 0); CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]); RUNTIME_ASSERT(0 <= offset && offset < code->Size()); Address pc = code->address() + offset; return Smi::FromInt(code->SourcePosition(pc)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetInstanceClassName) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, fun, 0); CONVERT_ARG_CHECKED(String, name, 1); fun->SetInstanceClassName(name); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetLength) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, fun, 0); CONVERT_SMI_ARG_CHECKED(length, 1); fun->shared()->set_length(length); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetPrototype) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); CONVERT_ARG_HANDLE_CHECKED(Object, value, 1); ASSERT(fun->should_have_prototype()); Accessors::FunctionSetPrototype(fun, value); return args[0]; // return TOS } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetReadOnlyPrototype) { SealHandleScope shs(isolate); RUNTIME_ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, function, 0); String* name = isolate->heap()->prototype_string(); if (function->HasFastProperties()) { // Construct a new field descriptor with updated attributes. DescriptorArray* instance_desc = function->map()->instance_descriptors(); int index = instance_desc->SearchWithCache(name, function->map()); ASSERT(index != DescriptorArray::kNotFound); PropertyDetails details = instance_desc->GetDetails(index); CallbacksDescriptor new_desc(name, instance_desc->GetValue(index), static_cast<PropertyAttributes>(details.attributes() | READ_ONLY)); // Create a new map featuring the new field descriptors array. Map* new_map; MaybeObject* maybe_map = function->map()->CopyReplaceDescriptor( instance_desc, &new_desc, index, OMIT_TRANSITION); if (!maybe_map->To(&new_map)) return maybe_map; function->set_map(new_map); } else { // Dictionary properties. // Directly manipulate the property details. int entry = function->property_dictionary()->FindEntry(name); ASSERT(entry != NameDictionary::kNotFound); PropertyDetails details = function->property_dictionary()->DetailsAt(entry); PropertyDetails new_details( static_cast<PropertyAttributes>(details.attributes() | READ_ONLY), details.type(), details.dictionary_index()); function->property_dictionary()->DetailsAtPut(entry, new_details); } return function; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsAPIFunction) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean(f->shared()->IsApiFunction()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsBuiltin) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean(f->IsBuiltin()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetCode) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0); Handle<Object> code = args.at<Object>(1); if (code->IsNull()) return *target; RUNTIME_ASSERT(code->IsJSFunction()); Handle<JSFunction> source = Handle<JSFunction>::cast(code); Handle<SharedFunctionInfo> target_shared(target->shared()); Handle<SharedFunctionInfo> source_shared(source->shared()); if (!JSFunction::EnsureCompiled(source, KEEP_EXCEPTION)) { return Failure::Exception(); } // Mark both, the source and the target, as un-flushable because the // shared unoptimized code makes them impossible to enqueue in a list. ASSERT(target_shared->code()->gc_metadata() == NULL); ASSERT(source_shared->code()->gc_metadata() == NULL); target_shared->set_dont_flush(true); source_shared->set_dont_flush(true); // Set the code, scope info, formal parameter count, and the length // of the target shared function info. target_shared->ReplaceCode(source_shared->code()); target_shared->set_scope_info(source_shared->scope_info()); target_shared->set_length(source_shared->length()); target_shared->set_formal_parameter_count( source_shared->formal_parameter_count()); target_shared->set_script(source_shared->script()); target_shared->set_start_position_and_type( source_shared->start_position_and_type()); target_shared->set_end_position(source_shared->end_position()); bool was_native = target_shared->native(); target_shared->set_compiler_hints(source_shared->compiler_hints()); target_shared->set_native(was_native); // Set the code of the target function. target->ReplaceCode(source_shared->code()); ASSERT(target->next_function_link()->IsUndefined()); // Make sure we get a fresh copy of the literal vector to avoid cross // context contamination. Handle<Context> context(source->context()); int number_of_literals = source->NumberOfLiterals(); Handle<FixedArray> literals = isolate->factory()->NewFixedArray(number_of_literals, TENURED); if (number_of_literals > 0) { literals->set(JSFunction::kLiteralNativeContextIndex, context->native_context()); } target->set_context(*context); target->set_literals(*literals); if (isolate->logger()->is_logging_code_events() || isolate->cpu_profiler()->is_profiling()) { isolate->logger()->LogExistingFunction( source_shared, Handle<Code>(source_shared->code())); } return *target; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetExpectedNumberOfProperties) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0); CONVERT_SMI_ARG_CHECKED(num, 1); RUNTIME_ASSERT(num >= 0); // If objects constructed from this function exist then changing // 'estimated_nof_properties' is dangerous since the previous value might // have been compiled into the fast construct stub. Moreover, the inobject // slack tracking logic might have adjusted the previous value, so even // passing the same value is risky. if (!func->shared()->live_objects_may_exist()) { func->shared()->set_expected_nof_properties(num); if (func->has_initial_map()) { Handle<Map> new_initial_map = func->GetIsolate()->factory()->CopyMap( Handle<Map>(func->initial_map())); new_initial_map->set_unused_property_fields(num); func->set_initial_map(*new_initial_map); } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateJSGeneratorObject) { HandleScope scope(isolate); ASSERT(args.length() == 0); JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); Handle<JSFunction> function(frame->function()); RUNTIME_ASSERT(function->shared()->is_generator()); Handle<JSGeneratorObject> generator; if (frame->IsConstructor()) { generator = handle(JSGeneratorObject::cast(frame->receiver())); } else { generator = isolate->factory()->NewJSGeneratorObject(function); } generator->set_function(*function); generator->set_context(Context::cast(frame->context())); generator->set_receiver(frame->receiver()); generator->set_continuation(0); generator->set_operand_stack(isolate->heap()->empty_fixed_array()); generator->set_stack_handler_index(-1); return *generator; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SuspendJSGeneratorObject) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0); JavaScriptFrameIterator stack_iterator(isolate); JavaScriptFrame* frame = stack_iterator.frame(); RUNTIME_ASSERT(frame->function()->shared()->is_generator()); ASSERT_EQ(frame->function(), generator_object->function()); // The caller should have saved the context and continuation already. ASSERT_EQ(generator_object->context(), Context::cast(frame->context())); ASSERT_LT(0, generator_object->continuation()); // We expect there to be at least two values on the operand stack: the return // value of the yield expression, and the argument to this runtime call. // Neither of those should be saved. int operands_count = frame->ComputeOperandsCount(); ASSERT_GE(operands_count, 2); operands_count -= 2; if (operands_count == 0) { // Although it's semantically harmless to call this function with an // operands_count of zero, it is also unnecessary. ASSERT_EQ(generator_object->operand_stack(), isolate->heap()->empty_fixed_array()); ASSERT_EQ(generator_object->stack_handler_index(), -1); // If there are no operands on the stack, there shouldn't be a handler // active either. ASSERT(!frame->HasHandler()); } else { int stack_handler_index = -1; MaybeObject* alloc = isolate->heap()->AllocateFixedArray(operands_count); FixedArray* operand_stack; if (!alloc->To(&operand_stack)) return alloc; frame->SaveOperandStack(operand_stack, &stack_handler_index); generator_object->set_operand_stack(operand_stack); generator_object->set_stack_handler_index(stack_handler_index); } return isolate->heap()->undefined_value(); } // Note that this function is the slow path for resuming generators. It is only // called if the suspended activation had operands on the stack, stack handlers // needing rewinding, or if the resume should throw an exception. The fast path // is handled directly in FullCodeGenerator::EmitGeneratorResume(), which is // inlined into GeneratorNext and GeneratorThrow. EmitGeneratorResumeResume is // called in any case, as it needs to reconstruct the stack frame and make space // for arguments and operands. RUNTIME_FUNCTION(MaybeObject*, Runtime_ResumeJSGeneratorObject) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0); CONVERT_ARG_CHECKED(Object, value, 1); CONVERT_SMI_ARG_CHECKED(resume_mode_int, 2); JavaScriptFrameIterator stack_iterator(isolate); JavaScriptFrame* frame = stack_iterator.frame(); ASSERT_EQ(frame->function(), generator_object->function()); ASSERT(frame->function()->is_compiled()); STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting <= 0); STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed <= 0); Address pc = generator_object->function()->code()->instruction_start(); int offset = generator_object->continuation(); ASSERT(offset > 0); frame->set_pc(pc + offset); generator_object->set_continuation(JSGeneratorObject::kGeneratorExecuting); FixedArray* operand_stack = generator_object->operand_stack(); int operands_count = operand_stack->length(); if (operands_count != 0) { frame->RestoreOperandStack(operand_stack, generator_object->stack_handler_index()); generator_object->set_operand_stack(isolate->heap()->empty_fixed_array()); generator_object->set_stack_handler_index(-1); } JSGeneratorObject::ResumeMode resume_mode = static_cast<JSGeneratorObject::ResumeMode>(resume_mode_int); switch (resume_mode) { case JSGeneratorObject::NEXT: return value; case JSGeneratorObject::THROW: return isolate->Throw(value); } UNREACHABLE(); return isolate->ThrowIllegalOperation(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowGeneratorStateError) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0); int continuation = generator->continuation(); const char* message = continuation == JSGeneratorObject::kGeneratorClosed ? "generator_finished" : "generator_running"; Vector< Handle<Object> > argv = HandleVector<Object>(NULL, 0); Handle<Object> error = isolate->factory()->NewError(message, argv); return isolate->Throw(*error); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ObjectFreeze) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); Handle<Object> result = JSObject::Freeze(object); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } MUST_USE_RESULT static MaybeObject* CharFromCode(Isolate* isolate, Object* char_code) { if (char_code->IsNumber()) { return isolate->heap()->LookupSingleCharacterStringFromCode( NumberToUint32(char_code) & 0xffff); } return isolate->heap()->empty_string(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCharCodeAt) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, subject, 0); CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]); // Flatten the string. If someone wants to get a char at an index // in a cons string, it is likely that more indices will be // accessed. Object* flat; { MaybeObject* maybe_flat = subject->TryFlatten(); if (!maybe_flat->ToObject(&flat)) return maybe_flat; } subject = String::cast(flat); if (i >= static_cast<uint32_t>(subject->length())) { return isolate->heap()->nan_value(); } return Smi::FromInt(subject->Get(i)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CharFromCode) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); return CharFromCode(isolate, args[0]); } class FixedArrayBuilder { public: explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity) : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)), length_(0), has_non_smi_elements_(false) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. ASSERT(initial_capacity > 0); } explicit FixedArrayBuilder(Handle<FixedArray> backing_store) : array_(backing_store), length_(0), has_non_smi_elements_(false) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. ASSERT(backing_store->length() > 0); } bool HasCapacity(int elements) { int length = array_->length(); int required_length = length_ + elements; return (length >= required_length); } void EnsureCapacity(int elements) { int length = array_->length(); int required_length = length_ + elements; if (length < required_length) { int new_length = length; do { new_length *= 2; } while (new_length < required_length); Handle<FixedArray> extended_array = array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length); array_->CopyTo(0, *extended_array, 0, length_); array_ = extended_array; } } void Add(Object* value) { ASSERT(!value->IsSmi()); ASSERT(length_ < capacity()); array_->set(length_, value); length_++; has_non_smi_elements_ = true; } void Add(Smi* value) { ASSERT(value->IsSmi()); ASSERT(length_ < capacity()); array_->set(length_, value); length_++; } Handle<FixedArray> array() { return array_; } int length() { return length_; } int capacity() { return array_->length(); } Handle<JSArray> ToJSArray(Handle<JSArray> target_array) { Factory* factory = target_array->GetIsolate()->factory(); factory->SetContent(target_array, array_); target_array->set_length(Smi::FromInt(length_)); return target_array; } private: Handle<FixedArray> array_; int length_; bool has_non_smi_elements_; }; // Forward declarations. const int kStringBuilderConcatHelperLengthBits = 11; const int kStringBuilderConcatHelperPositionBits = 19; template <typename schar> static inline void StringBuilderConcatHelper(String*, schar*, FixedArray*, int); typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits> StringBuilderSubstringLength; typedef BitField<int, kStringBuilderConcatHelperLengthBits, kStringBuilderConcatHelperPositionBits> StringBuilderSubstringPosition; class ReplacementStringBuilder { public: ReplacementStringBuilder(Heap* heap, Handle<String> subject, int estimated_part_count) : heap_(heap), array_builder_(heap->isolate(), estimated_part_count), subject_(subject), character_count_(0), is_ascii_(subject->IsOneByteRepresentation()) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. ASSERT(estimated_part_count > 0); } static inline void AddSubjectSlice(FixedArrayBuilder* builder, int from, int to) { ASSERT(from >= 0); int length = to - from; ASSERT(length > 0); if (StringBuilderSubstringLength::is_valid(length) && StringBuilderSubstringPosition::is_valid(from)) { int encoded_slice = StringBuilderSubstringLength::encode(length) | StringBuilderSubstringPosition::encode(from); builder->Add(Smi::FromInt(encoded_slice)); } else { // Otherwise encode as two smis. builder->Add(Smi::FromInt(-length)); builder->Add(Smi::FromInt(from)); } } void EnsureCapacity(int elements) { array_builder_.EnsureCapacity(elements); } void AddSubjectSlice(int from, int to) { AddSubjectSlice(&array_builder_, from, to); IncrementCharacterCount(to - from); } void AddString(Handle<String> string) { int length = string->length(); ASSERT(length > 0); AddElement(*string); if (!string->IsOneByteRepresentation()) { is_ascii_ = false; } IncrementCharacterCount(length); } Handle<String> ToString() { if (array_builder_.length() == 0) { return heap_->isolate()->factory()->empty_string(); } Handle<String> joined_string; if (is_ascii_) { Handle<SeqOneByteString> seq = NewRawOneByteString(character_count_); DisallowHeapAllocation no_gc; uint8_t* char_buffer = seq->GetChars(); StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(), array_builder_.length()); joined_string = Handle<String>::cast(seq); } else { // Non-ASCII. Handle<SeqTwoByteString> seq = NewRawTwoByteString(character_count_); DisallowHeapAllocation no_gc; uc16* char_buffer = seq->GetChars(); StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(), array_builder_.length()); joined_string = Handle<String>::cast(seq); } return joined_string; } void IncrementCharacterCount(int by) { if (character_count_ > String::kMaxLength - by) { V8::FatalProcessOutOfMemory("String.replace result too large."); } character_count_ += by; } private: Handle<SeqOneByteString> NewRawOneByteString(int length) { return heap_->isolate()->factory()->NewRawOneByteString(length); } Handle<SeqTwoByteString> NewRawTwoByteString(int length) { return heap_->isolate()->factory()->NewRawTwoByteString(length); } void AddElement(Object* element) { ASSERT(element->IsSmi() || element->IsString()); ASSERT(array_builder_.capacity() > array_builder_.length()); array_builder_.Add(element); } Heap* heap_; FixedArrayBuilder array_builder_; Handle<String> subject_; int character_count_; bool is_ascii_; }; class CompiledReplacement { public: explicit CompiledReplacement(Zone* zone) : parts_(1, zone), replacement_substrings_(0, zone), zone_(zone) {} // Return whether the replacement is simple. bool Compile(Handle<String> replacement, int capture_count, int subject_length); // Use Apply only if Compile returned false. void Apply(ReplacementStringBuilder* builder, int match_from, int match_to, int32_t* match); // Number of distinct parts of the replacement pattern. int parts() { return parts_.length(); } Zone* zone() const { return zone_; } private: enum PartType { SUBJECT_PREFIX = 1, SUBJECT_SUFFIX, SUBJECT_CAPTURE, REPLACEMENT_SUBSTRING, REPLACEMENT_STRING, NUMBER_OF_PART_TYPES }; struct ReplacementPart { static inline ReplacementPart SubjectMatch() { return ReplacementPart(SUBJECT_CAPTURE, 0); } static inline ReplacementPart SubjectCapture(int capture_index) { return ReplacementPart(SUBJECT_CAPTURE, capture_index); } static inline ReplacementPart SubjectPrefix() { return ReplacementPart(SUBJECT_PREFIX, 0); } static inline ReplacementPart SubjectSuffix(int subject_length) { return ReplacementPart(SUBJECT_SUFFIX, subject_length); } static inline ReplacementPart ReplacementString() { return ReplacementPart(REPLACEMENT_STRING, 0); } static inline ReplacementPart ReplacementSubString(int from, int to) { ASSERT(from >= 0); ASSERT(to > from); return ReplacementPart(-from, to); } // If tag <= 0 then it is the negation of a start index of a substring of // the replacement pattern, otherwise it's a value from PartType. ReplacementPart(int tag, int data) : tag(tag), data(data) { // Must be non-positive or a PartType value. ASSERT(tag < NUMBER_OF_PART_TYPES); } // Either a value of PartType or a non-positive number that is // the negation of an index into the replacement string. int tag; // The data value's interpretation depends on the value of tag: // tag == SUBJECT_PREFIX || // tag == SUBJECT_SUFFIX: data is unused. // tag == SUBJECT_CAPTURE: data is the number of the capture. // tag == REPLACEMENT_SUBSTRING || // tag == REPLACEMENT_STRING: data is index into array of substrings // of the replacement string. // tag <= 0: Temporary representation of the substring of the replacement // string ranging over -tag .. data. // Is replaced by REPLACEMENT_{SUB,}STRING when we create the // substring objects. int data; }; template<typename Char> bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts, Vector<Char> characters, int capture_count, int subject_length, Zone* zone) { int length = characters.length(); int last = 0; for (int i = 0; i < length; i++) { Char c = characters[i]; if (c == '$') { int next_index = i + 1; if (next_index == length) { // No next character! break; } Char c2 = characters[next_index]; switch (c2) { case '$': if (i > last) { // There is a substring before. Include the first "$". parts->Add(ReplacementPart::ReplacementSubString(last, next_index), zone); last = next_index + 1; // Continue after the second "$". } else { // Let the next substring start with the second "$". last = next_index; } i = next_index; break; case '`': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i), zone); } parts->Add(ReplacementPart::SubjectPrefix(), zone); i = next_index; last = i + 1; break; case '\'': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i), zone); } parts->Add(ReplacementPart::SubjectSuffix(subject_length), zone); i = next_index; last = i + 1; break; case '&': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i), zone); } parts->Add(ReplacementPart::SubjectMatch(), zone); i = next_index; last = i + 1; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { int capture_ref = c2 - '0'; if (capture_ref > capture_count) { i = next_index; continue; } int second_digit_index = next_index + 1; if (second_digit_index < length) { // Peek ahead to see if we have two digits. Char c3 = characters[second_digit_index]; if ('0' <= c3 && c3 <= '9') { // Double digits. int double_digit_ref = capture_ref * 10 + c3 - '0'; if (double_digit_ref <= capture_count) { next_index = second_digit_index; capture_ref = double_digit_ref; } } } if (capture_ref > 0) { if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i), zone); } ASSERT(capture_ref <= capture_count); parts->Add(ReplacementPart::SubjectCapture(capture_ref), zone); last = next_index + 1; } i = next_index; break; } default: i = next_index; break; } } } if (length > last) { if (last == 0) { // Replacement is simple. Do not use Apply to do the replacement. return true; } else { parts->Add(ReplacementPart::ReplacementSubString(last, length), zone); } } return false; } ZoneList<ReplacementPart> parts_; ZoneList<Handle<String> > replacement_substrings_; Zone* zone_; }; bool CompiledReplacement::Compile(Handle<String> replacement, int capture_count, int subject_length) { { DisallowHeapAllocation no_gc; String::FlatContent content = replacement->GetFlatContent(); ASSERT(content.IsFlat()); bool simple = false; if (content.IsAscii()) { simple = ParseReplacementPattern(&parts_, content.ToOneByteVector(), capture_count, subject_length, zone()); } else { ASSERT(content.IsTwoByte()); simple = ParseReplacementPattern(&parts_, content.ToUC16Vector(), capture_count, subject_length, zone()); } if (simple) return true; } Isolate* isolate = replacement->GetIsolate(); // Find substrings of replacement string and create them as String objects. int substring_index = 0; for (int i = 0, n = parts_.length(); i < n; i++) { int tag = parts_[i].tag; if (tag <= 0) { // A replacement string slice. int from = -tag; int to = parts_[i].data; replacement_substrings_.Add( isolate->factory()->NewSubString(replacement, from, to), zone()); parts_[i].tag = REPLACEMENT_SUBSTRING; parts_[i].data = substring_index; substring_index++; } else if (tag == REPLACEMENT_STRING) { replacement_substrings_.Add(replacement, zone()); parts_[i].data = substring_index; substring_index++; } } return false; } void CompiledReplacement::Apply(ReplacementStringBuilder* builder, int match_from, int match_to, int32_t* match) { ASSERT_LT(0, parts_.length()); for (int i = 0, n = parts_.length(); i < n; i++) { ReplacementPart part = parts_[i]; switch (part.tag) { case SUBJECT_PREFIX: if (match_from > 0) builder->AddSubjectSlice(0, match_from); break; case SUBJECT_SUFFIX: { int subject_length = part.data; if (match_to < subject_length) { builder->AddSubjectSlice(match_to, subject_length); } break; } case SUBJECT_CAPTURE: { int capture = part.data; int from = match[capture * 2]; int to = match[capture * 2 + 1]; if (from >= 0 && to > from) { builder->AddSubjectSlice(from, to); } break; } case REPLACEMENT_SUBSTRING: case REPLACEMENT_STRING: builder->AddString(replacement_substrings_[part.data]); break; default: UNREACHABLE(); } } } void FindAsciiStringIndices(Vector<const uint8_t> subject, char pattern, ZoneList<int>* indices, unsigned int limit, Zone* zone) { ASSERT(limit > 0); // Collect indices of pattern in subject using memchr. // Stop after finding at most limit values. const uint8_t* subject_start = subject.start(); const uint8_t* subject_end = subject_start + subject.length(); const uint8_t* pos = subject_start; while (limit > 0) { pos = reinterpret_cast<const uint8_t*>( memchr(pos, pattern, subject_end - pos)); if (pos == NULL) return; indices->Add(static_cast<int>(pos - subject_start), zone); pos++; limit--; } } void FindTwoByteStringIndices(const Vector<const uc16> subject, uc16 pattern, ZoneList<int>* indices, unsigned int limit, Zone* zone) { ASSERT(limit > 0); const uc16* subject_start = subject.start(); const uc16* subject_end = subject_start + subject.length(); for (const uc16* pos = subject_start; pos < subject_end && limit > 0; pos++) { if (*pos == pattern) { indices->Add(static_cast<int>(pos - subject_start), zone); limit--; } } } template <typename SubjectChar, typename PatternChar> void FindStringIndices(Isolate* isolate, Vector<const SubjectChar> subject, Vector<const PatternChar> pattern, ZoneList<int>* indices, unsigned int limit, Zone* zone) { ASSERT(limit > 0); // Collect indices of pattern in subject. // Stop after finding at most limit values. int pattern_length = pattern.length(); int index = 0; StringSearch<PatternChar, SubjectChar> search(isolate, pattern); while (limit > 0) { index = search.Search(subject, index); if (index < 0) return; indices->Add(index, zone); index += pattern_length; limit--; } } void FindStringIndicesDispatch(Isolate* isolate, String* subject, String* pattern, ZoneList<int>* indices, unsigned int limit, Zone* zone) { { DisallowHeapAllocation no_gc; String::FlatContent subject_content = subject->GetFlatContent(); String::FlatContent pattern_content = pattern->GetFlatContent(); ASSERT(subject_content.IsFlat()); ASSERT(pattern_content.IsFlat()); if (subject_content.IsAscii()) { Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector(); if (pattern_content.IsAscii()) { Vector<const uint8_t> pattern_vector = pattern_content.ToOneByteVector(); if (pattern_vector.length() == 1) { FindAsciiStringIndices(subject_vector, pattern_vector[0], indices, limit, zone); } else { FindStringIndices(isolate, subject_vector, pattern_vector, indices, limit, zone); } } else { FindStringIndices(isolate, subject_vector, pattern_content.ToUC16Vector(), indices, limit, zone); } } else { Vector<const uc16> subject_vector = subject_content.ToUC16Vector(); if (pattern_content.IsAscii()) { Vector<const uint8_t> pattern_vector = pattern_content.ToOneByteVector(); if (pattern_vector.length() == 1) { FindTwoByteStringIndices(subject_vector, pattern_vector[0], indices, limit, zone); } else { FindStringIndices(isolate, subject_vector, pattern_vector, indices, limit, zone); } } else { Vector<const uc16> pattern_vector = pattern_content.ToUC16Vector(); if (pattern_vector.length() == 1) { FindTwoByteStringIndices(subject_vector, pattern_vector[0], indices, limit, zone); } else { FindStringIndices(isolate, subject_vector, pattern_vector, indices, limit, zone); } } } } } template<typename ResultSeqString> MUST_USE_RESULT static MaybeObject* StringReplaceGlobalAtomRegExpWithString( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> pattern_regexp, Handle<String> replacement, Handle<JSArray> last_match_info) { ASSERT(subject->IsFlat()); ASSERT(replacement->IsFlat()); ZoneScope zone_scope(isolate->runtime_zone()); ZoneList<int> indices(8, zone_scope.zone()); ASSERT_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag()); String* pattern = String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex)); int subject_len = subject->length(); int pattern_len = pattern->length(); int replacement_len = replacement->length(); FindStringIndicesDispatch( isolate, *subject, pattern, &indices, 0xffffffff, zone_scope.zone()); int matches = indices.length(); if (matches == 0) return *subject; // Detect integer overflow. int64_t result_len_64 = (static_cast<int64_t>(replacement_len) - static_cast<int64_t>(pattern_len)) * static_cast<int64_t>(matches) + static_cast<int64_t>(subject_len); if (result_len_64 > INT_MAX) return Failure::OutOfMemoryException(0x11); int result_len = static_cast<int>(result_len_64); int subject_pos = 0; int result_pos = 0; Handle<ResultSeqString> result; if (ResultSeqString::kHasAsciiEncoding) { result = Handle<ResultSeqString>::cast( isolate->factory()->NewRawOneByteString(result_len)); } else { result = Handle<ResultSeqString>::cast( isolate->factory()->NewRawTwoByteString(result_len)); } for (int i = 0; i < matches; i++) { // Copy non-matched subject content. if (subject_pos < indices.at(i)) { String::WriteToFlat(*subject, result->GetChars() + result_pos, subject_pos, indices.at(i)); result_pos += indices.at(i) - subject_pos; } // Replace match. if (replacement_len > 0) { String::WriteToFlat(*replacement, result->GetChars() + result_pos, 0, replacement_len); result_pos += replacement_len; } subject_pos = indices.at(i) + pattern_len; } // Add remaining subject content at the end. if (subject_pos < subject_len) { String::WriteToFlat(*subject, result->GetChars() + result_pos, subject_pos, subject_len); } int32_t match_indices[] = { indices.at(matches - 1), indices.at(matches - 1) + pattern_len }; RegExpImpl::SetLastMatchInfo(last_match_info, subject, 0, match_indices); return *result; } MUST_USE_RESULT static MaybeObject* StringReplaceGlobalRegExpWithString( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp, Handle<String> replacement, Handle<JSArray> last_match_info) { ASSERT(subject->IsFlat()); ASSERT(replacement->IsFlat()); int capture_count = regexp->CaptureCount(); int subject_length = subject->length(); // CompiledReplacement uses zone allocation. ZoneScope zone_scope(isolate->runtime_zone()); CompiledReplacement compiled_replacement(zone_scope.zone()); bool simple_replace = compiled_replacement.Compile(replacement, capture_count, subject_length); // Shortcut for simple non-regexp global replacements if (regexp->TypeTag() == JSRegExp::ATOM && simple_replace) { if (subject->HasOnlyOneByteChars() && replacement->HasOnlyOneByteChars()) { return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>( isolate, subject, regexp, replacement, last_match_info); } else { return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>( isolate, subject, regexp, replacement, last_match_info); } } RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); if (global_cache.HasException()) return Failure::Exception(); int32_t* current_match = global_cache.FetchNext(); if (current_match == NULL) { if (global_cache.HasException()) return Failure::Exception(); return *subject; } // Guessing the number of parts that the final result string is built // from. Global regexps can match any number of times, so we guess // conservatively. int expected_parts = (compiled_replacement.parts() + 1) * 4 + 1; ReplacementStringBuilder builder(isolate->heap(), subject, expected_parts); // Number of parts added by compiled replacement plus preceeding // string and possibly suffix after last match. It is possible for // all components to use two elements when encoded as two smis. const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2); int prev = 0; do { builder.EnsureCapacity(parts_added_per_loop); int start = current_match[0]; int end = current_match[1]; if (prev < start) { builder.AddSubjectSlice(prev, start); } if (simple_replace) { builder.AddString(replacement); } else { compiled_replacement.Apply(&builder, start, end, current_match); } prev = end; current_match = global_cache.FetchNext(); } while (current_match != NULL); if (global_cache.HasException()) return Failure::Exception(); if (prev < subject_length) { builder.EnsureCapacity(2); builder.AddSubjectSlice(prev, subject_length); } RegExpImpl::SetLastMatchInfo(last_match_info, subject, capture_count, global_cache.LastSuccessfulMatch()); return *(builder.ToString()); } template <typename ResultSeqString> MUST_USE_RESULT static MaybeObject* StringReplaceGlobalRegExpWithEmptyString( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp, Handle<JSArray> last_match_info) { ASSERT(subject->IsFlat()); // Shortcut for simple non-regexp global replacements if (regexp->TypeTag() == JSRegExp::ATOM) { Handle<String> empty_string = isolate->factory()->empty_string(); if (subject->IsOneByteRepresentation()) { return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>( isolate, subject, regexp, empty_string, last_match_info); } else { return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>( isolate, subject, regexp, empty_string, last_match_info); } } RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); if (global_cache.HasException()) return Failure::Exception(); int32_t* current_match = global_cache.FetchNext(); if (current_match == NULL) { if (global_cache.HasException()) return Failure::Exception(); return *subject; } int start = current_match[0]; int end = current_match[1]; int capture_count = regexp->CaptureCount(); int subject_length = subject->length(); int new_length = subject_length - (end - start); if (new_length == 0) return isolate->heap()->empty_string(); Handle<ResultSeqString> answer; if (ResultSeqString::kHasAsciiEncoding) { answer = Handle<ResultSeqString>::cast( isolate->factory()->NewRawOneByteString(new_length)); } else { answer = Handle<ResultSeqString>::cast( isolate->factory()->NewRawTwoByteString(new_length)); } int prev = 0; int position = 0; do { start = current_match[0]; end = current_match[1]; if (prev < start) { // Add substring subject[prev;start] to answer string. String::WriteToFlat(*subject, answer->GetChars() + position, prev, start); position += start - prev; } prev = end; current_match = global_cache.FetchNext(); } while (current_match != NULL); if (global_cache.HasException()) return Failure::Exception(); RegExpImpl::SetLastMatchInfo(last_match_info, subject, capture_count, global_cache.LastSuccessfulMatch()); if (prev < subject_length) { // Add substring subject[prev;length] to answer string. String::WriteToFlat( *subject, answer->GetChars() + position, prev, subject_length); position += subject_length - prev; } if (position == 0) return isolate->heap()->empty_string(); // Shorten string and fill int string_size = ResultSeqString::SizeFor(position); int allocated_string_size = ResultSeqString::SizeFor(new_length); int delta = allocated_string_size - string_size; answer->set_length(position); if (delta == 0) return *answer; Address end_of_string = answer->address() + string_size; isolate->heap()->CreateFillerObjectAt(end_of_string, delta); if (Marking::IsBlack(Marking::MarkBitFrom(*answer))) { MemoryChunk::IncrementLiveBytesFromMutator(answer->address(), -delta); } return *answer; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceGlobalRegExpWithString) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(String, replacement, 2); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3); ASSERT(regexp->GetFlags().is_global()); if (!subject->IsFlat()) subject = FlattenGetString(subject); if (replacement->length() == 0) { if (subject->HasOnlyOneByteChars()) { return StringReplaceGlobalRegExpWithEmptyString<SeqOneByteString>( isolate, subject, regexp, last_match_info); } else { return StringReplaceGlobalRegExpWithEmptyString<SeqTwoByteString>( isolate, subject, regexp, last_match_info); } } if (!replacement->IsFlat()) replacement = FlattenGetString(replacement); return StringReplaceGlobalRegExpWithString( isolate, subject, regexp, replacement, last_match_info); } Handle<String> StringReplaceOneCharWithString(Isolate* isolate, Handle<String> subject, Handle<String> search, Handle<String> replace, bool* found, int recursion_limit) { if (recursion_limit == 0) return Handle<String>::null(); if (subject->IsConsString()) { ConsString* cons = ConsString::cast(*subject); Handle<String> first = Handle<String>(cons->first()); Handle<String> second = Handle<String>(cons->second()); Handle<String> new_first = StringReplaceOneCharWithString(isolate, first, search, replace, found, recursion_limit - 1); if (*found) return isolate->factory()->NewConsString(new_first, second); if (new_first.is_null()) return new_first; Handle<String> new_second = StringReplaceOneCharWithString(isolate, second, search, replace, found, recursion_limit - 1); if (*found) return isolate->factory()->NewConsString(first, new_second); if (new_second.is_null()) return new_second; return subject; } else { int index = Runtime::StringMatch(isolate, subject, search, 0); if (index == -1) return subject; *found = true; Handle<String> first = isolate->factory()->NewSubString(subject, 0, index); Handle<String> cons1 = isolate->factory()->NewConsString(first, replace); Handle<String> second = isolate->factory()->NewSubString(subject, index + 1, subject->length()); return isolate->factory()->NewConsString(cons1, second); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceOneCharWithString) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(String, search, 1); CONVERT_ARG_HANDLE_CHECKED(String, replace, 2); // If the cons string tree is too deep, we simply abort the recursion and // retry with a flattened subject string. const int kRecursionLimit = 0x1000; bool found = false; Handle<String> result = StringReplaceOneCharWithString(isolate, subject, search, replace, &found, kRecursionLimit); if (!result.is_null()) return *result; return *StringReplaceOneCharWithString(isolate, FlattenGetString(subject), search, replace, &found, kRecursionLimit); } // Perform string match of pattern on subject, starting at start index. // Caller must ensure that 0 <= start_index <= sub->length(), // and should check that pat->length() + start_index <= sub->length(). int Runtime::StringMatch(Isolate* isolate, Handle<String> sub, Handle<String> pat, int start_index) { ASSERT(0 <= start_index); ASSERT(start_index <= sub->length()); int pattern_length = pat->length(); if (pattern_length == 0) return start_index; int subject_length = sub->length(); if (start_index + pattern_length > subject_length) return -1; if (!sub->IsFlat()) FlattenString(sub); if (!pat->IsFlat()) FlattenString(pat); DisallowHeapAllocation no_gc; // ensure vectors stay valid // Extract flattened substrings of cons strings before determining asciiness. String::FlatContent seq_sub = sub->GetFlatContent(); String::FlatContent seq_pat = pat->GetFlatContent(); // dispatch on type of strings if (seq_pat.IsAscii()) { Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector(); if (seq_sub.IsAscii()) { return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector, start_index); } return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector, start_index); } Vector<const uc16> pat_vector = seq_pat.ToUC16Vector(); if (seq_sub.IsAscii()) { return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector, start_index); } return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector, start_index); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringIndexOf) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, sub, 0); CONVERT_ARG_HANDLE_CHECKED(String, pat, 1); Object* index = args[2]; uint32_t start_index; if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length())); int position = Runtime::StringMatch(isolate, sub, pat, start_index); return Smi::FromInt(position); } template <typename schar, typename pchar> static int StringMatchBackwards(Vector<const schar> subject, Vector<const pchar> pattern, int idx) { int pattern_length = pattern.length(); ASSERT(pattern_length >= 1); ASSERT(idx + pattern_length <= subject.length()); if (sizeof(schar) == 1 && sizeof(pchar) > 1) { for (int i = 0; i < pattern_length; i++) { uc16 c = pattern[i]; if (c > String::kMaxOneByteCharCode) { return -1; } } } pchar pattern_first_char = pattern[0]; for (int i = idx; i >= 0; i--) { if (subject[i] != pattern_first_char) continue; int j = 1; while (j < pattern_length) { if (pattern[j] != subject[i+j]) { break; } j++; } if (j == pattern_length) { return i; } } return -1; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLastIndexOf) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, sub, 0); CONVERT_ARG_HANDLE_CHECKED(String, pat, 1); Object* index = args[2]; uint32_t start_index; if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); uint32_t pat_length = pat->length(); uint32_t sub_length = sub->length(); if (start_index + pat_length > sub_length) { start_index = sub_length - pat_length; } if (pat_length == 0) { return Smi::FromInt(start_index); } if (!sub->IsFlat()) FlattenString(sub); if (!pat->IsFlat()) FlattenString(pat); int position = -1; DisallowHeapAllocation no_gc; // ensure vectors stay valid String::FlatContent sub_content = sub->GetFlatContent(); String::FlatContent pat_content = pat->GetFlatContent(); if (pat_content.IsAscii()) { Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector(); if (sub_content.IsAscii()) { position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector, start_index); } else { position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector, start_index); } } else { Vector<const uc16> pat_vector = pat_content.ToUC16Vector(); if (sub_content.IsAscii()) { position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector, start_index); } else { position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector, start_index); } } return Smi::FromInt(position); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLocaleCompare) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, str1, 0); CONVERT_ARG_CHECKED(String, str2, 1); if (str1 == str2) return Smi::FromInt(0); // Equal. int str1_length = str1->length(); int str2_length = str2->length(); // Decide trivial cases without flattening. if (str1_length == 0) { if (str2_length == 0) return Smi::FromInt(0); // Equal. return Smi::FromInt(-str2_length); } else { if (str2_length == 0) return Smi::FromInt(str1_length); } int end = str1_length < str2_length ? str1_length : str2_length; // No need to flatten if we are going to find the answer on the first // character. At this point we know there is at least one character // in each string, due to the trivial case handling above. int d = str1->Get(0) - str2->Get(0); if (d != 0) return Smi::FromInt(d); str1->TryFlatten(); str2->TryFlatten(); ConsStringIteratorOp* op1 = isolate->runtime_state()->string_locale_compare_it1(); ConsStringIteratorOp* op2 = isolate->runtime_state()->string_locale_compare_it2(); // TODO(dcarney) Can do array compares here more efficiently. StringCharacterStream stream1(str1, op1); StringCharacterStream stream2(str2, op2); for (int i = 0; i < end; i++) { uint16_t char1 = stream1.GetNext(); uint16_t char2 = stream2.GetNext(); if (char1 != char2) return Smi::FromInt(char1 - char2); } return Smi::FromInt(str1_length - str2_length); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SubString) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(String, value, 0); int start, end; // We have a fast integer-only case here to avoid a conversion to double in // the common case where from and to are Smis. if (args[1]->IsSmi() && args[2]->IsSmi()) { CONVERT_SMI_ARG_CHECKED(from_number, 1); CONVERT_SMI_ARG_CHECKED(to_number, 2); start = from_number; end = to_number; } else { CONVERT_DOUBLE_ARG_CHECKED(from_number, 1); CONVERT_DOUBLE_ARG_CHECKED(to_number, 2); start = FastD2IChecked(from_number); end = FastD2IChecked(to_number); } RUNTIME_ASSERT(end >= start); RUNTIME_ASSERT(start >= 0); RUNTIME_ASSERT(end <= value->length()); isolate->counters()->sub_string_runtime()->Increment(); return value->SubString(start, end); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringMatch) { HandleScope handles(isolate); ASSERT_EQ(3, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2); RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); if (global_cache.HasException()) return Failure::Exception(); int capture_count = regexp->CaptureCount(); ZoneScope zone_scope(isolate->runtime_zone()); ZoneList<int> offsets(8, zone_scope.zone()); while (true) { int32_t* match = global_cache.FetchNext(); if (match == NULL) break; offsets.Add(match[0], zone_scope.zone()); // start offsets.Add(match[1], zone_scope.zone()); // end } if (global_cache.HasException()) return Failure::Exception(); if (offsets.length() == 0) { // Not a single match. return isolate->heap()->null_value(); } RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count, global_cache.LastSuccessfulMatch()); int matches = offsets.length() / 2; Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches); Handle<String> substring = isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1)); elements->set(0, *substring); for (int i = 1; i < matches; i++) { HandleScope temp_scope(isolate); int from = offsets.at(i * 2); int to = offsets.at(i * 2 + 1); Handle<String> substring = isolate->factory()->NewProperSubString(subject, from, to); elements->set(i, *substring); } Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements); result->set_length(Smi::FromInt(matches)); return *result; } // Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain // separate last match info. See comment on that function. template<bool has_capture> static MaybeObject* SearchRegExpMultiple( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp, Handle<JSArray> last_match_array, Handle<JSArray> result_array) { ASSERT(subject->IsFlat()); ASSERT_NE(has_capture, regexp->CaptureCount() == 0); int capture_count = regexp->CaptureCount(); int subject_length = subject->length(); static const int kMinLengthToCache = 0x1000; if (subject_length > kMinLengthToCache) { Handle<Object> cached_answer(RegExpResultsCache::Lookup( isolate->heap(), *subject, regexp->data(), RegExpResultsCache::REGEXP_MULTIPLE_INDICES), isolate); if (*cached_answer != Smi::FromInt(0)) { Handle<FixedArray> cached_fixed_array = Handle<FixedArray>(FixedArray::cast(*cached_answer)); // The cache FixedArray is a COW-array and can therefore be reused. isolate->factory()->SetContent(result_array, cached_fixed_array); // The actual length of the result array is stored in the last element of // the backing store (the backing FixedArray may have a larger capacity). Object* cached_fixed_array_last_element = cached_fixed_array->get(cached_fixed_array->length() - 1); Smi* js_array_length = Smi::cast(cached_fixed_array_last_element); result_array->set_length(js_array_length); RegExpImpl::SetLastMatchInfo( last_match_array, subject, capture_count, NULL); return *result_array; } } RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); if (global_cache.HasException()) return Failure::Exception(); Handle<FixedArray> result_elements; if (result_array->HasFastObjectElements()) { result_elements = Handle<FixedArray>(FixedArray::cast(result_array->elements())); } if (result_elements.is_null() || result_elements->length() < 16) { result_elements = isolate->factory()->NewFixedArrayWithHoles(16); } FixedArrayBuilder builder(result_elements); // Position to search from. int match_start = -1; int match_end = 0; bool first = true; // Two smis before and after the match, for very long strings. static const int kMaxBuilderEntriesPerRegExpMatch = 5; while (true) { int32_t* current_match = global_cache.FetchNext(); if (current_match == NULL) break; match_start = current_match[0]; builder.EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); if (match_end < match_start) { ReplacementStringBuilder::AddSubjectSlice(&builder, match_end, match_start); } match_end = current_match[1]; { // Avoid accumulating new handles inside loop. HandleScope temp_scope(isolate); Handle<String> match; if (!first) { match = isolate->factory()->NewProperSubString(subject, match_start, match_end); } else { match = isolate->factory()->NewSubString(subject, match_start, match_end); first = false; } if (has_capture) { // Arguments array to replace function is match, captures, index and // subject, i.e., 3 + capture count in total. Handle<FixedArray> elements = isolate->factory()->NewFixedArray(3 + capture_count); elements->set(0, *match); for (int i = 1; i <= capture_count; i++) { int start = current_match[i * 2]; if (start >= 0) { int end = current_match[i * 2 + 1]; ASSERT(start <= end); Handle<String> substring = isolate->factory()->NewSubString(subject, start, end); elements->set(i, *substring); } else { ASSERT(current_match[i * 2 + 1] < 0); elements->set(i, isolate->heap()->undefined_value()); } } elements->set(capture_count + 1, Smi::FromInt(match_start)); elements->set(capture_count + 2, *subject); builder.Add(*isolate->factory()->NewJSArrayWithElements(elements)); } else { builder.Add(*match); } } } if (global_cache.HasException()) return Failure::Exception(); if (match_start >= 0) { // Finished matching, with at least one match. if (match_end < subject_length) { ReplacementStringBuilder::AddSubjectSlice(&builder, match_end, subject_length); } RegExpImpl::SetLastMatchInfo( last_match_array, subject, capture_count, NULL); if (subject_length > kMinLengthToCache) { // Store the length of the result array into the last element of the // backing FixedArray. builder.EnsureCapacity(1); Handle<FixedArray> fixed_array = builder.array(); fixed_array->set(fixed_array->length() - 1, Smi::FromInt(builder.length())); // Cache the result and turn the FixedArray into a COW array. RegExpResultsCache::Enter(isolate->heap(), *subject, regexp->data(), *fixed_array, RegExpResultsCache::REGEXP_MULTIPLE_INDICES); } return *builder.ToJSArray(result_array); } else { return isolate->heap()->null_value(); // No matches at all. } } // This is only called for StringReplaceGlobalRegExpWithFunction. This sets // lastMatchInfoOverride to maintain the last match info, so we don't need to // set any other last match array info. RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExecMultiple) { HandleScope handles(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(String, subject, 1); if (!subject->IsFlat()) FlattenString(subject); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3); ASSERT(regexp->GetFlags().is_global()); if (regexp->CaptureCount() == 0) { return SearchRegExpMultiple<false>( isolate, subject, regexp, last_match_info, result_array); } else { return SearchRegExpMultiple<true>( isolate, subject, regexp, last_match_info, result_array); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToRadixString) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_SMI_ARG_CHECKED(radix, 1); RUNTIME_ASSERT(2 <= radix && radix <= 36); // Fast case where the result is a one character string. if (args[0]->IsSmi()) { int value = args.smi_at(0); if (value >= 0 && value < radix) { // Character array used for conversion. static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; return isolate->heap()-> LookupSingleCharacterStringFromCode(kCharTable[value]); } } // Slow case. CONVERT_DOUBLE_ARG_CHECKED(value, 0); if (std::isnan(value)) { return *isolate->factory()->nan_string(); } if (std::isinf(value)) { if (value < 0) { return *isolate->factory()->minus_infinity_string(); } return *isolate->factory()->infinity_string(); } char* str = DoubleToRadixCString(value, radix); MaybeObject* result = isolate->heap()->AllocateStringFromOneByte(CStrVector(str)); DeleteArray(str); return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToFixed) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(value, 0); CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); int f = FastD2IChecked(f_number); RUNTIME_ASSERT(f >= 0); char* str = DoubleToFixedCString(value, f); MaybeObject* res = isolate->heap()->AllocateStringFromOneByte(CStrVector(str)); DeleteArray(str); return res; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToExponential) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(value, 0); CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); int f = FastD2IChecked(f_number); RUNTIME_ASSERT(f >= -1 && f <= 20); char* str = DoubleToExponentialCString(value, f); MaybeObject* res = isolate->heap()->AllocateStringFromOneByte(CStrVector(str)); DeleteArray(str); return res; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToPrecision) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(value, 0); CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); int f = FastD2IChecked(f_number); RUNTIME_ASSERT(f >= 1 && f <= 21); char* str = DoubleToPrecisionCString(value, f); MaybeObject* res = isolate->heap()->AllocateStringFromOneByte(CStrVector(str)); DeleteArray(str); return res; } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsValidSmi) { HandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]); if (Smi::IsValid(number)) { return isolate->heap()->true_value(); } else { return isolate->heap()->false_value(); } } // Returns a single character string where first character equals // string->Get(index). static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) { if (index < static_cast<uint32_t>(string->length())) { string->TryFlatten(); return LookupSingleCharacterStringFromCode( string->GetIsolate(), string->Get(index)); } return Execution::CharAt(string, index); } MaybeObject* Runtime::GetElementOrCharAtOrFail(Isolate* isolate, Handle<Object> object, uint32_t index) { CALL_HEAP_FUNCTION_PASS_EXCEPTION(isolate, GetElementOrCharAt(isolate, object, index)); } MaybeObject* Runtime::GetElementOrCharAt(Isolate* isolate, Handle<Object> object, uint32_t index) { // Handle [] indexing on Strings if (object->IsString()) { Handle<Object> result = GetCharAt(Handle<String>::cast(object), index); if (!result->IsUndefined()) return *result; } // Handle [] indexing on String objects if (object->IsStringObjectWithCharacterAt(index)) { Handle<JSValue> js_value = Handle<JSValue>::cast(object); Handle<Object> result = GetCharAt(Handle<String>(String::cast(js_value->value())), index); if (!result->IsUndefined()) return *result; } if (object->IsString() || object->IsNumber() || object->IsBoolean()) { return object->GetPrototype(isolate)->GetElement(isolate, index); } return object->GetElement(isolate, index); } static Handle<Name> ToName(Isolate* isolate, Handle<Object> key) { if (key->IsName()) { return Handle<Name>::cast(key); } else { bool has_pending_exception = false; Handle<Object> converted = Execution::ToString(isolate, key, &has_pending_exception); if (has_pending_exception) return Handle<Name>(); return Handle<Name>::cast(converted); } } MaybeObject* Runtime::HasObjectProperty(Isolate* isolate, Handle<JSReceiver> object, Handle<Object> key) { HandleScope scope(isolate); // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { return isolate->heap()->ToBoolean(JSReceiver::HasElement(object, index)); } // Convert the key to a name - possibly by calling back into JavaScript. Handle<Name> name = ToName(isolate, key); RETURN_IF_EMPTY_HANDLE(isolate, name); return isolate->heap()->ToBoolean(JSReceiver::HasProperty(object, name)); } MaybeObject* Runtime::GetObjectPropertyOrFail( Isolate* isolate, Handle<Object> object, Handle<Object> key) { CALL_HEAP_FUNCTION_PASS_EXCEPTION(isolate, GetObjectProperty(isolate, object, key)); } MaybeObject* Runtime::GetObjectProperty(Isolate* isolate, Handle<Object> object, Handle<Object> key) { HandleScope scope(isolate); if (object->IsUndefined() || object->IsNull()) { Handle<Object> args[2] = { key, object }; Handle<Object> error = isolate->factory()->NewTypeError("non_object_property_load", HandleVector(args, 2)); return isolate->Throw(*error); } // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { return GetElementOrCharAt(isolate, object, index); } // Convert the key to a name - possibly by calling back into JavaScript. Handle<Name> name = ToName(isolate, key); RETURN_IF_EMPTY_HANDLE(isolate, name); // Check if the name is trivially convertible to an index and get // the element if so. if (name->AsArrayIndex(&index)) { return GetElementOrCharAt(isolate, object, index); } else { return object->GetProperty(*name); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetProperty) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); Handle<Object> object = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); return Runtime::GetObjectProperty(isolate, object, key); } // KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric. RUNTIME_FUNCTION(MaybeObject*, Runtime_KeyedGetProperty) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); // Fast cases for getting named properties of the receiver JSObject // itself. // // The global proxy objects has to be excluded since LocalLookup on // the global proxy object can return a valid result even though the // global proxy object never has properties. This is the case // because the global proxy object forwards everything to its hidden // prototype including local lookups. // // Additionally, we need to make sure that we do not cache results // for objects that require access checks. if (args[0]->IsJSObject()) { if (!args[0]->IsJSGlobalProxy() && !args[0]->IsAccessCheckNeeded() && args[1]->IsName()) { JSObject* receiver = JSObject::cast(args[0]); Name* key = Name::cast(args[1]); if (receiver->HasFastProperties()) { // Attempt to use lookup cache. Map* receiver_map = receiver->map(); KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache(); int offset = keyed_lookup_cache->Lookup(receiver_map, key); if (offset != -1) { // Doubles are not cached, so raw read the value. Object* value = receiver->RawFastPropertyAt(offset); return value->IsTheHole() ? isolate->heap()->undefined_value() : value; } // Lookup cache miss. Perform lookup and update the cache if // appropriate. LookupResult result(isolate); receiver->LocalLookup(key, &result); if (result.IsField()) { int offset = result.GetFieldIndex().field_index(); // Do not track double fields in the keyed lookup cache. Reading // double values requires boxing. if (!FLAG_track_double_fields || !result.representation().IsDouble()) { keyed_lookup_cache->Update(receiver_map, key, offset); } return receiver->FastPropertyAt(result.representation(), offset); } } else { // Attempt dictionary lookup. NameDictionary* dictionary = receiver->property_dictionary(); int entry = dictionary->FindEntry(key); if ((entry != NameDictionary::kNotFound) && (dictionary->DetailsAt(entry).type() == NORMAL)) { Object* value = dictionary->ValueAt(entry); if (!receiver->IsGlobalObject()) return value; value = PropertyCell::cast(value)->value(); if (!value->IsTheHole()) return value; // If value is the hole do the general lookup. } } } else if (FLAG_smi_only_arrays && args.at<Object>(1)->IsSmi()) { // JSObject without a name key. If the key is a Smi, check for a // definite out-of-bounds access to elements, which is a strong indicator // that subsequent accesses will also call the runtime. Proactively // transition elements to FAST_*_ELEMENTS to avoid excessive boxing of // doubles for those future calls in the case that the elements would // become FAST_DOUBLE_ELEMENTS. Handle<JSObject> js_object(args.at<JSObject>(0)); ElementsKind elements_kind = js_object->GetElementsKind(); if (IsFastDoubleElementsKind(elements_kind)) { FixedArrayBase* elements = js_object->elements(); if (args.at<Smi>(1)->value() >= elements->length()) { if (IsFastHoleyElementsKind(elements_kind)) { elements_kind = FAST_HOLEY_ELEMENTS; } else { elements_kind = FAST_ELEMENTS; } MaybeObject* maybe_object = TransitionElements(js_object, elements_kind, isolate); if (maybe_object->IsFailure()) return maybe_object; } } else { ASSERT(IsFastSmiOrObjectElementsKind(elements_kind) || !IsFastElementsKind(elements_kind)); } } } else if (args[0]->IsString() && args[1]->IsSmi()) { // Fast case for string indexing using [] with a smi index. HandleScope scope(isolate); Handle<String> str = args.at<String>(0); int index = args.smi_at(1); if (index >= 0 && index < str->length()) { Handle<Object> result = GetCharAt(str, index); return *result; } } // Fall back to GetObjectProperty. return Runtime::GetObjectProperty(isolate, args.at<Object>(0), args.at<Object>(1)); } static bool IsValidAccessor(Handle<Object> obj) { return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull(); } // Implements part of 8.12.9 DefineOwnProperty. // There are 3 cases that lead here: // Step 4b - define a new accessor property. // Steps 9c & 12 - replace an existing data property with an accessor property. // Step 12 - update an existing accessor property with an accessor or generic // descriptor. RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineAccessorProperty) { HandleScope scope(isolate); ASSERT(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); RUNTIME_ASSERT(!obj->IsNull()); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2); RUNTIME_ASSERT(IsValidAccessor(getter)); CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3); RUNTIME_ASSERT(IsValidAccessor(setter)); CONVERT_SMI_ARG_CHECKED(unchecked, 4); RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); bool fast = obj->HasFastProperties(); JSObject::DefineAccessor(obj, name, getter, setter, attr); RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (fast) JSObject::TransformToFastProperties(obj, 0); return isolate->heap()->undefined_value(); } // Implements part of 8.12.9 DefineOwnProperty. // There are 3 cases that lead here: // Step 4a - define a new data property. // Steps 9b & 12 - replace an existing accessor property with a data property. // Step 12 - update an existing data property with a data or generic // descriptor. RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineDataProperty) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2); CONVERT_SMI_ARG_CHECKED(unchecked, 3); RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); LookupResult lookup(isolate); js_object->LocalLookupRealNamedProperty(*name, &lookup); // Special case for callback properties. if (lookup.IsPropertyCallbacks()) { Handle<Object> callback(lookup.GetCallbackObject(), isolate); // To be compatible with Safari we do not change the value on API objects // in Object.defineProperty(). Firefox disagrees here, and actually changes // the value. if (callback->IsAccessorInfo()) { return isolate->heap()->undefined_value(); } // Avoid redefining foreign callback as data property, just use the stored // setter to update the value instead. // TODO(mstarzinger): So far this only works if property attributes don't // change, this should be fixed once we cleanup the underlying code. if (callback->IsForeign() && lookup.GetAttributes() == attr) { Handle<Object> result_object = JSObject::SetPropertyWithCallback(js_object, callback, name, obj_value, handle(lookup.holder()), kStrictMode); RETURN_IF_EMPTY_HANDLE(isolate, result_object); return *result_object; } } // Take special care when attributes are different and there is already // a property. For simplicity we normalize the property which enables us // to not worry about changing the instance_descriptor and creating a new // map. The current version of SetObjectProperty does not handle attributes // correctly in the case where a property is a field and is reset with // new attributes. if (lookup.IsFound() && (attr != lookup.GetAttributes() || lookup.IsPropertyCallbacks())) { // New attributes - normalize to avoid writing to instance descriptor if (js_object->IsJSGlobalProxy()) { // Since the result is a property, the prototype will exist so // we don't have to check for null. js_object = Handle<JSObject>(JSObject::cast(js_object->GetPrototype())); } JSObject::NormalizeProperties(js_object, CLEAR_INOBJECT_PROPERTIES, 0); // Use IgnoreAttributes version since a readonly property may be // overridden and SetProperty does not allow this. Handle<Object> result = JSObject::SetLocalPropertyIgnoreAttributes( js_object, name, obj_value, attr); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } Handle<Object> result = Runtime::ForceSetObjectProperty(isolate, js_object, name, obj_value, attr); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } // Return property without being observable by accessors or interceptors. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetDataProperty) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); LookupResult lookup(isolate); object->LookupRealNamedProperty(*key, &lookup); if (!lookup.IsFound()) return isolate->heap()->undefined_value(); switch (lookup.type()) { case NORMAL: return lookup.holder()->GetNormalizedProperty(&lookup); case FIELD: return lookup.holder()->FastPropertyAt( lookup.representation(), lookup.GetFieldIndex().field_index()); case CONSTANT: return lookup.GetConstant(); case CALLBACKS: case HANDLER: case INTERCEPTOR: case TRANSITION: return isolate->heap()->undefined_value(); case NONEXISTENT: UNREACHABLE(); } return isolate->heap()->undefined_value(); } Handle<Object> Runtime::SetObjectProperty(Isolate* isolate, Handle<Object> object, Handle<Object> key, Handle<Object> value, PropertyAttributes attr, StrictModeFlag strict_mode) { SetPropertyMode set_mode = attr == NONE ? SET_PROPERTY : DEFINE_PROPERTY; if (object->IsUndefined() || object->IsNull()) { Handle<Object> args[2] = { key, object }; Handle<Object> error = isolate->factory()->NewTypeError("non_object_property_store", HandleVector(args, 2)); isolate->Throw(*error); return Handle<Object>(); } if (object->IsJSProxy()) { bool has_pending_exception = false; Handle<Object> name_object = key->IsSymbol() ? key : Execution::ToString(isolate, key, &has_pending_exception); if (has_pending_exception) return Handle<Object>(); // exception Handle<Name> name = Handle<Name>::cast(name_object); return JSReceiver::SetProperty(Handle<JSProxy>::cast(object), name, value, attr, strict_mode); } // If the object isn't a JavaScript object, we ignore the store. if (!object->IsJSObject()) return value; Handle<JSObject> js_object = Handle<JSObject>::cast(object); // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // In Firefox/SpiderMonkey, Safari and Opera you can access the characters // of a string using [] notation. We need to support this too in // JavaScript. // In the case of a String object we just need to redirect the assignment to // the underlying string if the index is in range. Since the underlying // string does nothing with the assignment then we can ignore such // assignments. if (js_object->IsStringObjectWithCharacterAt(index)) { return value; } js_object->ValidateElements(); if (js_object->HasExternalArrayElements()) { if (!value->IsNumber() && !value->IsUndefined()) { bool has_exception; Handle<Object> number = Execution::ToNumber(isolate, value, &has_exception); if (has_exception) return Handle<Object>(); // exception value = number; } } Handle<Object> result = JSObject::SetElement(js_object, index, value, attr, strict_mode, true, set_mode); js_object->ValidateElements(); return result.is_null() ? result : value; } if (key->IsName()) { Handle<Name> name = Handle<Name>::cast(key); if (name->AsArrayIndex(&index)) { if (js_object->HasExternalArrayElements()) { if (!value->IsNumber() && !value->IsUndefined()) { bool has_exception; Handle<Object> number = Execution::ToNumber(isolate, value, &has_exception); if (has_exception) return Handle<Object>(); // exception value = number; } } return JSObject::SetElement(js_object, index, value, attr, strict_mode, true, set_mode); } else { if (name->IsString()) Handle<String>::cast(name)->TryFlatten(); return JSReceiver::SetProperty(js_object, name, value, attr, strict_mode); } } // Call-back into JavaScript to convert the key to a string. bool has_pending_exception = false; Handle<Object> converted = Execution::ToString(isolate, key, &has_pending_exception); if (has_pending_exception) return Handle<Object>(); // exception Handle<String> name = Handle<String>::cast(converted); if (name->AsArrayIndex(&index)) { return JSObject::SetElement(js_object, index, value, attr, strict_mode, true, set_mode); } else { return JSReceiver::SetProperty(js_object, name, value, attr, strict_mode); } } Handle<Object> Runtime::ForceSetObjectProperty(Isolate* isolate, Handle<JSObject> js_object, Handle<Object> key, Handle<Object> value, PropertyAttributes attr) { // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // In Firefox/SpiderMonkey, Safari and Opera you can access the characters // of a string using [] notation. We need to support this too in // JavaScript. // In the case of a String object we just need to redirect the assignment to // the underlying string if the index is in range. Since the underlying // string does nothing with the assignment then we can ignore such // assignments. if (js_object->IsStringObjectWithCharacterAt(index)) { return value; } return JSObject::SetElement(js_object, index, value, attr, kNonStrictMode, false, DEFINE_PROPERTY); } if (key->IsName()) { Handle<Name> name = Handle<Name>::cast(key); if (name->AsArrayIndex(&index)) { return JSObject::SetElement(js_object, index, value, attr, kNonStrictMode, false, DEFINE_PROPERTY); } else { if (name->IsString()) Handle<String>::cast(name)->TryFlatten(); return JSObject::SetLocalPropertyIgnoreAttributes(js_object, name, value, attr); } } // Call-back into JavaScript to convert the key to a string. bool has_pending_exception = false; Handle<Object> converted = Execution::ToString(isolate, key, &has_pending_exception); if (has_pending_exception) return Handle<Object>(); // exception Handle<String> name = Handle<String>::cast(converted); if (name->AsArrayIndex(&index)) { return JSObject::SetElement(js_object, index, value, attr, kNonStrictMode, false, DEFINE_PROPERTY); } else { return JSObject::SetLocalPropertyIgnoreAttributes(js_object, name, value, attr); } } MaybeObject* Runtime::DeleteObjectProperty(Isolate* isolate, Handle<JSReceiver> receiver, Handle<Object> key, JSReceiver::DeleteMode mode) { HandleScope scope(isolate); // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // In Firefox/SpiderMonkey, Safari and Opera you can access the // characters of a string using [] notation. In the case of a // String object we just need to redirect the deletion to the // underlying string if the index is in range. Since the // underlying string does nothing with the deletion, we can ignore // such deletions. if (receiver->IsStringObjectWithCharacterAt(index)) { return isolate->heap()->true_value(); } Handle<Object> result = JSReceiver::DeleteElement(receiver, index, mode); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } Handle<Name> name; if (key->IsName()) { name = Handle<Name>::cast(key); } else { // Call-back into JavaScript to convert the key to a string. bool has_pending_exception = false; Handle<Object> converted = Execution::ToString( isolate, key, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); name = Handle<String>::cast(converted); } if (name->IsString()) Handle<String>::cast(name)->TryFlatten(); Handle<Object> result = JSReceiver::DeleteProperty(receiver, name, mode); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetProperty) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 4 || args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3); RUNTIME_ASSERT( (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); // Compute attributes. PropertyAttributes attributes = static_cast<PropertyAttributes>(unchecked_attributes); StrictModeFlag strict_mode = kNonStrictMode; if (args.length() == 5) { CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_flag, 4); strict_mode = strict_mode_flag; } Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key, value, attributes, strict_mode); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_TransitionElementsKind) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); CONVERT_ARG_HANDLE_CHECKED(Map, map, 1); JSObject::TransitionElementsKind(array, map->elements_kind()); return *array; } // Set the native flag on the function. // This is used to decide if we should transform null and undefined // into the global object when doing call and apply. RUNTIME_FUNCTION(MaybeObject*, Runtime_SetNativeFlag) { SealHandleScope shs(isolate); RUNTIME_ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(Object, object, 0); if (object->IsJSFunction()) { JSFunction* func = JSFunction::cast(object); func->shared()->set_native(true); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetInlineBuiltinFlag) { SealHandleScope shs(isolate); RUNTIME_ASSERT(args.length() == 1); Handle<Object> object = args.at<Object>(0); if (object->IsJSFunction()) { JSFunction* func = JSFunction::cast(*object); func->shared()->set_inline_builtin(true); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreArrayLiteralElement) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_SMI_ARG_CHECKED(store_index, 1); Handle<Object> value = args.at<Object>(2); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3); CONVERT_SMI_ARG_CHECKED(literal_index, 4); Object* raw_literal_cell = literals->get(literal_index); JSArray* boilerplate = NULL; if (raw_literal_cell->IsAllocationSite()) { AllocationSite* site = AllocationSite::cast(raw_literal_cell); boilerplate = JSArray::cast(site->transition_info()); } else { boilerplate = JSArray::cast(raw_literal_cell); } Handle<JSArray> boilerplate_object(boilerplate); ElementsKind elements_kind = object->GetElementsKind(); ASSERT(IsFastElementsKind(elements_kind)); // Smis should never trigger transitions. ASSERT(!value->IsSmi()); if (value->IsNumber()) { ASSERT(IsFastSmiElementsKind(elements_kind)); ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind) ? FAST_HOLEY_DOUBLE_ELEMENTS : FAST_DOUBLE_ELEMENTS; if (IsMoreGeneralElementsKindTransition( boilerplate_object->GetElementsKind(), transitioned_kind)) { JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind); } JSObject::TransitionElementsKind(object, transitioned_kind); ASSERT(IsFastDoubleElementsKind(object->GetElementsKind())); FixedDoubleArray* double_array = FixedDoubleArray::cast(object->elements()); HeapNumber* number = HeapNumber::cast(*value); double_array->set(store_index, number->Number()); } else { ASSERT(IsFastSmiElementsKind(elements_kind) || IsFastDoubleElementsKind(elements_kind)); ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind) ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; JSObject::TransitionElementsKind(object, transitioned_kind); if (IsMoreGeneralElementsKindTransition( boilerplate_object->GetElementsKind(), transitioned_kind)) { JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind); } FixedArray* object_array = FixedArray::cast(object->elements()); object_array->set(store_index, *value); } return *object; } // Check whether debugger and is about to step into the callback that is passed // to a built-in function such as Array.forEach. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugCallbackSupportsStepping) { SealHandleScope shs(isolate); #ifdef ENABLE_DEBUGGER_SUPPORT if (!isolate->IsDebuggerActive() || !isolate->debug()->StepInActive()) { return isolate->heap()->false_value(); } CONVERT_ARG_CHECKED(Object, callback, 0); // We do not step into the callback if it's a builtin or not even a function. if (!callback->IsJSFunction() || JSFunction::cast(callback)->IsBuiltin()) { return isolate->heap()->false_value(); } return isolate->heap()->true_value(); #else return isolate->heap()->false_value(); #endif // ENABLE_DEBUGGER_SUPPORT } // Set one shot breakpoints for the callback function that is passed to a // built-in function such as Array.forEach to enable stepping into the callback. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrepareStepInIfStepping) { SealHandleScope shs(isolate); #ifdef ENABLE_DEBUGGER_SUPPORT Debug* debug = isolate->debug(); if (!debug->IsStepping()) return isolate->heap()->undefined_value(); CONVERT_ARG_HANDLE_CHECKED(JSFunction, callback, 0); HandleScope scope(isolate); // When leaving the callback, step out has been activated, but not performed // if we do not leave the builtin. To be able to step into the callback // again, we need to clear the step out at this point. debug->ClearStepOut(); debug->FloodWithOneShot(callback); #endif // ENABLE_DEBUGGER_SUPPORT return isolate->heap()->undefined_value(); } // Set a local property, even if it is READ_ONLY. If the property does not // exist, it will be added with attributes NONE. RUNTIME_FUNCTION(MaybeObject*, Runtime_IgnoreAttributesAndSetProperty) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 3 || args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); // Compute attributes. PropertyAttributes attributes = NONE; if (args.length() == 4) { CONVERT_SMI_ARG_CHECKED(unchecked_value, 3); // Only attribute bits should be set. RUNTIME_ASSERT( (unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); attributes = static_cast<PropertyAttributes>(unchecked_value); } Handle<Object> result = JSObject::SetLocalPropertyIgnoreAttributes( object, name, value, attributes); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteProperty) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2); JSReceiver::DeleteMode delete_mode = (strict_mode == kStrictMode) ? JSReceiver::STRICT_DELETION : JSReceiver::NORMAL_DELETION; Handle<Object> result = JSReceiver::DeleteProperty(object, key, delete_mode); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } static MaybeObject* HasLocalPropertyImplementation(Isolate* isolate, Handle<JSObject> object, Handle<Name> key) { if (JSReceiver::HasLocalProperty(object, key)) { return isolate->heap()->true_value(); } // Handle hidden prototypes. If there's a hidden prototype above this thing // then we have to check it for properties, because they are supposed to // look like they are on this object. Handle<Object> proto(object->GetPrototype(), isolate); if (proto->IsJSObject() && Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) { return HasLocalPropertyImplementation(isolate, Handle<JSObject>::cast(proto), key); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); return isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_HasLocalProperty) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); Handle<Object> object = args.at<Object>(0); uint32_t index; const bool key_is_array_index = key->AsArrayIndex(&index); // Only JS objects can have properties. if (object->IsJSObject()) { Handle<JSObject> js_obj = Handle<JSObject>::cast(object); // Fast case: either the key is a real named property or it is not // an array index and there are no interceptors or hidden // prototypes. if (JSObject::HasRealNamedProperty(js_obj, key)) { ASSERT(!isolate->has_scheduled_exception()); return isolate->heap()->true_value(); } else { RETURN_IF_SCHEDULED_EXCEPTION(isolate); } Map* map = js_obj->map(); if (!key_is_array_index && !map->has_named_interceptor() && !HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) { return isolate->heap()->false_value(); } // Slow case. return HasLocalPropertyImplementation(isolate, Handle<JSObject>(js_obj), Handle<Name>(key)); } else if (object->IsString() && key_is_array_index) { // Well, there is one exception: Handle [] on strings. Handle<String> string = Handle<String>::cast(object); if (index < static_cast<uint32_t>(string->length())) { return isolate->heap()->true_value(); } } return isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_HasProperty) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); bool result = JSReceiver::HasProperty(receiver, key); RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (isolate->has_pending_exception()) return Failure::Exception(); return isolate->heap()->ToBoolean(result); } RUNTIME_FUNCTION(MaybeObject*, Runtime_HasElement) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0); CONVERT_SMI_ARG_CHECKED(index, 1); bool result = JSReceiver::HasElement(receiver, index); RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (isolate->has_pending_exception()) return Failure::Exception(); return isolate->heap()->ToBoolean(result); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsPropertyEnumerable) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSObject, object, 0); CONVERT_ARG_CHECKED(Name, key, 1); PropertyAttributes att = object->GetLocalPropertyAttribute(key); if (att == ABSENT || (att & DONT_ENUM) != 0) { RETURN_IF_SCHEDULED_EXCEPTION(isolate); return isolate->heap()->false_value(); } ASSERT(!isolate->has_scheduled_exception()); return isolate->heap()->true_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0); bool threw = false; Handle<JSArray> result = GetKeysFor(object, &threw); if (threw) return Failure::Exception(); return *result; } // Returns either a FixedArray as Runtime_GetPropertyNames, // or, if the given object has an enum cache that contains // all enumerable properties of the object and its prototypes // have none, the map of the object. This is used to speed up // the check for deletions during a for-in. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNamesFast) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0); if (raw_object->IsSimpleEnum()) return raw_object->map(); HandleScope scope(isolate); Handle<JSReceiver> object(raw_object); bool threw = false; Handle<FixedArray> content = GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, &threw); if (threw) return Failure::Exception(); // Test again, since cache may have been built by preceding call. if (object->IsSimpleEnum()) return object->map(); return *content; } // Find the length of the prototype chain that is to to handled as one. If a // prototype object is hidden it is to be viewed as part of the the object it // is prototype for. static int LocalPrototypeChainLength(JSObject* obj) { int count = 1; Object* proto = obj->GetPrototype(); while (proto->IsJSObject() && JSObject::cast(proto)->map()->is_hidden_prototype()) { count++; proto = JSObject::cast(proto)->GetPrototype(); } return count; } // Return the names of the local named properties. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalPropertyNames) { HandleScope scope(isolate); ASSERT(args.length() == 2); if (!args[0]->IsJSObject()) { return isolate->heap()->undefined_value(); } CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_BOOLEAN_ARG_CHECKED(include_symbols, 1); PropertyAttributes filter = include_symbols ? NONE : SYMBOLIC; // Skip the global proxy as it has no properties and always delegates to the // real global object. if (obj->IsJSGlobalProxy()) { // Only collect names if access is permitted. if (obj->IsAccessCheckNeeded() && !isolate->MayNamedAccess(*obj, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(*obj, v8::ACCESS_KEYS); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *isolate->factory()->NewJSArray(0); } obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); } // Find the number of objects making up this. int length = LocalPrototypeChainLength(*obj); // Find the number of local properties for each of the objects. ScopedVector<int> local_property_count(length); int total_property_count = 0; Handle<JSObject> jsproto = obj; for (int i = 0; i < length; i++) { // Only collect names if access is permitted. if (jsproto->IsAccessCheckNeeded() && !isolate->MayNamedAccess(*jsproto, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(*jsproto, v8::ACCESS_KEYS); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *isolate->factory()->NewJSArray(0); } int n; n = jsproto->NumberOfLocalProperties(filter); local_property_count[i] = n; total_property_count += n; if (i < length - 1) { jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); } } // Allocate an array with storage for all the property names. Handle<FixedArray> names = isolate->factory()->NewFixedArray(total_property_count); // Get the property names. jsproto = obj; int proto_with_hidden_properties = 0; int next_copy_index = 0; for (int i = 0; i < length; i++) { jsproto->GetLocalPropertyNames(*names, next_copy_index, filter); next_copy_index += local_property_count[i]; if (jsproto->HasHiddenProperties()) { proto_with_hidden_properties++; } if (i < length - 1) { jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); } } // Filter out name of hidden properties object. if (proto_with_hidden_properties > 0) { Handle<FixedArray> old_names = names; names = isolate->factory()->NewFixedArray( names->length() - proto_with_hidden_properties); int dest_pos = 0; for (int i = 0; i < total_property_count; i++) { Object* name = old_names->get(i); if (name == isolate->heap()->hidden_string()) { continue; } names->set(dest_pos++, name); } } return *isolate->factory()->NewJSArrayWithElements(names); } // Return the names of the local indexed properties. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalElementNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); if (!args[0]->IsJSObject()) { return isolate->heap()->undefined_value(); } CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE)); Handle<FixedArray> names = isolate->factory()->NewFixedArray(n); obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE)); return *isolate->factory()->NewJSArrayWithElements(names); } // Return information on whether an object has a named or indexed interceptor. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetInterceptorInfo) { HandleScope scope(isolate); ASSERT(args.length() == 1); if (!args[0]->IsJSObject()) { return Smi::FromInt(0); } CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); int result = 0; if (obj->HasNamedInterceptor()) result |= 2; if (obj->HasIndexedInterceptor()) result |= 1; return Smi::FromInt(result); } // Return property names from named interceptor. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetNamedInterceptorPropertyNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); if (obj->HasNamedInterceptor()) { v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj); if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); } return isolate->heap()->undefined_value(); } // Return element names from indexed interceptor. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetIndexedInterceptorElementNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); if (obj->HasIndexedInterceptor()) { v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj); if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_LocalKeys) { HandleScope scope(isolate); ASSERT_EQ(args.length(), 1); CONVERT_ARG_CHECKED(JSObject, raw_object, 0); Handle<JSObject> object(raw_object); if (object->IsJSGlobalProxy()) { // Do access checks before going to the global object. if (object->IsAccessCheckNeeded() && !isolate->MayNamedAccess(*object, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(*object, v8::ACCESS_KEYS); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *isolate->factory()->NewJSArray(0); } Handle<Object> proto(object->GetPrototype(), isolate); // If proxy is detached we simply return an empty array. if (proto->IsNull()) return *isolate->factory()->NewJSArray(0); object = Handle<JSObject>::cast(proto); } bool threw = false; Handle<FixedArray> contents = GetKeysInFixedArrayFor(object, LOCAL_ONLY, &threw); if (threw) return Failure::Exception(); // Some fast paths through GetKeysInFixedArrayFor reuse a cached // property array and since the result is mutable we have to create // a fresh clone on each invocation. int length = contents->length(); Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length); for (int i = 0; i < length; i++) { Object* entry = contents->get(i); if (entry->IsString()) { copy->set(i, entry); } else { ASSERT(entry->IsNumber()); HandleScope scope(isolate); Handle<Object> entry_handle(entry, isolate); Handle<Object> entry_str = isolate->factory()->NumberToString(entry_handle); copy->set(i, *entry_str); } } return *isolate->factory()->NewJSArrayWithElements(copy); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArgumentsProperty) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); // Compute the frame holding the arguments. JavaScriptFrameIterator it(isolate); it.AdvanceToArgumentsFrame(); JavaScriptFrame* frame = it.frame(); // Get the actual number of provided arguments. const uint32_t n = frame->ComputeParametersCount(); // Try to convert the key to an index. If successful and within // index return the the argument from the frame. uint32_t index; if (args[0]->ToArrayIndex(&index) && index < n) { return frame->GetParameter(index); } if (args[0]->IsSymbol()) { // Lookup in the initial Object.prototype object. return isolate->initial_object_prototype()->GetProperty( Symbol::cast(args[0])); } // Convert the key to a string. HandleScope scope(isolate); bool exception = false; Handle<Object> converted = Execution::ToString(isolate, args.at<Object>(0), &exception); if (exception) return Failure::Exception(); Handle<String> key = Handle<String>::cast(converted); // Try to convert the string key into an array index. if (key->AsArrayIndex(&index)) { if (index < n) { return frame->GetParameter(index); } else { return isolate->initial_object_prototype()->GetElement(isolate, index); } } // Handle special arguments properties. if (key->Equals(isolate->heap()->length_string())) return Smi::FromInt(n); if (key->Equals(isolate->heap()->callee_string())) { JSFunction* function = frame->function(); if (!function->shared()->is_classic_mode()) { return isolate->Throw(*isolate->factory()->NewTypeError( "strict_arguments_callee", HandleVector<Object>(NULL, 0))); } return function; } // Lookup in the initial Object.prototype object. return isolate->initial_object_prototype()->GetProperty(*key); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ToFastProperties) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); if (object->IsJSObject() && !object->IsGlobalObject()) { JSObject::TransformToFastProperties(Handle<JSObject>::cast(object), 0); } return *object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_ToBool) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); return isolate->heap()->ToBoolean(args[0]->BooleanValue()); } // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47). // Possible optimizations: put the type string into the oddballs. RUNTIME_FUNCTION(MaybeObject*, Runtime_Typeof) { SealHandleScope shs(isolate); Object* obj = args[0]; if (obj->IsNumber()) return isolate->heap()->number_string(); HeapObject* heap_obj = HeapObject::cast(obj); // typeof an undetectable object is 'undefined' if (heap_obj->map()->is_undetectable()) { return isolate->heap()->undefined_string(); } InstanceType instance_type = heap_obj->map()->instance_type(); if (instance_type < FIRST_NONSTRING_TYPE) { return isolate->heap()->string_string(); } switch (instance_type) { case ODDBALL_TYPE: if (heap_obj->IsTrue() || heap_obj->IsFalse()) { return isolate->heap()->boolean_string(); } if (heap_obj->IsNull()) { return FLAG_harmony_typeof ? isolate->heap()->null_string() : isolate->heap()->object_string(); } ASSERT(heap_obj->IsUndefined()); return isolate->heap()->undefined_string(); case SYMBOL_TYPE: return isolate->heap()->symbol_string(); case JS_FUNCTION_TYPE: case JS_FUNCTION_PROXY_TYPE: return isolate->heap()->function_string(); default: // For any kind of object not handled above, the spec rule for // host objects gives that it is okay to return "object" return isolate->heap()->object_string(); } } static bool AreDigits(const uint8_t*s, int from, int to) { for (int i = from; i < to; i++) { if (s[i] < '0' || s[i] > '9') return false; } return true; } static int ParseDecimalInteger(const uint8_t*s, int from, int to) { ASSERT(to - from < 10); // Overflow is not possible. ASSERT(from < to); int d = s[from] - '0'; for (int i = from + 1; i < to; i++) { d = 10 * d + (s[i] - '0'); } return d; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToNumber) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(String, subject, 0); subject->TryFlatten(); // Fast case: short integer or some sorts of junk values. int len = subject->length(); if (subject->IsSeqOneByteString()) { if (len == 0) return Smi::FromInt(0); uint8_t const* data = SeqOneByteString::cast(subject)->GetChars(); bool minus = (data[0] == '-'); int start_pos = (minus ? 1 : 0); if (start_pos == len) { return isolate->heap()->nan_value(); } else if (data[start_pos] > '9') { // Fast check for a junk value. A valid string may start from a // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit or // the 'I' character ('Infinity'). All of that have codes not greater than // '9' except 'I' and . if (data[start_pos] != 'I' && data[start_pos] != 0xa0) { return isolate->heap()->nan_value(); } } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) { // The maximal/minimal smi has 10 digits. If the string has less digits we // know it will fit into the smi-data type. int d = ParseDecimalInteger(data, start_pos, len); if (minus) { if (d == 0) return isolate->heap()->minus_zero_value(); d = -d; } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize && (len == 1 || data[0] != '0')) { // String hash is not calculated yet but all the data are present. // Update the hash field to speed up sequential convertions. uint32_t hash = StringHasher::MakeArrayIndexHash(d, len); #ifdef DEBUG subject->Hash(); // Force hash calculation. ASSERT_EQ(static_cast<int>(subject->hash_field()), static_cast<int>(hash)); #endif subject->set_hash_field(hash); } return Smi::FromInt(d); } } // Slower case. int flags = ALLOW_HEX; if (FLAG_harmony_numeric_literals) { // The current spec draft has not updated "ToNumber Applied to the String // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584 flags |= ALLOW_OCTAL | ALLOW_BINARY; } return isolate->heap()->NumberFromDouble( StringToDouble(isolate->unicode_cache(), subject, flags)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewString) { SealHandleScope shs(isolate); CONVERT_SMI_ARG_CHECKED(length, 0); CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1); if (length == 0) return isolate->heap()->empty_string(); if (is_one_byte) { return isolate->heap()->AllocateRawOneByteString(length); } else { return isolate->heap()->AllocateRawTwoByteString(length); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_TruncateString) { HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0); CONVERT_SMI_ARG_CHECKED(new_length, 1); return *SeqString::Truncate(string, new_length); } RUNTIME_FUNCTION(MaybeObject*, Runtime_URIEscape) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, source, 0); Handle<String> string = FlattenGetString(source); ASSERT(string->IsFlat()); Handle<String> result = string->IsOneByteRepresentationUnderneath() ? URIEscape::Escape<uint8_t>(isolate, source) : URIEscape::Escape<uc16>(isolate, source); if (result.is_null()) return Failure::OutOfMemoryException(0x12); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_URIUnescape) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, source, 0); Handle<String> string = FlattenGetString(source); ASSERT(string->IsFlat()); return string->IsOneByteRepresentationUnderneath() ? *URIUnescape::Unescape<uint8_t>(isolate, source) : *URIUnescape::Unescape<uc16>(isolate, source); } RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONString) { HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(String, string, 0); ASSERT(args.length() == 1); return BasicJsonStringifier::StringifyString(isolate, string); } RUNTIME_FUNCTION(MaybeObject*, Runtime_BasicJSONStringify) { HandleScope scope(isolate); ASSERT(args.length() == 1); BasicJsonStringifier stringifier(isolate); return stringifier.Stringify(Handle<Object>(args[0], isolate)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseInt) { SealHandleScope shs(isolate); CONVERT_ARG_CHECKED(String, s, 0); CONVERT_SMI_ARG_CHECKED(radix, 1); s->TryFlatten(); RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36)); double value = StringToInt(isolate->unicode_cache(), s, radix); return isolate->heap()->NumberFromDouble(value); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseFloat) { SealHandleScope shs(isolate); CONVERT_ARG_CHECKED(String, str, 0); // ECMA-262 section 15.1.2.3, empty string is NaN double value = StringToDouble(isolate->unicode_cache(), str, ALLOW_TRAILING_JUNK, OS::nan_value()); // Create a number object from the value. return isolate->heap()->NumberFromDouble(value); } template <class Converter> MUST_USE_RESULT static MaybeObject* ConvertCaseHelper( Isolate* isolate, String* s, String::Encoding result_encoding, int length, int input_string_length, unibrow::Mapping<Converter, 128>* mapping) { // We try this twice, once with the assumption that the result is no longer // than the input and, if that assumption breaks, again with the exact // length. This may not be pretty, but it is nicer than what was here before // and I hereby claim my vaffel-is. // // Allocate the resulting string. // // NOTE: This assumes that the upper/lower case of an ASCII // character is also ASCII. This is currently the case, but it // might break in the future if we implement more context and locale // dependent upper/lower conversions. Object* o; { MaybeObject* maybe_o = result_encoding == String::ONE_BYTE_ENCODING ? isolate->heap()->AllocateRawOneByteString(length) : isolate->heap()->AllocateRawTwoByteString(length); if (!maybe_o->ToObject(&o)) return maybe_o; } String* result = String::cast(o); bool has_changed_character = false; DisallowHeapAllocation no_gc; // Convert all characters to upper case, assuming that they will fit // in the buffer Access<ConsStringIteratorOp> op( isolate->runtime_state()->string_iterator()); StringCharacterStream stream(s, op.value()); unibrow::uchar chars[Converter::kMaxWidth]; // We can assume that the string is not empty uc32 current = stream.GetNext(); // y with umlauts is the only character that stops fitting into one-byte // when converting to uppercase. static const uc32 yuml_code = 0xff; bool ignore_yuml = result->IsSeqTwoByteString() || Converter::kIsToLower; for (int i = 0; i < length;) { bool has_next = stream.HasMore(); uc32 next = has_next ? stream.GetNext() : 0; int char_length = mapping->get(current, next, chars); if (char_length == 0) { // The case conversion of this character is the character itself. result->Set(i, current); i++; } else if (char_length == 1 && (ignore_yuml || current != yuml_code)) { // Common case: converting the letter resulted in one character. ASSERT(static_cast<uc32>(chars[0]) != current); result->Set(i, chars[0]); has_changed_character = true; i++; } else if (length == input_string_length) { bool found_yuml = (current == yuml_code); // We've assumed that the result would be as long as the // input but here is a character that converts to several // characters. No matter, we calculate the exact length // of the result and try the whole thing again. // // Note that this leaves room for optimization. We could just // memcpy what we already have to the result string. Also, // the result string is the last object allocated we could // "realloc" it and probably, in the vast majority of cases, // extend the existing string to be able to hold the full // result. int next_length = 0; if (has_next) { next_length = mapping->get(next, 0, chars); if (next_length == 0) next_length = 1; } int current_length = i + char_length + next_length; while (stream.HasMore()) { current = stream.GetNext(); found_yuml |= (current == yuml_code); // NOTE: we use 0 as the next character here because, while // the next character may affect what a character converts to, // it does not in any case affect the length of what it convert // to. int char_length = mapping->get(current, 0, chars); if (char_length == 0) char_length = 1; current_length += char_length; if (current_length > Smi::kMaxValue) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x13); } } // Try again with the real length. Return signed if we need // to allocate a two-byte string for y-umlaut to uppercase. return (found_yuml && !ignore_yuml) ? Smi::FromInt(-current_length) : Smi::FromInt(current_length); } else { for (int j = 0; j < char_length; j++) { result->Set(i, chars[j]); i++; } has_changed_character = true; } current = next; } if (has_changed_character) { return result; } else { // If we didn't actually change anything in doing the conversion // we simple return the result and let the converted string // become garbage; there is no reason to keep two identical strings // alive. return s; } } namespace { static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF; static const uintptr_t kAsciiMask = kOneInEveryByte << 7; // Given a word and two range boundaries returns a word with high bit // set in every byte iff the corresponding input byte was strictly in // the range (m, n). All the other bits in the result are cleared. // This function is only useful when it can be inlined and the // boundaries are statically known. // Requires: all bytes in the input word and the boundaries must be // ASCII (less than 0x7F). static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) { // Use strict inequalities since in edge cases the function could be // further simplified. ASSERT(0 < m && m < n); // Has high bit set in every w byte less than n. uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w; // Has high bit set in every w byte greater than m. uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m); return (tmp1 & tmp2 & (kOneInEveryByte * 0x80)); } #ifdef DEBUG static bool CheckFastAsciiConvert(char* dst, char* src, int length, bool changed, bool is_to_lower) { bool expected_changed = false; for (int i = 0; i < length; i++) { if (dst[i] == src[i]) continue; expected_changed = true; if (is_to_lower) { ASSERT('A' <= src[i] && src[i] <= 'Z'); ASSERT(dst[i] == src[i] + ('a' - 'A')); } else { ASSERT('a' <= src[i] && src[i] <= 'z'); ASSERT(dst[i] == src[i] - ('a' - 'A')); } } return (expected_changed == changed); } #endif template<class Converter> static bool FastAsciiConvert(char* dst, char* src, int length, bool* changed_out) { #ifdef DEBUG char* saved_dst = dst; char* saved_src = src; #endif DisallowHeapAllocation no_gc; // We rely on the distance between upper and lower case letters // being a known power of 2. ASSERT('a' - 'A' == (1 << 5)); // Boundaries for the range of input characters than require conversion. static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1; static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1; bool changed = false; uintptr_t or_acc = 0; char* const limit = src + length; #ifdef V8_HOST_CAN_READ_UNALIGNED // Process the prefix of the input that requires no conversion one // (machine) word at a time. while (src <= limit - sizeof(uintptr_t)) { uintptr_t w = *reinterpret_cast<uintptr_t*>(src); or_acc |= w; if (AsciiRangeMask(w, lo, hi) != 0) { changed = true; break; } *reinterpret_cast<uintptr_t*>(dst) = w; src += sizeof(uintptr_t); dst += sizeof(uintptr_t); } // Process the remainder of the input performing conversion when // required one word at a time. while (src <= limit - sizeof(uintptr_t)) { uintptr_t w = *reinterpret_cast<uintptr_t*>(src); or_acc |= w; uintptr_t m = AsciiRangeMask(w, lo, hi); // The mask has high (7th) bit set in every byte that needs // conversion and we know that the distance between cases is // 1 << 5. *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2); src += sizeof(uintptr_t); dst += sizeof(uintptr_t); } #endif // Process the last few bytes of the input (or the whole input if // unaligned access is not supported). while (src < limit) { char c = *src; or_acc |= c; if (lo < c && c < hi) { c ^= (1 << 5); changed = true; } *dst = c; ++src; ++dst; } if ((or_acc & kAsciiMask) != 0) { return false; } ASSERT(CheckFastAsciiConvert( saved_dst, saved_src, length, changed, Converter::kIsToLower)); *changed_out = changed; return true; } } // namespace template <class Converter> MUST_USE_RESULT static MaybeObject* ConvertCase( Arguments args, Isolate* isolate, unibrow::Mapping<Converter, 128>* mapping) { SealHandleScope shs(isolate); CONVERT_ARG_CHECKED(String, s, 0); s = s->TryFlattenGetString(); const int length = s->length(); // Assume that the string is not empty; we need this assumption later if (length == 0) return s; // Simpler handling of ASCII strings. // // NOTE: This assumes that the upper/lower case of an ASCII // character is also ASCII. This is currently the case, but it // might break in the future if we implement more context and locale // dependent upper/lower conversions. if (s->IsSeqOneByteString()) { Object* o; { MaybeObject* maybe_o = isolate->heap()->AllocateRawOneByteString(length); if (!maybe_o->ToObject(&o)) return maybe_o; } SeqOneByteString* result = SeqOneByteString::cast(o); bool has_changed_character; bool is_ascii = FastAsciiConvert<Converter>( reinterpret_cast<char*>(result->GetChars()), reinterpret_cast<char*>(SeqOneByteString::cast(s)->GetChars()), length, &has_changed_character); // If not ASCII, we discard the result and take the 2 byte path. if (is_ascii) { return has_changed_character ? result : s; } } String::Encoding result_encoding = s->IsOneByteRepresentation() ? String::ONE_BYTE_ENCODING : String::TWO_BYTE_ENCODING; Object* answer; { MaybeObject* maybe_answer = ConvertCaseHelper( isolate, s, result_encoding, length, length, mapping); if (!maybe_answer->ToObject(&answer)) return maybe_answer; } if (answer->IsSmi()) { int new_length = Smi::cast(answer)->value(); if (new_length < 0) { result_encoding = String::TWO_BYTE_ENCODING; new_length = -new_length; } MaybeObject* maybe_answer = ConvertCaseHelper( isolate, s, result_encoding, new_length, length, mapping); if (!maybe_answer->ToObject(&answer)) return maybe_answer; } return answer; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToLowerCase) { return ConvertCase( args, isolate, isolate->runtime_state()->to_lower_mapping()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToUpperCase) { return ConvertCase( args, isolate, isolate->runtime_state()->to_upper_mapping()); } static inline bool IsTrimWhiteSpace(unibrow::uchar c) { return unibrow::WhiteSpace::Is(c) || c == 0x200b || c == 0xfeff; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringTrim) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(String, s, 0); CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1); CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2); s->TryFlatten(); int length = s->length(); int left = 0; if (trimLeft) { while (left < length && IsTrimWhiteSpace(s->Get(left))) { left++; } } int right = length; if (trimRight) { while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) { right--; } } return s->SubString(left, right); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringSplit) { HandleScope handle_scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]); int subject_length = subject->length(); int pattern_length = pattern->length(); RUNTIME_ASSERT(pattern_length > 0); if (limit == 0xffffffffu) { Handle<Object> cached_answer( RegExpResultsCache::Lookup(isolate->heap(), *subject, *pattern, RegExpResultsCache::STRING_SPLIT_SUBSTRINGS), isolate); if (*cached_answer != Smi::FromInt(0)) { // The cache FixedArray is a COW-array and can therefore be reused. Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements( Handle<FixedArray>::cast(cached_answer)); return *result; } } // The limit can be very large (0xffffffffu), but since the pattern // isn't empty, we can never create more parts than ~half the length // of the subject. if (!subject->IsFlat()) FlattenString(subject); static const int kMaxInitialListCapacity = 16; ZoneScope zone_scope(isolate->runtime_zone()); // Find (up to limit) indices of separator and end-of-string in subject int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit); ZoneList<int> indices(initial_capacity, zone_scope.zone()); if (!pattern->IsFlat()) FlattenString(pattern); FindStringIndicesDispatch(isolate, *subject, *pattern, &indices, limit, zone_scope.zone()); if (static_cast<uint32_t>(indices.length()) < limit) { indices.Add(subject_length, zone_scope.zone()); } // The list indices now contains the end of each part to create. // Create JSArray of substrings separated by separator. int part_count = indices.length(); Handle<JSArray> result = isolate->factory()->NewJSArray(part_count); JSObject::EnsureCanContainHeapObjectElements(result); result->set_length(Smi::FromInt(part_count)); ASSERT(result->HasFastObjectElements()); if (part_count == 1 && indices.at(0) == subject_length) { FixedArray::cast(result->elements())->set(0, *subject); return *result; } Handle<FixedArray> elements(FixedArray::cast(result->elements())); int part_start = 0; for (int i = 0; i < part_count; i++) { HandleScope local_loop_handle(isolate); int part_end = indices.at(i); Handle<String> substring = isolate->factory()->NewProperSubString(subject, part_start, part_end); elements->set(i, *substring); part_start = part_end + pattern_length; } if (limit == 0xffffffffu) { if (result->HasFastObjectElements()) { RegExpResultsCache::Enter(isolate->heap(), *subject, *pattern, *elements, RegExpResultsCache::STRING_SPLIT_SUBSTRINGS); } } return *result; } // Copies ASCII characters to the given fixed array looking up // one-char strings in the cache. Gives up on the first char that is // not in the cache and fills the remainder with smi zeros. Returns // the length of the successfully copied prefix. static int CopyCachedAsciiCharsToArray(Heap* heap, const uint8_t* chars, FixedArray* elements, int length) { DisallowHeapAllocation no_gc; FixedArray* ascii_cache = heap->single_character_string_cache(); Object* undefined = heap->undefined_value(); int i; WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); for (i = 0; i < length; ++i) { Object* value = ascii_cache->get(chars[i]); if (value == undefined) break; elements->set(i, value, mode); } if (i < length) { ASSERT(Smi::FromInt(0) == 0); memset(elements->data_start() + i, 0, kPointerSize * (length - i)); } #ifdef DEBUG for (int j = 0; j < length; ++j) { Object* element = elements->get(j); ASSERT(element == Smi::FromInt(0) || (element->IsString() && String::cast(element)->LooksValid())); } #endif return i; } // Converts a String to JSArray. // For example, "foo" => ["f", "o", "o"]. RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToArray) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, s, 0); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); s = FlattenGetString(s); const int length = static_cast<int>(Min<uint32_t>(s->length(), limit)); Handle<FixedArray> elements; int position = 0; if (s->IsFlat() && s->IsOneByteRepresentation()) { // Try using cached chars where possible. Object* obj; { MaybeObject* maybe_obj = isolate->heap()->AllocateUninitializedFixedArray(length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } elements = Handle<FixedArray>(FixedArray::cast(obj), isolate); DisallowHeapAllocation no_gc; String::FlatContent content = s->GetFlatContent(); if (content.IsAscii()) { Vector<const uint8_t> chars = content.ToOneByteVector(); // Note, this will initialize all elements (not only the prefix) // to prevent GC from seeing partially initialized array. position = CopyCachedAsciiCharsToArray(isolate->heap(), chars.start(), *elements, length); } else { MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(), length); } } else { elements = isolate->factory()->NewFixedArray(length); } for (int i = position; i < length; ++i) { Handle<Object> str = LookupSingleCharacterStringFromCode(isolate, s->Get(i)); elements->set(i, *str); } #ifdef DEBUG for (int i = 0; i < length; ++i) { ASSERT(String::cast(elements->get(i))->length() == 1); } #endif return *isolate->factory()->NewJSArrayWithElements(elements); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewStringWrapper) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(String, value, 0); return value->ToObject(isolate); } bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) { unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth]; int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars); return char_length == 0; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToString) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* number = args[0]; RUNTIME_ASSERT(number->IsNumber()); return isolate->heap()->NumberToString(number); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToStringSkipCache) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* number = args[0]; RUNTIME_ASSERT(number->IsNumber()); return isolate->heap()->NumberToString( number, false, isolate->heap()->GetPretenureMode()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToInteger) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(number, 0); // We do not include 0 so that we don't have to treat +0 / -0 cases. if (number > 0 && number <= Smi::kMaxValue) { return Smi::FromInt(static_cast<int>(number)); } return isolate->heap()->NumberFromDouble(DoubleToInteger(number)); } // ES6 draft 9.1.11 RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToPositiveInteger) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(number, 0); // We do not include 0 so that we don't have to treat +0 / -0 cases. if (number > 0 && number <= Smi::kMaxValue) { return Smi::FromInt(static_cast<int>(number)); } if (number <= 0) { return Smi::FromInt(0); } return isolate->heap()->NumberFromDouble(DoubleToInteger(number)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToIntegerMapMinusZero) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(number, 0); // We do not include 0 so that we don't have to treat +0 / -0 cases. if (number > 0 && number <= Smi::kMaxValue) { return Smi::FromInt(static_cast<int>(number)); } double double_value = DoubleToInteger(number); // Map both -0 and +0 to +0. if (double_value == 0) double_value = 0; return isolate->heap()->NumberFromDouble(double_value); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSUint32) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]); return isolate->heap()->NumberFromUint32(number); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSInt32) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(number, 0); // We do not include 0 so that we don't have to treat +0 / -0 cases. if (number > 0 && number <= Smi::kMaxValue) { return Smi::FromInt(static_cast<int>(number)); } return isolate->heap()->NumberFromInt32(DoubleToInt32(number)); } // Converts a Number to a Smi, if possible. Returns NaN if the number is not // a small integer. RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToSmi) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* obj = args[0]; if (obj->IsSmi()) { return obj; } if (obj->IsHeapNumber()) { double value = HeapNumber::cast(obj)->value(); int int_value = FastD2I(value); if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { return Smi::FromInt(int_value); } } return isolate->heap()->nan_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateHeapNumber) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); return isolate->heap()->AllocateHeapNumber(0); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAdd) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return isolate->heap()->NumberFromDouble(x + y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSub) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return isolate->heap()->NumberFromDouble(x - y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMul) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return isolate->heap()->NumberFromDouble(x * y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberUnaryMinus) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->heap()->NumberFromDouble(-x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAlloc) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); return isolate->heap()->NumberFromDouble(9876543210.0); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberDiv) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return isolate->heap()->NumberFromDouble(x / y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMod) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); x = modulo(x, y); // NumberFromDouble may return a Smi instead of a Number object return isolate->heap()->NumberFromDouble(x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberImul) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x * y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringAdd) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, str1, 0); CONVERT_ARG_CHECKED(String, str2, 1); isolate->counters()->string_add_runtime()->Increment(); return isolate->heap()->AllocateConsString(str1, str2); } template <typename sinkchar> static inline void StringBuilderConcatHelper(String* special, sinkchar* sink, FixedArray* fixed_array, int array_length) { int position = 0; for (int i = 0; i < array_length; i++) { Object* element = fixed_array->get(i); if (element->IsSmi()) { // Smi encoding of position and length. int encoded_slice = Smi::cast(element)->value(); int pos; int len; if (encoded_slice > 0) { // Position and length encoded in one smi. pos = StringBuilderSubstringPosition::decode(encoded_slice); len = StringBuilderSubstringLength::decode(encoded_slice); } else { // Position and length encoded in two smis. Object* obj = fixed_array->get(++i); ASSERT(obj->IsSmi()); pos = Smi::cast(obj)->value(); len = -encoded_slice; } String::WriteToFlat(special, sink + position, pos, pos + len); position += len; } else { String* string = String::cast(element); int element_length = string->length(); String::WriteToFlat(string, sink + position, 0, element_length); position += element_length; } } } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderConcat) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); if (!args[1]->IsSmi()) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x14); } int array_length = args.smi_at(1); CONVERT_ARG_HANDLE_CHECKED(String, special, 2); // This assumption is used by the slice encoding in one or two smis. ASSERT(Smi::kMaxValue >= String::kMaxLength); JSObject::EnsureCanContainHeapObjectElements(array); int special_length = special->length(); if (!array->HasFastObjectElements()) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } FixedArray* fixed_array = FixedArray::cast(array->elements()); if (fixed_array->length() < array_length) { array_length = fixed_array->length(); } if (array_length == 0) { return isolate->heap()->empty_string(); } else if (array_length == 1) { Object* first = fixed_array->get(0); if (first->IsString()) return first; } bool one_byte = special->HasOnlyOneByteChars(); int position = 0; for (int i = 0; i < array_length; i++) { int increment = 0; Object* elt = fixed_array->get(i); if (elt->IsSmi()) { // Smi encoding of position and length. int smi_value = Smi::cast(elt)->value(); int pos; int len; if (smi_value > 0) { // Position and length encoded in one smi. pos = StringBuilderSubstringPosition::decode(smi_value); len = StringBuilderSubstringLength::decode(smi_value); } else { // Position and length encoded in two smis. len = -smi_value; // Get the position and check that it is a positive smi. i++; if (i >= array_length) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } Object* next_smi = fixed_array->get(i); if (!next_smi->IsSmi()) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } pos = Smi::cast(next_smi)->value(); if (pos < 0) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } } ASSERT(pos >= 0); ASSERT(len >= 0); if (pos > special_length || len > special_length - pos) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } increment = len; } else if (elt->IsString()) { String* element = String::cast(elt); int element_length = element->length(); increment = element_length; if (one_byte && !element->HasOnlyOneByteChars()) { one_byte = false; } } else { ASSERT(!elt->IsTheHole()); return isolate->Throw(isolate->heap()->illegal_argument_string()); } if (increment > String::kMaxLength - position) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x15); } position += increment; } int length = position; Object* object; if (one_byte) { { MaybeObject* maybe_object = isolate->heap()->AllocateRawOneByteString(length); if (!maybe_object->ToObject(&object)) return maybe_object; } SeqOneByteString* answer = SeqOneByteString::cast(object); StringBuilderConcatHelper(*special, answer->GetChars(), fixed_array, array_length); return answer; } else { { MaybeObject* maybe_object = isolate->heap()->AllocateRawTwoByteString(length); if (!maybe_object->ToObject(&object)) return maybe_object; } SeqTwoByteString* answer = SeqTwoByteString::cast(object); StringBuilderConcatHelper(*special, answer->GetChars(), fixed_array, array_length); return answer; } } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderJoin) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(JSArray, array, 0); if (!args[1]->IsSmi()) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x16); } int array_length = args.smi_at(1); CONVERT_ARG_CHECKED(String, separator, 2); if (!array->HasFastObjectElements()) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } FixedArray* fixed_array = FixedArray::cast(array->elements()); if (fixed_array->length() < array_length) { array_length = fixed_array->length(); } if (array_length == 0) { return isolate->heap()->empty_string(); } else if (array_length == 1) { Object* first = fixed_array->get(0); if (first->IsString()) return first; } int separator_length = separator->length(); int max_nof_separators = (String::kMaxLength + separator_length - 1) / separator_length; if (max_nof_separators < (array_length - 1)) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x17); } int length = (array_length - 1) * separator_length; for (int i = 0; i < array_length; i++) { Object* element_obj = fixed_array->get(i); if (!element_obj->IsString()) { // TODO(1161): handle this case. return isolate->Throw(isolate->heap()->illegal_argument_string()); } String* element = String::cast(element_obj); int increment = element->length(); if (increment > String::kMaxLength - length) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x18); } length += increment; } Object* object; { MaybeObject* maybe_object = isolate->heap()->AllocateRawTwoByteString(length); if (!maybe_object->ToObject(&object)) return maybe_object; } SeqTwoByteString* answer = SeqTwoByteString::cast(object); uc16* sink = answer->GetChars(); #ifdef DEBUG uc16* end = sink + length; #endif String* first = String::cast(fixed_array->get(0)); int first_length = first->length(); String::WriteToFlat(first, sink, 0, first_length); sink += first_length; for (int i = 1; i < array_length; i++) { ASSERT(sink + separator_length <= end); String::WriteToFlat(separator, sink, 0, separator_length); sink += separator_length; String* element = String::cast(fixed_array->get(i)); int element_length = element->length(); ASSERT(sink + element_length <= end); String::WriteToFlat(element, sink, 0, element_length); sink += element_length; } ASSERT(sink == end); // Use %_FastAsciiArrayJoin instead. ASSERT(!answer->IsOneByteRepresentation()); return answer; } template <typename Char> static void JoinSparseArrayWithSeparator(FixedArray* elements, int elements_length, uint32_t array_length, String* separator, Vector<Char> buffer) { int previous_separator_position = 0; int separator_length = separator->length(); int cursor = 0; for (int i = 0; i < elements_length; i += 2) { int position = NumberToInt32(elements->get(i)); String* string = String::cast(elements->get(i + 1)); int string_length = string->length(); if (string->length() > 0) { while (previous_separator_position < position) { String::WriteToFlat<Char>(separator, &buffer[cursor], 0, separator_length); cursor += separator_length; previous_separator_position++; } String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length); cursor += string->length(); } } if (separator_length > 0) { // Array length must be representable as a signed 32-bit number, // otherwise the total string length would have been too large. ASSERT(array_length <= 0x7fffffff); // Is int32_t. int last_array_index = static_cast<int>(array_length - 1); while (previous_separator_position < last_array_index) { String::WriteToFlat<Char>(separator, &buffer[cursor], 0, separator_length); cursor += separator_length; previous_separator_position++; } } ASSERT(cursor <= buffer.length()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SparseJoinWithSeparator) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(JSArray, elements_array, 0); RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements()); CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]); CONVERT_ARG_CHECKED(String, separator, 2); // elements_array is fast-mode JSarray of alternating positions // (increasing order) and strings. // array_length is length of original array (used to add separators); // separator is string to put between elements. Assumed to be non-empty. // Find total length of join result. int string_length = 0; bool is_ascii = separator->IsOneByteRepresentation(); int max_string_length; if (is_ascii) { max_string_length = SeqOneByteString::kMaxLength; } else { max_string_length = SeqTwoByteString::kMaxLength; } bool overflow = false; CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length()); RUNTIME_ASSERT((elements_length & 1) == 0); // Even length. FixedArray* elements = FixedArray::cast(elements_array->elements()); for (int i = 0; i < elements_length; i += 2) { RUNTIME_ASSERT(elements->get(i)->IsNumber()); RUNTIME_ASSERT(elements->get(i + 1)->IsString()); String* string = String::cast(elements->get(i + 1)); int length = string->length(); if (is_ascii && !string->IsOneByteRepresentation()) { is_ascii = false; max_string_length = SeqTwoByteString::kMaxLength; } if (length > max_string_length || max_string_length - length < string_length) { overflow = true; break; } string_length += length; } int separator_length = separator->length(); if (!overflow && separator_length > 0) { if (array_length <= 0x7fffffffu) { int separator_count = static_cast<int>(array_length) - 1; int remaining_length = max_string_length - string_length; if ((remaining_length / separator_length) >= separator_count) { string_length += separator_length * (array_length - 1); } else { // Not room for the separators within the maximal string length. overflow = true; } } else { // Nonempty separator and at least 2^31-1 separators necessary // means that the string is too large to create. STATIC_ASSERT(String::kMaxLength < 0x7fffffff); overflow = true; } } if (overflow) { // Throw OutOfMemory exception for creating too large a string. V8::FatalProcessOutOfMemory("Array join result too large."); } if (is_ascii) { MaybeObject* result_allocation = isolate->heap()->AllocateRawOneByteString(string_length); if (result_allocation->IsFailure()) return result_allocation; SeqOneByteString* result_string = SeqOneByteString::cast(result_allocation->ToObjectUnchecked()); JoinSparseArrayWithSeparator<uint8_t>(elements, elements_length, array_length, separator, Vector<uint8_t>( result_string->GetChars(), string_length)); return result_string; } else { MaybeObject* result_allocation = isolate->heap()->AllocateRawTwoByteString(string_length); if (result_allocation->IsFailure()) return result_allocation; SeqTwoByteString* result_string = SeqTwoByteString::cast(result_allocation->ToObjectUnchecked()); JoinSparseArrayWithSeparator<uc16>(elements, elements_length, array_length, separator, Vector<uc16>(result_string->GetChars(), string_length)); return result_string; } } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberOr) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x | y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAnd) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x & y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberXor) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x ^ y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShl) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x << (y & 0x1f)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShr) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromUint32(x >> (y & 0x1f)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSar) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberEquals) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL); if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL); if (x == y) return Smi::FromInt(EQUAL); Object* result; if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) { result = Smi::FromInt(EQUAL); } else { result = Smi::FromInt(NOT_EQUAL); } return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringEquals) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, x, 0); CONVERT_ARG_CHECKED(String, y, 1); bool not_equal = !x->Equals(y); // This is slightly convoluted because the value that signifies // equality is 0 and inequality is 1 so we have to negate the result // from String::Equals. ASSERT(not_equal == 0 || not_equal == 1); STATIC_CHECK(EQUAL == 0); STATIC_CHECK(NOT_EQUAL == 1); return Smi::FromInt(not_equal); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberCompare) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); if (std::isnan(x) || std::isnan(y)) return args[2]; if (x == y) return Smi::FromInt(EQUAL); if (isless(x, y)) return Smi::FromInt(LESS); return Smi::FromInt(GREATER); } // Compare two Smis as if they were converted to strings and then // compared lexicographically. RUNTIME_FUNCTION(MaybeObject*, Runtime_SmiLexicographicCompare) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_SMI_ARG_CHECKED(x_value, 0); CONVERT_SMI_ARG_CHECKED(y_value, 1); // If the integers are equal so are the string representations. if (x_value == y_value) return Smi::FromInt(EQUAL); // If one of the integers is zero the normal integer order is the // same as the lexicographic order of the string representations. if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value < y_value ? LESS : GREATER); // If only one of the integers is negative the negative number is // smallest because the char code of '-' is less than the char code // of any digit. Otherwise, we make both values positive. // Use unsigned values otherwise the logic is incorrect for -MIN_INT on // architectures using 32-bit Smis. uint32_t x_scaled = x_value; uint32_t y_scaled = y_value; if (x_value < 0 || y_value < 0) { if (y_value >= 0) return Smi::FromInt(LESS); if (x_value >= 0) return Smi::FromInt(GREATER); x_scaled = -x_value; y_scaled = -y_value; } static const uint32_t kPowersOf10[] = { 1, 10, 100, 1000, 10*1000, 100*1000, 1000*1000, 10*1000*1000, 100*1000*1000, 1000*1000*1000 }; // If the integers have the same number of decimal digits they can be // compared directly as the numeric order is the same as the // lexicographic order. If one integer has fewer digits, it is scaled // by some power of 10 to have the same number of digits as the longer // integer. If the scaled integers are equal it means the shorter // integer comes first in the lexicographic order. // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 int x_log2 = IntegerLog2(x_scaled); int x_log10 = ((x_log2 + 1) * 1233) >> 12; x_log10 -= x_scaled < kPowersOf10[x_log10]; int y_log2 = IntegerLog2(y_scaled); int y_log10 = ((y_log2 + 1) * 1233) >> 12; y_log10 -= y_scaled < kPowersOf10[y_log10]; int tie = EQUAL; if (x_log10 < y_log10) { // X has fewer digits. We would like to simply scale up X but that // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would // be scaled up to 9_000_000_000. So we scale up by the next // smallest power and scale down Y to drop one digit. It is OK to // drop one digit from the longer integer since the final digit is // past the length of the shorter integer. x_scaled *= kPowersOf10[y_log10 - x_log10 - 1]; y_scaled /= 10; tie = LESS; } else if (y_log10 < x_log10) { y_scaled *= kPowersOf10[x_log10 - y_log10 - 1]; x_scaled /= 10; tie = GREATER; } if (x_scaled < y_scaled) return Smi::FromInt(LESS); if (x_scaled > y_scaled) return Smi::FromInt(GREATER); return Smi::FromInt(tie); } static Object* StringCharacterStreamCompare(RuntimeState* state, String* x, String* y) { StringCharacterStream stream_x(x, state->string_iterator_compare_x()); StringCharacterStream stream_y(y, state->string_iterator_compare_y()); while (stream_x.HasMore() && stream_y.HasMore()) { int d = stream_x.GetNext() - stream_y.GetNext(); if (d < 0) return Smi::FromInt(LESS); else if (d > 0) return Smi::FromInt(GREATER); } // x is (non-trivial) prefix of y: if (stream_y.HasMore()) return Smi::FromInt(LESS); // y is prefix of x: return Smi::FromInt(stream_x.HasMore() ? GREATER : EQUAL); } static Object* FlatStringCompare(String* x, String* y) { ASSERT(x->IsFlat()); ASSERT(y->IsFlat()); Object* equal_prefix_result = Smi::FromInt(EQUAL); int prefix_length = x->length(); if (y->length() < prefix_length) { prefix_length = y->length(); equal_prefix_result = Smi::FromInt(GREATER); } else if (y->length() > prefix_length) { equal_prefix_result = Smi::FromInt(LESS); } int r; DisallowHeapAllocation no_gc; String::FlatContent x_content = x->GetFlatContent(); String::FlatContent y_content = y->GetFlatContent(); if (x_content.IsAscii()) { Vector<const uint8_t> x_chars = x_content.ToOneByteVector(); if (y_content.IsAscii()) { Vector<const uint8_t> y_chars = y_content.ToOneByteVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector<const uc16> y_chars = y_content.ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } else { Vector<const uc16> x_chars = x_content.ToUC16Vector(); if (y_content.IsAscii()) { Vector<const uint8_t> y_chars = y_content.ToOneByteVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector<const uc16> y_chars = y_content.ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } Object* result; if (r == 0) { result = equal_prefix_result; } else { result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER); } ASSERT(result == StringCharacterStreamCompare(x->GetIsolate()->runtime_state(), x, y)); return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCompare) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, x, 0); CONVERT_ARG_CHECKED(String, y, 1); isolate->counters()->string_compare_runtime()->Increment(); // A few fast case tests before we flatten. if (x == y) return Smi::FromInt(EQUAL); if (y->length() == 0) { if (x->length() == 0) return Smi::FromInt(EQUAL); return Smi::FromInt(GREATER); } else if (x->length() == 0) { return Smi::FromInt(LESS); } int d = x->Get(0) - y->Get(0); if (d < 0) return Smi::FromInt(LESS); else if (d > 0) return Smi::FromInt(GREATER); Object* obj; { MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(x); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } { MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(y); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return (x->IsFlat() && y->IsFlat()) ? FlatStringCompare(x, y) : StringCharacterStreamCompare(isolate->runtime_state(), x, y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_acos) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_acos()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->transcendental_cache()->Get(TranscendentalCache::ACOS, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_asin) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_asin()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->transcendental_cache()->Get(TranscendentalCache::ASIN, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_atan()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->transcendental_cache()->Get(TranscendentalCache::ATAN, x); } static const double kPiDividedBy4 = 0.78539816339744830962; RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan2) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); isolate->counters()->math_atan2()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); double result; if (std::isinf(x) && std::isinf(y)) { // Make sure that the result in case of two infinite arguments // is a multiple of Pi / 4. The sign of the result is determined // by the first argument (x) and the sign of the second argument // determines the multiplier: one or three. int multiplier = (x < 0) ? -1 : 1; if (y < 0) multiplier *= 3; result = multiplier * kPiDividedBy4; } else { result = atan2(x, y); } return isolate->heap()->AllocateHeapNumber(result); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cos) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_cos()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->transcendental_cache()->Get(TranscendentalCache::COS, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_exp) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_exp()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); lazily_initialize_fast_exp(); return isolate->heap()->NumberFromDouble(fast_exp(x)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_floor) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_floor()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->heap()->NumberFromDouble(floor(x)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_log()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->transcendental_cache()->Get(TranscendentalCache::LOG, x); } // Slow version of Math.pow. We check for fast paths for special cases. // Used if SSE2/VFP3 is not available. RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); isolate->counters()->math_pow()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); // If the second argument is a smi, it is much faster to call the // custom powi() function than the generic pow(). if (args[1]->IsSmi()) { int y = args.smi_at(1); return isolate->heap()->NumberFromDouble(power_double_int(x, y)); } CONVERT_DOUBLE_ARG_CHECKED(y, 1); double result = power_helper(x, y); if (std::isnan(result)) return isolate->heap()->nan_value(); return isolate->heap()->AllocateHeapNumber(result); } // Fast version of Math.pow if we know that y is not an integer and y is not // -0.5 or 0.5. Used as slow case from full codegen. RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow_cfunction) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); isolate->counters()->math_pow()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); if (y == 0) { return Smi::FromInt(1); } else { double result = power_double_double(x, y); if (std::isnan(result)) return isolate->heap()->nan_value(); return isolate->heap()->AllocateHeapNumber(result); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_RoundNumber) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_round()->Increment(); if (!args[0]->IsHeapNumber()) { // Must be smi. Return the argument unchanged for all the other types // to make fuzz-natives test happy. return args[0]; } HeapNumber* number = reinterpret_cast<HeapNumber*>(args[0]); double value = number->value(); int exponent = number->get_exponent(); int sign = number->get_sign(); if (exponent < -1) { // Number in range ]-0.5..0.5[. These always round to +/-zero. if (sign) return isolate->heap()->minus_zero_value(); return Smi::FromInt(0); } // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and // should be rounded to 2^30, which is not smi (for 31-bit smis, similar // argument holds for 32-bit smis). if (!sign && exponent < kSmiValueSize - 2) { return Smi::FromInt(static_cast<int>(value + 0.5)); } // If the magnitude is big enough, there's no place for fraction part. If we // try to add 0.5 to this number, 1.0 will be added instead. if (exponent >= 52) { return number; } if (sign && value >= -0.5) return isolate->heap()->minus_zero_value(); // Do not call NumberFromDouble() to avoid extra checks. return isolate->heap()->AllocateHeapNumber(floor(value + 0.5)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sin) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_sin()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->transcendental_cache()->Get(TranscendentalCache::SIN, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sqrt) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_sqrt()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->heap()->AllocateHeapNumber(fast_sqrt(x)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_tan) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); isolate->counters()->math_tan()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return isolate->transcendental_cache()->Get(TranscendentalCache::TAN, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateMakeDay) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_SMI_ARG_CHECKED(year, 0); CONVERT_SMI_ARG_CHECKED(month, 1); return Smi::FromInt(isolate->date_cache()->DaysFromYearMonth(year, month)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateSetValue) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0); CONVERT_DOUBLE_ARG_CHECKED(time, 1); CONVERT_SMI_ARG_CHECKED(is_utc, 2); DateCache* date_cache = isolate->date_cache(); Object* value = NULL; bool is_value_nan = false; if (std::isnan(time)) { value = isolate->heap()->nan_value(); is_value_nan = true; } else if (!is_utc && (time < -DateCache::kMaxTimeBeforeUTCInMs || time > DateCache::kMaxTimeBeforeUTCInMs)) { value = isolate->heap()->nan_value(); is_value_nan = true; } else { time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time)); if (time < -DateCache::kMaxTimeInMs || time > DateCache::kMaxTimeInMs) { value = isolate->heap()->nan_value(); is_value_nan = true; } else { MaybeObject* maybe_result = isolate->heap()->AllocateHeapNumber(DoubleToInteger(time)); if (!maybe_result->ToObject(&value)) return maybe_result; } } date->SetValue(value, is_value_nan); return value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewArgumentsFast) { HandleScope scope(isolate); ASSERT(args.length() == 3); Handle<JSFunction> callee = args.at<JSFunction>(0); Object** parameters = reinterpret_cast<Object**>(args[1]); const int argument_count = Smi::cast(args[2])->value(); Handle<JSObject> result = isolate->factory()->NewArgumentsObject(callee, argument_count); // Allocate the elements if needed. int parameter_count = callee->shared()->formal_parameter_count(); if (argument_count > 0) { if (parameter_count > 0) { int mapped_count = Min(argument_count, parameter_count); Handle<FixedArray> parameter_map = isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED); parameter_map->set_map( isolate->heap()->non_strict_arguments_elements_map()); Handle<Map> old_map(result->map()); Handle<Map> new_map = isolate->factory()->CopyMap(old_map); new_map->set_elements_kind(NON_STRICT_ARGUMENTS_ELEMENTS); result->set_map(*new_map); result->set_elements(*parameter_map); // Store the context and the arguments array at the beginning of the // parameter map. Handle<Context> context(isolate->context()); Handle<FixedArray> arguments = isolate->factory()->NewFixedArray(argument_count, NOT_TENURED); parameter_map->set(0, *context); parameter_map->set(1, *arguments); // Loop over the actual parameters backwards. int index = argument_count - 1; while (index >= mapped_count) { // These go directly in the arguments array and have no // corresponding slot in the parameter map. arguments->set(index, *(parameters - index - 1)); --index; } Handle<ScopeInfo> scope_info(callee->shared()->scope_info()); while (index >= 0) { // Detect duplicate names to the right in the parameter list. Handle<String> name(scope_info->ParameterName(index)); int context_local_count = scope_info->ContextLocalCount(); bool duplicate = false; for (int j = index + 1; j < parameter_count; ++j) { if (scope_info->ParameterName(j) == *name) { duplicate = true; break; } } if (duplicate) { // This goes directly in the arguments array with a hole in the // parameter map. arguments->set(index, *(parameters - index - 1)); parameter_map->set_the_hole(index + 2); } else { // The context index goes in the parameter map with a hole in the // arguments array. int context_index = -1; for (int j = 0; j < context_local_count; ++j) { if (scope_info->ContextLocalName(j) == *name) { context_index = j; break; } } ASSERT(context_index >= 0); arguments->set_the_hole(index); parameter_map->set(index + 2, Smi::FromInt( Context::MIN_CONTEXT_SLOTS + context_index)); } --index; } } else { // If there is no aliasing, the arguments object elements are not // special in any way. Handle<FixedArray> elements = isolate->factory()->NewFixedArray(argument_count, NOT_TENURED); result->set_elements(*elements); for (int i = 0; i < argument_count; ++i) { elements->set(i, *(parameters - i - 1)); } } } return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewStrictArgumentsFast) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); JSFunction* callee = JSFunction::cast(args[0]); Object** parameters = reinterpret_cast<Object**>(args[1]); const int length = args.smi_at(2); Object* result; { MaybeObject* maybe_result = isolate->heap()->AllocateArgumentsObject(callee, length); if (!maybe_result->ToObject(&result)) return maybe_result; } // Allocate the elements if needed. if (length > 0) { // Allocate the fixed array. FixedArray* array; { MaybeObject* maybe_obj = isolate->heap()->AllocateUninitializedFixedArray(length); if (!maybe_obj->To(&array)) return maybe_obj; } DisallowHeapAllocation no_gc; WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc); for (int i = 0; i < length; i++) { array->set(i, *--parameters, mode); } JSObject::cast(result)->set_elements(array); } return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewClosureFromStubFailure) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0); Handle<Context> context(isolate->context()); PretenureFlag pretenure_flag = NOT_TENURED; Handle<JSFunction> result = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context, pretenure_flag); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewClosure) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(Context, context, 0); CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1); CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2); // The caller ensures that we pretenure closures that are assigned // directly to properties. PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED; Handle<JSFunction> result = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context, pretenure_flag); return *result; } // Find the arguments of the JavaScript function invocation that called // into C++ code. Collect these in a newly allocated array of handles (possibly // prefixed by a number of empty handles). static SmartArrayPointer<Handle<Object> > GetCallerArguments( Isolate* isolate, int prefix_argc, int* total_argc) { // Find frame containing arguments passed to the caller. JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); List<JSFunction*> functions(2); frame->GetFunctions(&functions); if (functions.length() > 1) { int inlined_jsframe_index = functions.length() - 1; JSFunction* inlined_function = functions[inlined_jsframe_index]; Vector<SlotRef> args_slots = SlotRef::ComputeSlotMappingForArguments( frame, inlined_jsframe_index, inlined_function->shared()->formal_parameter_count()); int args_count = args_slots.length(); *total_argc = prefix_argc + args_count; SmartArrayPointer<Handle<Object> > param_data( NewArray<Handle<Object> >(*total_argc)); for (int i = 0; i < args_count; i++) { Handle<Object> val = args_slots[i].GetValue(isolate); param_data[prefix_argc + i] = val; } args_slots.Dispose(); return param_data; } else { it.AdvanceToArgumentsFrame(); frame = it.frame(); int args_count = frame->ComputeParametersCount(); *total_argc = prefix_argc + args_count; SmartArrayPointer<Handle<Object> > param_data( NewArray<Handle<Object> >(*total_argc)); for (int i = 0; i < args_count; i++) { Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate); param_data[prefix_argc + i] = val; } return param_data; } } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionBindArguments) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0); RUNTIME_ASSERT(args[3]->IsNumber()); Handle<Object> bindee = args.at<Object>(1); // TODO(lrn): Create bound function in C++ code from premade shared info. bound_function->shared()->set_bound(true); // Get all arguments of calling function (Function.prototype.bind). int argc = 0; SmartArrayPointer<Handle<Object> > arguments = GetCallerArguments(isolate, 0, &argc); // Don't count the this-arg. if (argc > 0) { ASSERT(*arguments[0] == args[2]); argc--; } else { ASSERT(args[2]->IsUndefined()); } // Initialize array of bindings (function, this, and any existing arguments // if the function was already bound). Handle<FixedArray> new_bindings; int i; if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) { Handle<FixedArray> old_bindings( JSFunction::cast(*bindee)->function_bindings()); new_bindings = isolate->factory()->NewFixedArray(old_bindings->length() + argc); bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex), isolate); i = 0; for (int n = old_bindings->length(); i < n; i++) { new_bindings->set(i, old_bindings->get(i)); } } else { int array_size = JSFunction::kBoundArgumentsStartIndex + argc; new_bindings = isolate->factory()->NewFixedArray(array_size); new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee); new_bindings->set(JSFunction::kBoundThisIndex, args[2]); i = 2; } // Copy arguments, skipping the first which is "this_arg". for (int j = 0; j < argc; j++, i++) { new_bindings->set(i, *arguments[j + 1]); } new_bindings->set_map_no_write_barrier( isolate->heap()->fixed_cow_array_map()); bound_function->set_function_bindings(*new_bindings); // Update length. Handle<String> length_string = isolate->factory()->length_string(); Handle<Object> new_length(args.at<Object>(3)); PropertyAttributes attr = static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY); ForceSetProperty(bound_function, length_string, new_length, attr); return *bound_function; } RUNTIME_FUNCTION(MaybeObject*, Runtime_BoundFunctionGetBindings) { HandleScope handles(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0); if (callable->IsJSFunction()) { Handle<JSFunction> function = Handle<JSFunction>::cast(callable); if (function->shared()->bound()) { Handle<FixedArray> bindings(function->function_bindings()); ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map()); return *isolate->factory()->NewJSArrayWithElements(bindings); } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObjectFromBound) { HandleScope scope(isolate); ASSERT(args.length() == 1); // First argument is a function to use as a constructor. CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); RUNTIME_ASSERT(function->shared()->bound()); // The argument is a bound function. Extract its bound arguments // and callable. Handle<FixedArray> bound_args = Handle<FixedArray>(FixedArray::cast(function->function_bindings())); int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex; Handle<Object> bound_function( JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex)), isolate); ASSERT(!bound_function->IsJSFunction() || !Handle<JSFunction>::cast(bound_function)->shared()->bound()); int total_argc = 0; SmartArrayPointer<Handle<Object> > param_data = GetCallerArguments(isolate, bound_argc, &total_argc); for (int i = 0; i < bound_argc; i++) { param_data[i] = Handle<Object>(bound_args->get( JSFunction::kBoundArgumentsStartIndex + i), isolate); } if (!bound_function->IsJSFunction()) { bool exception_thrown; bound_function = Execution::TryGetConstructorDelegate(isolate, bound_function, &exception_thrown); if (exception_thrown) return Failure::Exception(); } ASSERT(bound_function->IsJSFunction()); bool exception = false; Handle<Object> result = Execution::New(Handle<JSFunction>::cast(bound_function), total_argc, *param_data, &exception); if (exception) { return Failure::Exception(); } ASSERT(!result.is_null()); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObject) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> constructor = args.at<Object>(0); // If the constructor isn't a proper function we throw a type error. if (!constructor->IsJSFunction()) { Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); Handle<Object> type_error = isolate->factory()->NewTypeError("not_constructor", arguments); return isolate->Throw(*type_error); } Handle<JSFunction> function = Handle<JSFunction>::cast(constructor); // If function should not have prototype, construction is not allowed. In this // case generated code bailouts here, since function has no initial_map. if (!function->should_have_prototype() && !function->shared()->bound()) { Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); Handle<Object> type_error = isolate->factory()->NewTypeError("not_constructor", arguments); return isolate->Throw(*type_error); } #ifdef ENABLE_DEBUGGER_SUPPORT Debug* debug = isolate->debug(); // Handle stepping into constructors if step into is active. if (debug->StepInActive()) { debug->HandleStepIn(function, Handle<Object>::null(), 0, true); } #endif if (function->has_initial_map()) { if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) { // The 'Function' function ignores the receiver object when // called using 'new' and creates a new JSFunction object that // is returned. The receiver object is only used for error // reporting if an error occurs when constructing the new // JSFunction. Factory::NewJSObject() should not be used to // allocate JSFunctions since it does not properly initialize // the shared part of the function. Since the receiver is // ignored anyway, we use the global object as the receiver // instead of a new JSFunction object. This way, errors are // reported the same way whether or not 'Function' is called // using 'new'. return isolate->context()->global_object(); } } // The function should be compiled for the optimization hints to be // available. JSFunction::EnsureCompiled(function, CLEAR_EXCEPTION); Handle<SharedFunctionInfo> shared(function->shared(), isolate); if (!function->has_initial_map() && shared->IsInobjectSlackTrackingInProgress()) { // The tracking is already in progress for another function. We can only // track one initial_map at a time, so we force the completion before the // function is called as a constructor for the first time. shared->CompleteInobjectSlackTracking(); } Handle<JSObject> result = isolate->factory()->NewJSObject(function); RETURN_IF_EMPTY_HANDLE(isolate, result); isolate->counters()->constructed_objects()->Increment(); isolate->counters()->constructed_objects_runtime()->Increment(); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FinalizeInstanceSize) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); function->shared()->CompleteInobjectSlackTracking(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyCompile) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<JSFunction> function = args.at<JSFunction>(0); #ifdef DEBUG if (FLAG_trace_lazy && !function->shared()->is_compiled()) { PrintF("[lazy: "); function->PrintName(); PrintF("]\n"); } #endif // Compile the target function. ASSERT(!function->is_compiled()); if (!JSFunction::CompileLazy(function, KEEP_EXCEPTION)) { return Failure::Exception(); } // All done. Return the compiled code. ASSERT(function->is_compiled()); return function->code(); } bool AllowOptimization(Isolate* isolate, Handle<JSFunction> function) { // If the function is not compiled ignore the lazy // recompilation. This can happen if the debugger is activated and // the function is returned to the not compiled state. if (!function->shared()->is_compiled()) return false; // If the function is not optimizable or debugger is active continue using the // code from the full compiler. if (!isolate->use_crankshaft() || function->shared()->optimization_disabled() || isolate->DebuggerHasBreakPoints()) { if (FLAG_trace_opt) { PrintF("[failed to optimize "); function->PrintName(); PrintF(": is code optimizable: %s, is debugger enabled: %s]\n", function->shared()->optimization_disabled() ? "F" : "T", isolate->DebuggerHasBreakPoints() ? "T" : "F"); } return false; } return true; } RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyRecompile) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<JSFunction> function = args.at<JSFunction>(0); if (!AllowOptimization(isolate, function)) { function->ReplaceCode(function->shared()->code()); return function->code(); } function->shared()->code()->set_profiler_ticks(0); if (JSFunction::CompileOptimized(function, CLEAR_EXCEPTION)) { return function->code(); } if (FLAG_trace_opt) { PrintF("[failed to optimize "); function->PrintName(); PrintF(": optimized compilation failed]\n"); } function->ReplaceCode(function->shared()->code()); return function->code(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ConcurrentRecompile) { HandleScope handle_scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); if (!AllowOptimization(isolate, function)) { function->ReplaceCode(function->shared()->code()); return isolate->heap()->undefined_value(); } function->shared()->code()->set_profiler_ticks(0); ASSERT(isolate->concurrent_recompilation_enabled()); if (!Compiler::RecompileConcurrent(function)) { function->ReplaceCode(function->shared()->code()); } return isolate->heap()->undefined_value(); } class ActivationsFinder : public ThreadVisitor { public: Code* code_; bool has_code_activations_; explicit ActivationsFinder(Code* code) : code_(code), has_code_activations_(false) { } void VisitThread(Isolate* isolate, ThreadLocalTop* top) { JavaScriptFrameIterator it(isolate, top); VisitFrames(&it); } void VisitFrames(JavaScriptFrameIterator* it) { for (; !it->done(); it->Advance()) { JavaScriptFrame* frame = it->frame(); if (code_->contains(frame->pc())) has_code_activations_ = true; } } }; RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyStubFailure) { HandleScope scope(isolate); ASSERT(args.length() == 0); Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate); ASSERT(AllowHeapAllocation::IsAllowed()); delete deoptimizer; return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyDeoptimized) { HandleScope scope(isolate); ASSERT(args.length() == 1); RUNTIME_ASSERT(args[0]->IsSmi()); Deoptimizer::BailoutType type = static_cast<Deoptimizer::BailoutType>(args.smi_at(0)); Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate); ASSERT(AllowHeapAllocation::IsAllowed()); Handle<JSFunction> function = deoptimizer->function(); Handle<Code> optimized_code = deoptimizer->compiled_code(); ASSERT(optimized_code->kind() == Code::OPTIMIZED_FUNCTION); ASSERT(type == deoptimizer->bailout_type()); // Make sure to materialize objects before causing any allocation. JavaScriptFrameIterator it(isolate); deoptimizer->MaterializeHeapObjects(&it); delete deoptimizer; JavaScriptFrame* frame = it.frame(); RUNTIME_ASSERT(frame->function()->IsJSFunction()); ASSERT(frame->function() == *function); // Avoid doing too much work when running with --always-opt and keep // the optimized code around. if (FLAG_always_opt || type == Deoptimizer::LAZY) { return isolate->heap()->undefined_value(); } // Search for other activations of the same function and code. ActivationsFinder activations_finder(*optimized_code); activations_finder.VisitFrames(&it); isolate->thread_manager()->IterateArchivedThreads(&activations_finder); if (!activations_finder.has_code_activations_) { if (function->code() == *optimized_code) { if (FLAG_trace_deopt) { PrintF("[removing optimized code for: "); function->PrintName(); PrintF("]\n"); } function->ReplaceCode(function->shared()->code()); } } else { // TODO(titzer): we should probably do DeoptimizeCodeList(code) // unconditionally if the code is not already marked for deoptimization. // If there is an index by shared function info, all the better. Deoptimizer::DeoptimizeFunction(*function); } // Evict optimized code for this function from the cache so that it doesn't // get used for new closures. function->shared()->EvictFromOptimizedCodeMap(*optimized_code, "notify deoptimized"); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeoptimizeFunction) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); if (!function->IsOptimized()) return isolate->heap()->undefined_value(); Deoptimizer::DeoptimizeFunction(*function); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearFunctionTypeFeedback) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); Code* unoptimized = function->shared()->code(); if (unoptimized->kind() == Code::FUNCTION) { unoptimized->ClearInlineCaches(); unoptimized->ClearTypeFeedbackCells(isolate->heap()); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_RunningInSimulator) { SealHandleScope shs(isolate); #if defined(USE_SIMULATOR) return isolate->heap()->true_value(); #else return isolate->heap()->false_value(); #endif } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsConcurrentRecompilationSupported) { HandleScope scope(isolate); return isolate->concurrent_recompilation_enabled() ? isolate->heap()->true_value() : isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_OptimizeFunctionOnNextCall) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 1 || args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); if (!function->IsOptimizable()) return isolate->heap()->undefined_value(); function->MarkForLazyRecompilation(); Code* unoptimized = function->shared()->code(); if (args.length() == 2 && unoptimized->kind() == Code::FUNCTION) { CONVERT_ARG_HANDLE_CHECKED(String, type, 1); if (type->IsOneByteEqualTo(STATIC_ASCII_VECTOR("osr"))) { // Start patching from the currently patched loop nesting level. int current_level = unoptimized->allow_osr_at_loop_nesting_level(); ASSERT(BackEdgeTable::Verify(isolate, unoptimized, current_level)); for (int i = current_level + 1; i <= Code::kMaxLoopNestingMarker; i++) { unoptimized->set_allow_osr_at_loop_nesting_level(i); isolate->runtime_profiler()->AttemptOnStackReplacement(*function); } } else if (type->IsOneByteEqualTo(STATIC_ASCII_VECTOR("concurrent"))) { function->MarkForConcurrentRecompilation(); } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NeverOptimizeFunction) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, function, 0); ASSERT(!function->IsOptimized()); function->shared()->set_optimization_disabled(true); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOptimizationStatus) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 1 || args.length() == 2); if (!isolate->use_crankshaft()) { return Smi::FromInt(4); // 4 == "never". } bool sync_with_compiler_thread = true; if (args.length() == 2) { CONVERT_ARG_HANDLE_CHECKED(String, sync, 1); if (sync->IsOneByteEqualTo(STATIC_ASCII_VECTOR("no sync"))) { sync_with_compiler_thread = false; } } CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); if (isolate->concurrent_recompilation_enabled() && sync_with_compiler_thread) { while (function->IsInRecompileQueue()) { isolate->optimizing_compiler_thread()->InstallOptimizedFunctions(); OS::Sleep(50); } } if (FLAG_always_opt) { // We may have always opt, but that is more best-effort than a real // promise, so we still say "no" if it is not optimized. return function->IsOptimized() ? Smi::FromInt(3) // 3 == "always". : Smi::FromInt(2); // 2 == "no". } if (FLAG_deopt_every_n_times) { return Smi::FromInt(6); // 6 == "maybe deopted". } return function->IsOptimized() ? Smi::FromInt(1) // 1 == "yes". : Smi::FromInt(2); // 2 == "no". } RUNTIME_FUNCTION(MaybeObject*, Runtime_UnblockConcurrentRecompilation) { RUNTIME_ASSERT(FLAG_block_concurrent_recompilation); isolate->optimizing_compiler_thread()->Unblock(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOptimizationCount) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); return Smi::FromInt(function->shared()->opt_count()); } static bool IsSuitableForOnStackReplacement(Isolate* isolate, Handle<JSFunction> function, Handle<Code> unoptimized) { // Keep track of whether we've succeeded in optimizing. if (!isolate->use_crankshaft() || !unoptimized->optimizable()) return false; // If we are trying to do OSR when there are already optimized // activations of the function, it means (a) the function is directly or // indirectly recursive and (b) an optimized invocation has been // deoptimized so that we are currently in an unoptimized activation. // Check for optimized activations of this function. for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); if (frame->is_optimized() && frame->function() == *function) return false; } return true; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileForOnStackReplacement) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_NUMBER_CHECKED(uint32_t, pc_offset, Uint32, args[1]); Handle<Code> unoptimized(function->shared()->code(), isolate); #ifdef DEBUG JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); ASSERT_EQ(frame->function(), *function); ASSERT_EQ(frame->LookupCode(), *unoptimized); ASSERT(unoptimized->contains(frame->pc())); ASSERT(pc_offset == static_cast<uint32_t>(frame->pc() - unoptimized->instruction_start())); #endif // DEBUG // We're not prepared to handle a function with arguments object. ASSERT(!function->shared()->uses_arguments()); Handle<Code> result = Handle<Code>::null(); BailoutId ast_id = BailoutId::None(); if (isolate->concurrent_osr_enabled()) { if (isolate->optimizing_compiler_thread()-> IsQueuedForOSR(function, pc_offset)) { // Still waiting for the optimizing compiler thread to finish. Carry on. if (FLAG_trace_osr) { PrintF("[COSR - polling recompile tasks for "); function->PrintName(); PrintF("]\n"); } return NULL; } RecompileJob* job = isolate->optimizing_compiler_thread()-> FindReadyOSRCandidate(function, pc_offset); if (job == NULL) { if (IsSuitableForOnStackReplacement(isolate, function, unoptimized) && Compiler::RecompileConcurrent(function, pc_offset)) { if (function->IsMarkedForLazyRecompilation() || function->IsMarkedForConcurrentRecompilation()) { // Prevent regular recompilation if we queue this for OSR. // TODO(yangguo): remove this as soon as OSR becomes one-shot. function->ReplaceCode(*unoptimized); } return NULL; } // Fall through to the end in case of failure. } else { // TODO(titzer): don't install the OSR code into the function. ast_id = job->info()->osr_ast_id(); result = Compiler::InstallOptimizedCode(job); } } else if (IsSuitableForOnStackReplacement(isolate, function, unoptimized)) { ast_id = unoptimized->TranslatePcOffsetToAstId(pc_offset); ASSERT(!ast_id.IsNone()); if (FLAG_trace_osr) { PrintF("[OSR - replacing at AST id %d in ", ast_id.ToInt()); function->PrintName(); PrintF("]\n"); } // Attempt OSR compilation. result = JSFunction::CompileOsr(function, ast_id, CLEAR_EXCEPTION); } // Revert the patched back edge table, regardless of whether OSR succeeds. BackEdgeTable::Revert(isolate, *unoptimized); // Check whether we ended up with usable optimized code. if (!result.is_null() && result->kind() == Code::OPTIMIZED_FUNCTION) { DeoptimizationInputData* data = DeoptimizationInputData::cast(result->deoptimization_data()); if (data->OsrPcOffset()->value() >= 0) { ASSERT(BailoutId(data->OsrAstId()->value()) == ast_id); if (FLAG_trace_osr) { PrintF("[OSR - entry at AST id %d, offset %d in optimized code]\n", ast_id.ToInt(), data->OsrPcOffset()->value()); } // TODO(titzer): this is a massive hack to make the deopt counts // match. Fix heuristics for reenabling optimizations! function->shared()->increment_deopt_count(); return *result; } } if (FLAG_trace_osr) { PrintF("[OSR - optimization failed for "); function->PrintName(); PrintF("]\n"); } if (function->IsMarkedForLazyRecompilation() || function->IsMarkedForConcurrentRecompilation()) { function->ReplaceCode(function->shared()->code()); } return NULL; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetAllocationTimeout) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); #ifdef DEBUG CONVERT_SMI_ARG_CHECKED(interval, 0); CONVERT_SMI_ARG_CHECKED(timeout, 1); isolate->heap()->set_allocation_timeout(timeout); FLAG_gc_interval = interval; #endif return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CheckIsBootstrapping) { SealHandleScope shs(isolate); RUNTIME_ASSERT(isolate->bootstrapper()->IsActive()); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetRootNaN) { SealHandleScope shs(isolate); RUNTIME_ASSERT(isolate->bootstrapper()->IsActive()); return isolate->heap()->nan_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Call) { HandleScope scope(isolate); ASSERT(args.length() >= 2); int argc = args.length() - 2; CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1); Object* receiver = args[0]; // If there are too many arguments, allocate argv via malloc. const int argv_small_size = 10; Handle<Object> argv_small_buffer[argv_small_size]; SmartArrayPointer<Handle<Object> > argv_large_buffer; Handle<Object>* argv = argv_small_buffer; if (argc > argv_small_size) { argv = new Handle<Object>[argc]; if (argv == NULL) return isolate->StackOverflow(); argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv); } for (int i = 0; i < argc; ++i) { MaybeObject* maybe = args[1 + i]; Object* object; if (!maybe->To<Object>(&object)) return maybe; argv[i] = Handle<Object>(object, isolate); } bool threw; Handle<JSReceiver> hfun(fun); Handle<Object> hreceiver(receiver, isolate); Handle<Object> result = Execution::Call( isolate, hfun, hreceiver, argc, argv, &threw, true); if (threw) return Failure::Exception(); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_Apply) { HandleScope scope(isolate); ASSERT(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0); Handle<Object> receiver = args.at<Object>(1); CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2); CONVERT_SMI_ARG_CHECKED(offset, 3); CONVERT_SMI_ARG_CHECKED(argc, 4); RUNTIME_ASSERT(offset >= 0); RUNTIME_ASSERT(argc >= 0); // If there are too many arguments, allocate argv via malloc. const int argv_small_size = 10; Handle<Object> argv_small_buffer[argv_small_size]; SmartArrayPointer<Handle<Object> > argv_large_buffer; Handle<Object>* argv = argv_small_buffer; if (argc > argv_small_size) { argv = new Handle<Object>[argc]; if (argv == NULL) return isolate->StackOverflow(); argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv); } for (int i = 0; i < argc; ++i) { argv[i] = Object::GetElement(isolate, arguments, offset + i); } bool threw; Handle<Object> result = Execution::Call( isolate, fun, receiver, argc, argv, &threw, true); if (threw) return Failure::Exception(); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionDelegate) { HandleScope scope(isolate); ASSERT(args.length() == 1); RUNTIME_ASSERT(!args[0]->IsJSFunction()); return *Execution::GetFunctionDelegate(isolate, args.at<Object>(0)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetConstructorDelegate) { HandleScope scope(isolate); ASSERT(args.length() == 1); RUNTIME_ASSERT(!args[0]->IsJSFunction()); return *Execution::GetConstructorDelegate(isolate, args.at<Object>(0)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewGlobalContext) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, function, 0); CONVERT_ARG_CHECKED(ScopeInfo, scope_info, 1); Context* result; MaybeObject* maybe_result = isolate->heap()->AllocateGlobalContext(function, scope_info); if (!maybe_result->To(&result)) return maybe_result; ASSERT(function->context() == isolate->context()); ASSERT(function->context()->global_object() == result->global_object()); isolate->set_context(result); result->global_object()->set_global_context(result); return result; // non-failure } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewFunctionContext) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, function, 0); int length = function->shared()->scope_info()->ContextLength(); Context* result; MaybeObject* maybe_result = isolate->heap()->AllocateFunctionContext(length, function); if (!maybe_result->To(&result)) return maybe_result; isolate->set_context(result); return result; // non-failure } RUNTIME_FUNCTION(MaybeObject*, Runtime_PushWithContext) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); JSReceiver* extension_object; if (args[0]->IsJSReceiver()) { extension_object = JSReceiver::cast(args[0]); } else { // Convert the object to a proper JavaScript object. MaybeObject* maybe_js_object = args[0]->ToObject(isolate); if (!maybe_js_object->To(&extension_object)) { if (Failure::cast(maybe_js_object)->IsInternalError()) { HandleScope scope(isolate); Handle<Object> handle = args.at<Object>(0); Handle<Object> result = isolate->factory()->NewTypeError("with_expression", HandleVector(&handle, 1)); return isolate->Throw(*result); } else { return maybe_js_object; } } } JSFunction* function; if (args[1]->IsSmi()) { // A smi sentinel indicates a context nested inside global code rather // than some function. There is a canonical empty function that can be // gotten from the native context. function = isolate->context()->native_context()->closure(); } else { function = JSFunction::cast(args[1]); } Context* context; MaybeObject* maybe_context = isolate->heap()->AllocateWithContext(function, isolate->context(), extension_object); if (!maybe_context->To(&context)) return maybe_context; isolate->set_context(context); return context; } RUNTIME_FUNCTION(MaybeObject*, Runtime_PushCatchContext) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); String* name = String::cast(args[0]); Object* thrown_object = args[1]; JSFunction* function; if (args[2]->IsSmi()) { // A smi sentinel indicates a context nested inside global code rather // than some function. There is a canonical empty function that can be // gotten from the native context. function = isolate->context()->native_context()->closure(); } else { function = JSFunction::cast(args[2]); } Context* context; MaybeObject* maybe_context = isolate->heap()->AllocateCatchContext(function, isolate->context(), name, thrown_object); if (!maybe_context->To(&context)) return maybe_context; isolate->set_context(context); return context; } RUNTIME_FUNCTION(MaybeObject*, Runtime_PushBlockContext) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); ScopeInfo* scope_info = ScopeInfo::cast(args[0]); JSFunction* function; if (args[1]->IsSmi()) { // A smi sentinel indicates a context nested inside global code rather // than some function. There is a canonical empty function that can be // gotten from the native context. function = isolate->context()->native_context()->closure(); } else { function = JSFunction::cast(args[1]); } Context* context; MaybeObject* maybe_context = isolate->heap()->AllocateBlockContext(function, isolate->context(), scope_info); if (!maybe_context->To(&context)) return maybe_context; isolate->set_context(context); return context; } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsJSModule) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* obj = args[0]; return isolate->heap()->ToBoolean(obj->IsJSModule()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_PushModuleContext) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_SMI_ARG_CHECKED(index, 0); if (!args[1]->IsScopeInfo()) { // Module already initialized. Find hosting context and retrieve context. Context* host = Context::cast(isolate->context())->global_context(); Context* context = Context::cast(host->get(index)); ASSERT(context->previous() == isolate->context()); isolate->set_context(context); return context; } CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1); // Allocate module context. HandleScope scope(isolate); Factory* factory = isolate->factory(); Handle<Context> context = factory->NewModuleContext(scope_info); Handle<JSModule> module = factory->NewJSModule(context, scope_info); context->set_module(*module); Context* previous = isolate->context(); context->set_previous(previous); context->set_closure(previous->closure()); context->set_global_object(previous->global_object()); isolate->set_context(*context); // Find hosting scope and initialize internal variable holding module there. previous->global_context()->set(index, *context); return *context; } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareModules) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(FixedArray, descriptions, 0); Context* host_context = isolate->context(); for (int i = 0; i < descriptions->length(); ++i) { Handle<ModuleInfo> description(ModuleInfo::cast(descriptions->get(i))); int host_index = description->host_index(); Handle<Context> context(Context::cast(host_context->get(host_index))); Handle<JSModule> module(context->module()); for (int j = 0; j < description->length(); ++j) { Handle<String> name(description->name(j)); VariableMode mode = description->mode(j); int index = description->index(j); switch (mode) { case VAR: case LET: case CONST: case CONST_HARMONY: { PropertyAttributes attr = IsImmutableVariableMode(mode) ? FROZEN : SEALED; Handle<AccessorInfo> info = Accessors::MakeModuleExport(name, index, attr); Handle<Object> result = JSObject::SetAccessor(module, info); ASSERT(!(result.is_null() || result->IsUndefined())); USE(result); break; } case MODULE: { Object* referenced_context = Context::cast(host_context)->get(index); Handle<JSModule> value(Context::cast(referenced_context)->module()); JSReceiver::SetProperty(module, name, value, FROZEN, kStrictMode); break; } case INTERNAL: case TEMPORARY: case DYNAMIC: case DYNAMIC_GLOBAL: case DYNAMIC_LOCAL: UNREACHABLE(); } } JSObject::PreventExtensions(module); } ASSERT(!isolate->has_pending_exception()); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteContextSlot) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Context, context, 0); CONVERT_ARG_HANDLE_CHECKED(String, name, 1); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); // If the slot was not found the result is true. if (holder.is_null()) { return isolate->heap()->true_value(); } // If the slot was found in a context, it should be DONT_DELETE. if (holder->IsContext()) { return isolate->heap()->false_value(); } // The slot was found in a JSObject, either a context extension object, // the global object, or the subject of a with. Try to delete it // (respecting DONT_DELETE). Handle<JSObject> object = Handle<JSObject>::cast(holder); Handle<Object> result = JSReceiver::DeleteProperty(object, name); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } // A mechanism to return a pair of Object pointers in registers (if possible). // How this is achieved is calling convention-dependent. // All currently supported x86 compiles uses calling conventions that are cdecl // variants where a 64-bit value is returned in two 32-bit registers // (edx:eax on ia32, r1:r0 on ARM). // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax. // In Win64 calling convention, a struct of two pointers is returned in memory, // allocated by the caller, and passed as a pointer in a hidden first parameter. #ifdef V8_HOST_ARCH_64_BIT struct ObjectPair { MaybeObject* x; MaybeObject* y; }; static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) { ObjectPair result = {x, y}; // Pointers x and y returned in rax and rdx, in AMD-x64-abi. // In Win64 they are assigned to a hidden first argument. return result; } #else typedef uint64_t ObjectPair; static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) { return reinterpret_cast<uint32_t>(x) | (reinterpret_cast<ObjectPair>(y) << 32); } #endif static inline MaybeObject* Unhole(Heap* heap, MaybeObject* x, PropertyAttributes attributes) { ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0); USE(attributes); return x->IsTheHole() ? heap->undefined_value() : x; } static Object* ComputeReceiverForNonGlobal(Isolate* isolate, JSObject* holder) { ASSERT(!holder->IsGlobalObject()); Context* top = isolate->context(); // Get the context extension function. JSFunction* context_extension_function = top->native_context()->context_extension_function(); // If the holder isn't a context extension object, we just return it // as the receiver. This allows arguments objects to be used as // receivers, but only if they are put in the context scope chain // explicitly via a with-statement. Object* constructor = holder->map()->constructor(); if (constructor != context_extension_function) return holder; // Fall back to using the global object as the implicit receiver if // the property turns out to be a local variable allocated in a // context extension object - introduced via eval. Implicit global // receivers are indicated with the hole value. return isolate->heap()->the_hole_value(); } static ObjectPair LoadContextSlotHelper(Arguments args, Isolate* isolate, bool throw_error) { HandleScope scope(isolate); ASSERT_EQ(2, args.length()); if (!args[0]->IsContext() || !args[1]->IsString()) { return MakePair(isolate->ThrowIllegalOperation(), NULL); } Handle<Context> context = args.at<Context>(0); Handle<String> name = args.at<String>(1); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); if (isolate->has_pending_exception()) { return MakePair(Failure::Exception(), NULL); } // If the index is non-negative, the slot has been found in a context. if (index >= 0) { ASSERT(holder->IsContext()); // If the "property" we were looking for is a local variable, the // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3. // // Use the hole as the receiver to signal that the receiver is implicit // and that the global receiver should be used (as distinguished from an // explicit receiver that happens to be a global object). Handle<Object> receiver = isolate->factory()->the_hole_value(); Object* value = Context::cast(*holder)->get(index); // Check for uninitialized bindings. switch (binding_flags) { case MUTABLE_CHECK_INITIALIZED: case IMMUTABLE_CHECK_INITIALIZED_HARMONY: if (value->IsTheHole()) { Handle<Object> reference_error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name, 1)); return MakePair(isolate->Throw(*reference_error), NULL); } // FALLTHROUGH case MUTABLE_IS_INITIALIZED: case IMMUTABLE_IS_INITIALIZED: case IMMUTABLE_IS_INITIALIZED_HARMONY: ASSERT(!value->IsTheHole()); return MakePair(value, *receiver); case IMMUTABLE_CHECK_INITIALIZED: return MakePair(Unhole(isolate->heap(), value, attributes), *receiver); case MISSING_BINDING: UNREACHABLE(); return MakePair(NULL, NULL); } } // Otherwise, if the slot was found the holder is a context extension // object, subject of a with, or a global object. We read the named // property from it. if (!holder.is_null()) { Handle<JSReceiver> object = Handle<JSReceiver>::cast(holder); ASSERT(object->IsJSProxy() || JSReceiver::HasProperty(object, name)); // GetProperty below can cause GC. Handle<Object> receiver_handle( object->IsGlobalObject() ? GlobalObject::cast(*object)->global_receiver() : object->IsJSProxy() ? static_cast<Object*>(*object) : ComputeReceiverForNonGlobal(isolate, JSObject::cast(*object)), isolate); // No need to unhole the value here. This is taken care of by the // GetProperty function. MaybeObject* value = object->GetProperty(*name); return MakePair(value, *receiver_handle); } if (throw_error) { // The property doesn't exist - throw exception. Handle<Object> reference_error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name, 1)); return MakePair(isolate->Throw(*reference_error), NULL); } else { // The property doesn't exist - return undefined. return MakePair(isolate->heap()->undefined_value(), isolate->heap()->undefined_value()); } } RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlot) { return LoadContextSlotHelper(args, isolate, true); } RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlotNoReferenceError) { return LoadContextSlotHelper(args, isolate, false); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreContextSlot) { HandleScope scope(isolate); ASSERT(args.length() == 4); Handle<Object> value(args[0], isolate); CONVERT_ARG_HANDLE_CHECKED(Context, context, 1); CONVERT_ARG_HANDLE_CHECKED(String, name, 2); CONVERT_LANGUAGE_MODE_ARG(language_mode, 3); StrictModeFlag strict_mode = (language_mode == CLASSIC_MODE) ? kNonStrictMode : kStrictMode; int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); if (isolate->has_pending_exception()) return Failure::Exception(); if (index >= 0) { // The property was found in a context slot. Handle<Context> context = Handle<Context>::cast(holder); if (binding_flags == MUTABLE_CHECK_INITIALIZED && context->get(index)->IsTheHole()) { Handle<Object> error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name, 1)); return isolate->Throw(*error); } // Ignore if read_only variable. if ((attributes & READ_ONLY) == 0) { // Context is a fixed array and set cannot fail. context->set(index, *value); } else if (strict_mode == kStrictMode) { // Setting read only property in strict mode. Handle<Object> error = isolate->factory()->NewTypeError("strict_cannot_assign", HandleVector(&name, 1)); return isolate->Throw(*error); } return *value; } // Slow case: The property is not in a context slot. It is either in a // context extension object, a property of the subject of a with, or a // property of the global object. Handle<JSReceiver> object; if (!holder.is_null()) { // The property exists on the holder. object = Handle<JSReceiver>::cast(holder); } else { // The property was not found. ASSERT(attributes == ABSENT); if (strict_mode == kStrictMode) { // Throw in strict mode (assignment to undefined variable). Handle<Object> error = isolate->factory()->NewReferenceError( "not_defined", HandleVector(&name, 1)); return isolate->Throw(*error); } // In non-strict mode, the property is added to the global object. attributes = NONE; object = Handle<JSReceiver>(isolate->context()->global_object()); } // Set the property if it's not read only or doesn't yet exist. if ((attributes & READ_ONLY) == 0 || (object->GetLocalPropertyAttribute(*name) == ABSENT)) { RETURN_IF_EMPTY_HANDLE( isolate, JSReceiver::SetProperty(object, name, value, NONE, strict_mode)); } else if (strict_mode == kStrictMode && (attributes & READ_ONLY) != 0) { // Setting read only property in strict mode. Handle<Object> error = isolate->factory()->NewTypeError( "strict_cannot_assign", HandleVector(&name, 1)); return isolate->Throw(*error); } return *value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_Throw) { HandleScope scope(isolate); ASSERT(args.length() == 1); return isolate->Throw(args[0]); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ReThrow) { HandleScope scope(isolate); ASSERT(args.length() == 1); return isolate->ReThrow(args[0]); } RUNTIME_FUNCTION(MaybeObject*, Runtime_PromoteScheduledException) { SealHandleScope shs(isolate); ASSERT_EQ(0, args.length()); return isolate->PromoteScheduledException(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowReferenceError) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> name(args[0], isolate); Handle<Object> reference_error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name, 1)); return isolate->Throw(*reference_error); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowNotDateError) { HandleScope scope(isolate); ASSERT(args.length() == 0); return isolate->Throw(*isolate->factory()->NewTypeError( "not_date_object", HandleVector<Object>(NULL, 0))); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowMessage) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_SMI_ARG_CHECKED(message_id, 0); const char* message = GetBailoutReason( static_cast<BailoutReason>(message_id)); Handle<Name> message_handle = isolate->factory()->NewStringFromAscii(CStrVector(message)); return isolate->Throw(*message_handle); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StackGuard) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); // First check if this is a real stack overflow. if (isolate->stack_guard()->IsStackOverflow()) { return isolate->StackOverflow(); } return Execution::HandleStackGuardInterrupt(isolate); } RUNTIME_FUNCTION(MaybeObject*, Runtime_TryInstallRecompiledCode) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); // First check if this is a real stack overflow. if (isolate->stack_guard()->IsStackOverflow()) { SealHandleScope shs(isolate); return isolate->StackOverflow(); } isolate->optimizing_compiler_thread()->InstallOptimizedFunctions(); return (function->IsOptimized()) ? function->code() : function->shared()->code(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Interrupt) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); return Execution::HandleStackGuardInterrupt(isolate); } static int StackSize(Isolate* isolate) { int n = 0; for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) n++; return n; } static void PrintTransition(Isolate* isolate, Object* result) { // indentation { const int nmax = 80; int n = StackSize(isolate); if (n <= nmax) PrintF("%4d:%*s", n, n, ""); else PrintF("%4d:%*s", n, nmax, "..."); } if (result == NULL) { JavaScriptFrame::PrintTop(isolate, stdout, true, false); PrintF(" {\n"); } else { // function result PrintF("} -> "); result->ShortPrint(); PrintF("\n"); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceEnter) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); PrintTransition(isolate, NULL); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceExit) { SealHandleScope shs(isolate); PrintTransition(isolate, args[0]); return args[0]; // return TOS } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrint) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); #ifdef DEBUG if (args[0]->IsString()) { // If we have a string, assume it's a code "marker" // and print some interesting cpu debugging info. JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); PrintF("fp = %p, sp = %p, caller_sp = %p: ", frame->fp(), frame->sp(), frame->caller_sp()); } else { PrintF("DebugPrint: "); } args[0]->Print(); if (args[0]->IsHeapObject()) { PrintF("\n"); HeapObject::cast(args[0])->map()->Print(); } #else // ShortPrint is available in release mode. Print is not. args[0]->ShortPrint(); #endif PrintF("\n"); Flush(); return args[0]; // return TOS } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugTrace) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); isolate->PrintStack(stdout); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateCurrentTime) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); // According to ECMA-262, section 15.9.1, page 117, the precision of // the number in a Date object representing a particular instant in // time is milliseconds. Therefore, we floor the result of getting // the OS time. double millis = floor(OS::TimeCurrentMillis()); return isolate->heap()->NumberFromDouble(millis); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateParseString) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, str, 0); FlattenString(str); CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1); JSObject::EnsureCanContainHeapObjectElements(output); RUNTIME_ASSERT(output->HasFastObjectElements()); DisallowHeapAllocation no_gc; FixedArray* output_array = FixedArray::cast(output->elements()); RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE); bool result; String::FlatContent str_content = str->GetFlatContent(); if (str_content.IsAscii()) { result = DateParser::Parse(str_content.ToOneByteVector(), output_array, isolate->unicode_cache()); } else { ASSERT(str_content.IsTwoByte()); result = DateParser::Parse(str_content.ToUC16Vector(), output_array, isolate->unicode_cache()); } if (result) { return *output; } else { return isolate->heap()->null_value(); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateLocalTimezone) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); int64_t time = isolate->date_cache()->EquivalentTime(static_cast<int64_t>(x)); const char* zone = OS::LocalTimezone(static_cast<double>(time)); return isolate->heap()->AllocateStringFromUtf8(CStrVector(zone)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateToUTC) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x)); return isolate->heap()->NumberFromDouble(static_cast<double>(time)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalReceiver) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* global = args[0]; if (!global->IsJSGlobalObject()) return isolate->heap()->null_value(); return JSGlobalObject::cast(global)->global_receiver(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsAttachedGlobal) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* global = args[0]; if (!global->IsJSGlobalObject()) return isolate->heap()->false_value(); return isolate->heap()->ToBoolean( !JSGlobalObject::cast(global)->IsDetached()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ParseJson) { HandleScope scope(isolate); ASSERT_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, source, 0); source = Handle<String>(FlattenGetString(source)); // Optimized fast case where we only have ASCII characters. Handle<Object> result; if (source->IsSeqOneByteString()) { result = JsonParser<true>::Parse(source); } else { result = JsonParser<false>::Parse(source); } if (result.is_null()) { // Syntax error or stack overflow in scanner. ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } return *result; } bool CodeGenerationFromStringsAllowed(Isolate* isolate, Handle<Context> context) { ASSERT(context->allow_code_gen_from_strings()->IsFalse()); // Check with callback if set. AllowCodeGenerationFromStringsCallback callback = isolate->allow_code_gen_callback(); if (callback == NULL) { // No callback set and code generation disallowed. return false; } else { // Callback set. Let it decide if code generation is allowed. VMState<EXTERNAL> state(isolate); return callback(v8::Utils::ToLocal(context)); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileString) { HandleScope scope(isolate); ASSERT_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, source, 0); CONVERT_BOOLEAN_ARG_CHECKED(function_literal_only, 1); // Extract native context. Handle<Context> context(isolate->context()->native_context()); // Check if native context allows code generation from // strings. Throw an exception if it doesn't. if (context->allow_code_gen_from_strings()->IsFalse() && !CodeGenerationFromStringsAllowed(isolate, context)) { Handle<Object> error_message = context->ErrorMessageForCodeGenerationFromStrings(); return isolate->Throw(*isolate->factory()->NewEvalError( "code_gen_from_strings", HandleVector<Object>(&error_message, 1))); } // Compile source string in the native context. ParseRestriction restriction = function_literal_only ? ONLY_SINGLE_FUNCTION_LITERAL : NO_PARSE_RESTRICTION; Handle<SharedFunctionInfo> shared = Compiler::CompileEval( source, context, true, CLASSIC_MODE, restriction, RelocInfo::kNoPosition); RETURN_IF_EMPTY_HANDLE(isolate, shared); Handle<JSFunction> fun = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context, NOT_TENURED); return *fun; } static ObjectPair CompileGlobalEval(Isolate* isolate, Handle<String> source, Handle<Object> receiver, LanguageMode language_mode, int scope_position) { Handle<Context> context = Handle<Context>(isolate->context()); Handle<Context> native_context = Handle<Context>(context->native_context()); // Check if native context allows code generation from // strings. Throw an exception if it doesn't. if (native_context->allow_code_gen_from_strings()->IsFalse() && !CodeGenerationFromStringsAllowed(isolate, native_context)) { Handle<Object> error_message = native_context->ErrorMessageForCodeGenerationFromStrings(); isolate->Throw(*isolate->factory()->NewEvalError( "code_gen_from_strings", HandleVector<Object>(&error_message, 1))); return MakePair(Failure::Exception(), NULL); } // Deal with a normal eval call with a string argument. Compile it // and return the compiled function bound in the local context. Handle<SharedFunctionInfo> shared = Compiler::CompileEval( source, context, context->IsNativeContext(), language_mode, NO_PARSE_RESTRICTION, scope_position); RETURN_IF_EMPTY_HANDLE_VALUE(isolate, shared, MakePair(Failure::Exception(), NULL)); Handle<JSFunction> compiled = isolate->factory()->NewFunctionFromSharedFunctionInfo( shared, context, NOT_TENURED); return MakePair(*compiled, *receiver); } RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEval) { HandleScope scope(isolate); ASSERT(args.length() == 5); Handle<Object> callee = args.at<Object>(0); // If "eval" didn't refer to the original GlobalEval, it's not a // direct call to eval. // (And even if it is, but the first argument isn't a string, just let // execution default to an indirect call to eval, which will also return // the first argument without doing anything). if (*callee != isolate->native_context()->global_eval_fun() || !args[1]->IsString()) { return MakePair(*callee, isolate->heap()->the_hole_value()); } CONVERT_LANGUAGE_MODE_ARG(language_mode, 3); ASSERT(args[4]->IsSmi()); return CompileGlobalEval(isolate, args.at<String>(1), args.at<Object>(2), language_mode, args.smi_at(4)); } // Allocate a block of memory in the given space (filled with a filler). // Used as a fall-back for generated code when the space is full. static MaybeObject* Allocate(Isolate* isolate, int size, bool double_align, AllocationSpace space) { Heap* heap = isolate->heap(); RUNTIME_ASSERT(IsAligned(size, kPointerSize)); RUNTIME_ASSERT(size > 0); RUNTIME_ASSERT(size <= heap->MaxRegularSpaceAllocationSize()); HeapObject* allocation; { MaybeObject* maybe_allocation = heap->AllocateRaw(size, space, space); if (!maybe_allocation->To(&allocation)) return maybe_allocation; } #ifdef DEBUG MemoryChunk* chunk = MemoryChunk::FromAddress(allocation->address()); ASSERT(chunk->owner()->identity() == space); #endif heap->CreateFillerObjectAt(allocation->address(), size); return allocation; } RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateInNewSpace) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_SMI_ARG_CHECKED(size, 0); return Allocate(isolate, size, false, NEW_SPACE); } RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateInTargetSpace) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_SMI_ARG_CHECKED(size, 0); CONVERT_SMI_ARG_CHECKED(flags, 1); bool double_align = AllocateDoubleAlignFlag::decode(flags); AllocationSpace space = AllocateTargetSpace::decode(flags); return Allocate(isolate, size, double_align, space); } // Push an object unto an array of objects if it is not already in the // array. Returns true if the element was pushed on the stack and // false otherwise. RUNTIME_FUNCTION(MaybeObject*, Runtime_PushIfAbsent) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1); RUNTIME_ASSERT(array->HasFastSmiOrObjectElements()); int length = Smi::cast(array->length())->value(); FixedArray* elements = FixedArray::cast(array->elements()); for (int i = 0; i < length; i++) { if (elements->get(i) == *element) return isolate->heap()->false_value(); } // Strict not needed. Used for cycle detection in Array join implementation. RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetFastElement(array, length, element, kNonStrictMode, true)); return isolate->heap()->true_value(); } /** * A simple visitor visits every element of Array's. * The backend storage can be a fixed array for fast elements case, * or a dictionary for sparse array. Since Dictionary is a subtype * of FixedArray, the class can be used by both fast and slow cases. * The second parameter of the constructor, fast_elements, specifies * whether the storage is a FixedArray or Dictionary. * * An index limit is used to deal with the situation that a result array * length overflows 32-bit non-negative integer. */ class ArrayConcatVisitor { public: ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage, bool fast_elements) : isolate_(isolate), storage_(Handle<FixedArray>::cast( isolate->global_handles()->Create(*storage))), index_offset_(0u), fast_elements_(fast_elements), exceeds_array_limit_(false) { } ~ArrayConcatVisitor() { clear_storage(); } void visit(uint32_t i, Handle<Object> elm) { if (i > JSObject::kMaxElementCount - index_offset_) { exceeds_array_limit_ = true; return; } uint32_t index = index_offset_ + i; if (fast_elements_) { if (index < static_cast<uint32_t>(storage_->length())) { storage_->set(index, *elm); return; } // Our initial estimate of length was foiled, possibly by // getters on the arrays increasing the length of later arrays // during iteration. // This shouldn't happen in anything but pathological cases. SetDictionaryMode(index); // Fall-through to dictionary mode. } ASSERT(!fast_elements_); Handle<SeededNumberDictionary> dict( SeededNumberDictionary::cast(*storage_)); Handle<SeededNumberDictionary> result = isolate_->factory()->DictionaryAtNumberPut(dict, index, elm); if (!result.is_identical_to(dict)) { // Dictionary needed to grow. clear_storage(); set_storage(*result); } } void increase_index_offset(uint32_t delta) { if (JSObject::kMaxElementCount - index_offset_ < delta) { index_offset_ = JSObject::kMaxElementCount; } else { index_offset_ += delta; } } bool exceeds_array_limit() { return exceeds_array_limit_; } Handle<JSArray> ToArray() { Handle<JSArray> array = isolate_->factory()->NewJSArray(0); Handle<Object> length = isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); Handle<Map> map; if (fast_elements_) { map = isolate_->factory()->GetElementsTransitionMap(array, FAST_HOLEY_ELEMENTS); } else { map = isolate_->factory()->GetElementsTransitionMap(array, DICTIONARY_ELEMENTS); } array->set_map(*map); array->set_length(*length); array->set_elements(*storage_); return array; } private: // Convert storage to dictionary mode. void SetDictionaryMode(uint32_t index) { ASSERT(fast_elements_); Handle<FixedArray> current_storage(*storage_); Handle<SeededNumberDictionary> slow_storage( isolate_->factory()->NewSeededNumberDictionary( current_storage->length())); uint32_t current_length = static_cast<uint32_t>(current_storage->length()); for (uint32_t i = 0; i < current_length; i++) { HandleScope loop_scope(isolate_); Handle<Object> element(current_storage->get(i), isolate_); if (!element->IsTheHole()) { Handle<SeededNumberDictionary> new_storage = isolate_->factory()->DictionaryAtNumberPut(slow_storage, i, element); if (!new_storage.is_identical_to(slow_storage)) { slow_storage = loop_scope.CloseAndEscape(new_storage); } } } clear_storage(); set_storage(*slow_storage); fast_elements_ = false; } inline void clear_storage() { isolate_->global_handles()->Destroy( Handle<Object>::cast(storage_).location()); } inline void set_storage(FixedArray* storage) { storage_ = Handle<FixedArray>::cast( isolate_->global_handles()->Create(storage)); } Isolate* isolate_; Handle<FixedArray> storage_; // Always a global handle. // Index after last seen index. Always less than or equal to // JSObject::kMaxElementCount. uint32_t index_offset_; bool fast_elements_ : 1; bool exceeds_array_limit_ : 1; }; static uint32_t EstimateElementCount(Handle<JSArray> array) { uint32_t length = static_cast<uint32_t>(array->length()->Number()); int element_count = 0; switch (array->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. ASSERT(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); int fast_length = static_cast<int>(length); Handle<FixedArray> elements(FixedArray::cast(array->elements())); for (int i = 0; i < fast_length; i++) { if (!elements->get(i)->IsTheHole()) element_count++; } break; } case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. ASSERT(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); int fast_length = static_cast<int>(length); if (array->elements()->IsFixedArray()) { ASSERT(FixedArray::cast(array->elements())->length() == 0); break; } Handle<FixedDoubleArray> elements( FixedDoubleArray::cast(array->elements())); for (int i = 0; i < fast_length; i++) { if (!elements->is_the_hole(i)) element_count++; } break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> dictionary( SeededNumberDictionary::cast(array->elements())); int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate()); if (dictionary->IsKey(*key)) { element_count++; } } break; } case NON_STRICT_ARGUMENTS_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case EXTERNAL_PIXEL_ELEMENTS: // External arrays are always dense. return length; } // As an estimate, we assume that the prototype doesn't contain any // inherited elements. return element_count; } template<class ExternalArrayClass, class ElementType> static void IterateExternalArrayElements(Isolate* isolate, Handle<JSObject> receiver, bool elements_are_ints, bool elements_are_guaranteed_smis, ArrayConcatVisitor* visitor) { Handle<ExternalArrayClass> array( ExternalArrayClass::cast(receiver->elements())); uint32_t len = static_cast<uint32_t>(array->length()); ASSERT(visitor != NULL); if (elements_are_ints) { if (elements_are_guaranteed_smis) { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope(isolate); Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))), isolate); visitor->visit(j, e); } } else { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope(isolate); int64_t val = static_cast<int64_t>(array->get_scalar(j)); if (Smi::IsValid(static_cast<intptr_t>(val))) { Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate); visitor->visit(j, e); } else { Handle<Object> e = isolate->factory()->NewNumber(static_cast<ElementType>(val)); visitor->visit(j, e); } } } } else { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope(isolate); Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j)); visitor->visit(j, e); } } } // Used for sorting indices in a List<uint32_t>. static int compareUInt32(const uint32_t* ap, const uint32_t* bp) { uint32_t a = *ap; uint32_t b = *bp; return (a == b) ? 0 : (a < b) ? -1 : 1; } static void CollectElementIndices(Handle<JSObject> object, uint32_t range, List<uint32_t>* indices) { Isolate* isolate = object->GetIsolate(); ElementsKind kind = object->GetElementsKind(); switch (kind) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { Handle<FixedArray> elements(FixedArray::cast(object->elements())); uint32_t length = static_cast<uint32_t>(elements->length()); if (range < length) length = range; for (uint32_t i = 0; i < length; i++) { if (!elements->get(i)->IsTheHole()) { indices->Add(i); } } break; } case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // TODO(1810): Decide if it's worthwhile to implement this. UNREACHABLE(); break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> dict( SeededNumberDictionary::cast(object->elements())); uint32_t capacity = dict->Capacity(); for (uint32_t j = 0; j < capacity; j++) { HandleScope loop_scope(isolate); Handle<Object> k(dict->KeyAt(j), isolate); if (dict->IsKey(*k)) { ASSERT(k->IsNumber()); uint32_t index = static_cast<uint32_t>(k->Number()); if (index < range) { indices->Add(index); } } } break; } default: { int dense_elements_length; switch (kind) { case EXTERNAL_PIXEL_ELEMENTS: { dense_elements_length = ExternalPixelArray::cast(object->elements())->length(); break; } case EXTERNAL_BYTE_ELEMENTS: { dense_elements_length = ExternalByteArray::cast(object->elements())->length(); break; } case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { dense_elements_length = ExternalUnsignedByteArray::cast(object->elements())->length(); break; } case EXTERNAL_SHORT_ELEMENTS: { dense_elements_length = ExternalShortArray::cast(object->elements())->length(); break; } case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { dense_elements_length = ExternalUnsignedShortArray::cast(object->elements())->length(); break; } case EXTERNAL_INT_ELEMENTS: { dense_elements_length = ExternalIntArray::cast(object->elements())->length(); break; } case EXTERNAL_UNSIGNED_INT_ELEMENTS: { dense_elements_length = ExternalUnsignedIntArray::cast(object->elements())->length(); break; } case EXTERNAL_FLOAT_ELEMENTS: { dense_elements_length = ExternalFloatArray::cast(object->elements())->length(); break; } case EXTERNAL_DOUBLE_ELEMENTS: { dense_elements_length = ExternalDoubleArray::cast(object->elements())->length(); break; } default: UNREACHABLE(); dense_elements_length = 0; break; } uint32_t length = static_cast<uint32_t>(dense_elements_length); if (range <= length) { length = range; // We will add all indices, so we might as well clear it first // and avoid duplicates. indices->Clear(); } for (uint32_t i = 0; i < length; i++) { indices->Add(i); } if (length == range) return; // All indices accounted for already. break; } } Handle<Object> prototype(object->GetPrototype(), isolate); if (prototype->IsJSObject()) { // The prototype will usually have no inherited element indices, // but we have to check. CollectElementIndices(Handle<JSObject>::cast(prototype), range, indices); } } /** * A helper function that visits elements of a JSArray in numerical * order. * * The visitor argument called for each existing element in the array * with the element index and the element's value. * Afterwards it increments the base-index of the visitor by the array * length. * Returns false if any access threw an exception, otherwise true. */ static bool IterateElements(Isolate* isolate, Handle<JSArray> receiver, ArrayConcatVisitor* visitor) { uint32_t length = static_cast<uint32_t>(receiver->length()->Number()); switch (receiver->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. Handle<FixedArray> elements(FixedArray::cast(receiver->elements())); int fast_length = static_cast<int>(length); ASSERT(fast_length <= elements->length()); for (int j = 0; j < fast_length; j++) { HandleScope loop_scope(isolate); Handle<Object> element_value(elements->get(j), isolate); if (!element_value->IsTheHole()) { visitor->visit(j, element_value); } else if (JSReceiver::HasElement(receiver, j)) { // Call GetElement on receiver, not its prototype, or getters won't // have the correct receiver. element_value = Object::GetElement(isolate, receiver, j); RETURN_IF_EMPTY_HANDLE_VALUE(isolate, element_value, false); visitor->visit(j, element_value); } } break; } case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. Handle<FixedDoubleArray> elements( FixedDoubleArray::cast(receiver->elements())); int fast_length = static_cast<int>(length); ASSERT(fast_length <= elements->length()); for (int j = 0; j < fast_length; j++) { HandleScope loop_scope(isolate); if (!elements->is_the_hole(j)) { double double_value = elements->get_scalar(j); Handle<Object> element_value = isolate->factory()->NewNumber(double_value); visitor->visit(j, element_value); } else if (JSReceiver::HasElement(receiver, j)) { // Call GetElement on receiver, not its prototype, or getters won't // have the correct receiver. Handle<Object> element_value = Object::GetElement(isolate, receiver, j); RETURN_IF_EMPTY_HANDLE_VALUE(isolate, element_value, false); visitor->visit(j, element_value); } } break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> dict(receiver->element_dictionary()); List<uint32_t> indices(dict->Capacity() / 2); // Collect all indices in the object and the prototypes less // than length. This might introduce duplicates in the indices list. CollectElementIndices(receiver, length, &indices); indices.Sort(&compareUInt32); int j = 0; int n = indices.length(); while (j < n) { HandleScope loop_scope(isolate); uint32_t index = indices[j]; Handle<Object> element = Object::GetElement(isolate, receiver, index); RETURN_IF_EMPTY_HANDLE_VALUE(isolate, element, false); visitor->visit(index, element); // Skip to next different index (i.e., omit duplicates). do { j++; } while (j < n && indices[j] == index); } break; } case EXTERNAL_PIXEL_ELEMENTS: { Handle<ExternalPixelArray> pixels(ExternalPixelArray::cast( receiver->elements())); for (uint32_t j = 0; j < length; j++) { Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate); visitor->visit(j, e); } break; } case EXTERNAL_BYTE_ELEMENTS: { IterateExternalArrayElements<ExternalByteArray, int8_t>( isolate, receiver, true, true, visitor); break; } case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>( isolate, receiver, true, true, visitor); break; } case EXTERNAL_SHORT_ELEMENTS: { IterateExternalArrayElements<ExternalShortArray, int16_t>( isolate, receiver, true, true, visitor); break; } case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>( isolate, receiver, true, true, visitor); break; } case EXTERNAL_INT_ELEMENTS: { IterateExternalArrayElements<ExternalIntArray, int32_t>( isolate, receiver, true, false, visitor); break; } case EXTERNAL_UNSIGNED_INT_ELEMENTS: { IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>( isolate, receiver, true, false, visitor); break; } case EXTERNAL_FLOAT_ELEMENTS: { IterateExternalArrayElements<ExternalFloatArray, float>( isolate, receiver, false, false, visitor); break; } case EXTERNAL_DOUBLE_ELEMENTS: { IterateExternalArrayElements<ExternalDoubleArray, double>( isolate, receiver, false, false, visitor); break; } default: UNREACHABLE(); break; } visitor->increase_index_offset(length); return true; } /** * Array::concat implementation. * See ECMAScript 262, 15.4.4.4. * TODO(581): Fix non-compliance for very large concatenations and update to * following the ECMAScript 5 specification. */ RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayConcat) { HandleScope handle_scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0); int argument_count = static_cast<int>(arguments->length()->Number()); RUNTIME_ASSERT(arguments->HasFastObjectElements()); Handle<FixedArray> elements(FixedArray::cast(arguments->elements())); // Pass 1: estimate the length and number of elements of the result. // The actual length can be larger if any of the arguments have getters // that mutate other arguments (but will otherwise be precise). // The number of elements is precise if there are no inherited elements. ElementsKind kind = FAST_SMI_ELEMENTS; uint32_t estimate_result_length = 0; uint32_t estimate_nof_elements = 0; for (int i = 0; i < argument_count; i++) { HandleScope loop_scope(isolate); Handle<Object> obj(elements->get(i), isolate); uint32_t length_estimate; uint32_t element_estimate; if (obj->IsJSArray()) { Handle<JSArray> array(Handle<JSArray>::cast(obj)); length_estimate = static_cast<uint32_t>(array->length()->Number()); if (length_estimate != 0) { ElementsKind array_kind = GetPackedElementsKind(array->map()->elements_kind()); if (IsMoreGeneralElementsKindTransition(kind, array_kind)) { kind = array_kind; } } element_estimate = EstimateElementCount(array); } else { if (obj->IsHeapObject()) { if (obj->IsNumber()) { if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) { kind = FAST_DOUBLE_ELEMENTS; } } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) { kind = FAST_ELEMENTS; } } length_estimate = 1; element_estimate = 1; } // Avoid overflows by capping at kMaxElementCount. if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { estimate_result_length = JSObject::kMaxElementCount; } else { estimate_result_length += length_estimate; } if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { estimate_nof_elements = JSObject::kMaxElementCount; } else { estimate_nof_elements += element_estimate; } } // If estimated number of elements is more than half of length, a // fixed array (fast case) is more time and space-efficient than a // dictionary. bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length; Handle<FixedArray> storage; if (fast_case) { if (kind == FAST_DOUBLE_ELEMENTS) { Handle<FixedDoubleArray> double_storage = isolate->factory()->NewFixedDoubleArray(estimate_result_length); int j = 0; bool failure = false; for (int i = 0; i < argument_count; i++) { Handle<Object> obj(elements->get(i), isolate); if (obj->IsSmi()) { double_storage->set(j, Smi::cast(*obj)->value()); j++; } else if (obj->IsNumber()) { double_storage->set(j, obj->Number()); j++; } else { JSArray* array = JSArray::cast(*obj); uint32_t length = static_cast<uint32_t>(array->length()->Number()); switch (array->map()->elements_kind()) { case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // Empty fixed array indicates that there are no elements. if (array->elements()->IsFixedArray()) break; FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); for (uint32_t i = 0; i < length; i++) { if (elements->is_the_hole(i)) { failure = true; break; } double double_value = elements->get_scalar(i); double_storage->set(j, double_value); j++; } break; } case FAST_HOLEY_SMI_ELEMENTS: case FAST_SMI_ELEMENTS: { FixedArray* elements( FixedArray::cast(array->elements())); for (uint32_t i = 0; i < length; i++) { Object* element = elements->get(i); if (element->IsTheHole()) { failure = true; break; } int32_t int_value = Smi::cast(element)->value(); double_storage->set(j, int_value); j++; } break; } case FAST_HOLEY_ELEMENTS: ASSERT_EQ(0, length); break; default: UNREACHABLE(); } } if (failure) break; } Handle<JSArray> array = isolate->factory()->NewJSArray(0); Smi* length = Smi::FromInt(j); Handle<Map> map; map = isolate->factory()->GetElementsTransitionMap(array, kind); array->set_map(*map); array->set_length(length); array->set_elements(*double_storage); return *array; } // The backing storage array must have non-existing elements to preserve // holes across concat operations. storage = isolate->factory()->NewFixedArrayWithHoles( estimate_result_length); } else { // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate uint32_t at_least_space_for = estimate_nof_elements + (estimate_nof_elements >> 2); storage = Handle<FixedArray>::cast( isolate->factory()->NewSeededNumberDictionary(at_least_space_for)); } ArrayConcatVisitor visitor(isolate, storage, fast_case); for (int i = 0; i < argument_count; i++) { Handle<Object> obj(elements->get(i), isolate); if (obj->IsJSArray()) { Handle<JSArray> array = Handle<JSArray>::cast(obj); if (!IterateElements(isolate, array, &visitor)) { return Failure::Exception(); } } else { visitor.visit(0, obj); visitor.increase_index_offset(1); } } if (visitor.exceeds_array_limit()) { return isolate->Throw( *isolate->factory()->NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0))); } return *visitor.ToArray(); } // This will not allocate (flatten the string), but it may run // very slowly for very deeply nested ConsStrings. For debugging use only. RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalPrint) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(String, string, 0); ConsStringIteratorOp op; StringCharacterStream stream(string, &op); while (stream.HasMore()) { uint16_t character = stream.GetNext(); PrintF("%c", character); } return string; } // Moves all own elements of an object, that are below a limit, to positions // starting at zero. All undefined values are placed after non-undefined values, // and are followed by non-existing element. Does not change the length // property. // Returns the number of non-undefined elements collected. RUNTIME_FUNCTION(MaybeObject*, Runtime_RemoveArrayHoles) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); return *JSObject::PrepareElementsForSort(object, limit); } // Move contents of argument 0 (an array) to argument 1 (an array) RUNTIME_FUNCTION(MaybeObject*, Runtime_MoveArrayContents) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSArray, from, 0); CONVERT_ARG_CHECKED(JSArray, to, 1); from->ValidateElements(); to->ValidateElements(); FixedArrayBase* new_elements = from->elements(); ElementsKind from_kind = from->GetElementsKind(); MaybeObject* maybe_new_map; maybe_new_map = to->GetElementsTransitionMap(isolate, from_kind); Object* new_map; if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; to->set_map_and_elements(Map::cast(new_map), new_elements); to->set_length(from->length()); Object* obj; { MaybeObject* maybe_obj = from->ResetElements(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } from->set_length(Smi::FromInt(0)); to->ValidateElements(); return to; } // How many elements does this object/array have? RUNTIME_FUNCTION(MaybeObject*, Runtime_EstimateNumberOfElements) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, object, 0); HeapObject* elements = object->elements(); if (elements->IsDictionary()) { int result = SeededNumberDictionary::cast(elements)->NumberOfElements(); return Smi::FromInt(result); } else if (object->IsJSArray()) { return JSArray::cast(object)->length(); } else { return Smi::FromInt(FixedArray::cast(elements)->length()); } } // Returns an array that tells you where in the [0, length) interval an array // might have elements. Can either return an array of keys (positive integers // or undefined) or a number representing the positive length of an interval // starting at index 0. // Intervals can span over some keys that are not in the object. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArrayKeys) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]); if (array->elements()->IsDictionary()) { Handle<FixedArray> keys = isolate->factory()->empty_fixed_array(); for (Handle<Object> p = array; !p->IsNull(); p = Handle<Object>(p->GetPrototype(isolate), isolate)) { if (p->IsJSProxy() || JSObject::cast(*p)->HasIndexedInterceptor()) { // Bail out if we find a proxy or interceptor, likely not worth // collecting keys in that case. return *isolate->factory()->NewNumberFromUint(length); } Handle<JSObject> current = Handle<JSObject>::cast(p); Handle<FixedArray> current_keys = isolate->factory()->NewFixedArray( current->NumberOfLocalElements(NONE)); current->GetLocalElementKeys(*current_keys, NONE); keys = UnionOfKeys(keys, current_keys); } // Erase any keys >= length. // TODO(adamk): Remove this step when the contract of %GetArrayKeys // is changed to let this happen on the JS side. for (int i = 0; i < keys->length(); i++) { if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i); } return *isolate->factory()->NewJSArrayWithElements(keys); } else { ASSERT(array->HasFastSmiOrObjectElements() || array->HasFastDoubleElements()); uint32_t actual_length = static_cast<uint32_t>(array->elements()->length()); return *isolate->factory()->NewNumberFromUint(Min(actual_length, length)); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_LookupAccessor) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_SMI_ARG_CHECKED(flag, 2); AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER; if (!receiver->IsJSObject()) return isolate->heap()->undefined_value(); Handle<Object> result = JSObject::GetAccessor(Handle<JSObject>::cast(receiver), name, component); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } #ifdef ENABLE_DEBUGGER_SUPPORT RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugBreak) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); return Execution::DebugBreakHelper(isolate); } // Helper functions for wrapping and unwrapping stack frame ids. static Smi* WrapFrameId(StackFrame::Id id) { ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4))); return Smi::FromInt(id >> 2); } static StackFrame::Id UnwrapFrameId(int wrapped) { return static_cast<StackFrame::Id>(wrapped << 2); } // Adds a JavaScript function as a debug event listener. // args[0]: debug event listener function to set or null or undefined for // clearing the event listener function // args[1]: object supplied during callback RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDebugEventListener) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); RUNTIME_ASSERT(args[0]->IsJSFunction() || args[0]->IsUndefined() || args[0]->IsNull()); Handle<Object> callback = args.at<Object>(0); Handle<Object> data = args.at<Object>(1); isolate->debugger()->SetEventListener(callback, data); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Break) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); isolate->stack_guard()->DebugBreak(); return isolate->heap()->undefined_value(); } static MaybeObject* DebugLookupResultValue(Heap* heap, Object* receiver, Name* name, LookupResult* result, bool* caught_exception) { Object* value; switch (result->type()) { case NORMAL: value = result->holder()->GetNormalizedProperty(result); if (value->IsTheHole()) { return heap->undefined_value(); } return value; case FIELD: { Object* value; MaybeObject* maybe_value = JSObject::cast(result->holder())->FastPropertyAt( result->representation(), result->GetFieldIndex().field_index()); if (!maybe_value->To(&value)) return maybe_value; if (value->IsTheHole()) { return heap->undefined_value(); } return value; } case CONSTANT: return result->GetConstant(); case CALLBACKS: { Object* structure = result->GetCallbackObject(); if (structure->IsForeign() || structure->IsAccessorInfo()) { Isolate* isolate = heap->isolate(); HandleScope scope(isolate); Handle<Object> value = JSObject::GetPropertyWithCallback( handle(result->holder(), isolate), handle(receiver, isolate), handle(structure, isolate), handle(name, isolate)); if (value.is_null()) { MaybeObject* exception = heap->isolate()->pending_exception(); heap->isolate()->clear_pending_exception(); if (caught_exception != NULL) *caught_exception = true; return exception; } return *value; } else { return heap->undefined_value(); } } case INTERCEPTOR: case TRANSITION: return heap->undefined_value(); case HANDLER: case NONEXISTENT: UNREACHABLE(); return heap->undefined_value(); } UNREACHABLE(); // keep the compiler happy return heap->undefined_value(); } // Get debugger related details for an object property. // args[0]: object holding property // args[1]: name of the property // // The array returned contains the following information: // 0: Property value // 1: Property details // 2: Property value is exception // 3: Getter function if defined // 4: Setter function if defined // Items 2-4 are only filled if the property has either a getter or a setter // defined through __defineGetter__ and/or __defineSetter__. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPropertyDetails) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); // Make sure to set the current context to the context before the debugger was // entered (if the debugger is entered). The reason for switching context here // is that for some property lookups (accessors and interceptors) callbacks // into the embedding application can occour, and the embedding application // could have the assumption that its own native context is the current // context and not some internal debugger context. SaveContext save(isolate); if (isolate->debug()->InDebugger()) { isolate->set_context(*isolate->debug()->debugger_entry()->GetContext()); } // Skip the global proxy as it has no properties and always delegates to the // real global object. if (obj->IsJSGlobalProxy()) { obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); } // Check if the name is trivially convertible to an index and get the element // if so. uint32_t index; if (name->AsArrayIndex(&index)) { Handle<FixedArray> details = isolate->factory()->NewFixedArray(2); Object* element_or_char; { MaybeObject* maybe_element_or_char = Runtime::GetElementOrCharAt(isolate, obj, index); if (!maybe_element_or_char->ToObject(&element_or_char)) { return maybe_element_or_char; } } details->set(0, element_or_char); details->set( 1, PropertyDetails(NONE, NORMAL, Representation::None()).AsSmi()); return *isolate->factory()->NewJSArrayWithElements(details); } // Find the number of objects making up this. int length = LocalPrototypeChainLength(*obj); // Try local lookup on each of the objects. Handle<JSObject> jsproto = obj; for (int i = 0; i < length; i++) { LookupResult result(isolate); jsproto->LocalLookup(*name, &result); if (result.IsFound()) { // LookupResult is not GC safe as it holds raw object pointers. // GC can happen later in this code so put the required fields into // local variables using handles when required for later use. Handle<Object> result_callback_obj; if (result.IsPropertyCallbacks()) { result_callback_obj = Handle<Object>(result.GetCallbackObject(), isolate); } Smi* property_details = result.GetPropertyDetails().AsSmi(); // DebugLookupResultValue can cause GC so details from LookupResult needs // to be copied to handles before this. bool caught_exception = false; Object* raw_value; { MaybeObject* maybe_raw_value = DebugLookupResultValue(isolate->heap(), *obj, *name, &result, &caught_exception); if (!maybe_raw_value->ToObject(&raw_value)) return maybe_raw_value; } Handle<Object> value(raw_value, isolate); // If the callback object is a fixed array then it contains JavaScript // getter and/or setter. bool hasJavaScriptAccessors = result.IsPropertyCallbacks() && result_callback_obj->IsAccessorPair(); Handle<FixedArray> details = isolate->factory()->NewFixedArray(hasJavaScriptAccessors ? 5 : 2); details->set(0, *value); details->set(1, property_details); if (hasJavaScriptAccessors) { AccessorPair* accessors = AccessorPair::cast(*result_callback_obj); details->set(2, isolate->heap()->ToBoolean(caught_exception)); details->set(3, accessors->GetComponent(ACCESSOR_GETTER)); details->set(4, accessors->GetComponent(ACCESSOR_SETTER)); } return *isolate->factory()->NewJSArrayWithElements(details); } if (i < length - 1) { jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetProperty) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); LookupResult result(isolate); obj->Lookup(*name, &result); if (result.IsFound()) { return DebugLookupResultValue(isolate->heap(), *obj, *name, &result, NULL); } return isolate->heap()->undefined_value(); } // Return the property type calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyTypeFromDetails) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); return Smi::FromInt(static_cast<int>(details.type())); } // Return the property attribute calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyAttributesFromDetails) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); return Smi::FromInt(static_cast<int>(details.attributes())); } // Return the property insertion index calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyIndexFromDetails) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); // TODO(verwaest): Depends on the type of details. return Smi::FromInt(details.dictionary_index()); } // Return property value from named interceptor. // args[0]: object // args[1]: property name RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugNamedInterceptorPropertyValue) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); RUNTIME_ASSERT(obj->HasNamedInterceptor()); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); PropertyAttributes attributes; Handle<Object> result = JSObject::GetPropertyWithInterceptor(obj, obj, name, &attributes); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } // Return element value from indexed interceptor. // args[0]: object // args[1]: index RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugIndexedInterceptorElementValue) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); RUNTIME_ASSERT(obj->HasIndexedInterceptor()); CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]); return obj->GetElementWithInterceptor(*obj, index); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CheckExecutionState) { SealHandleScope shs(isolate); ASSERT(args.length() >= 1); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); // Check that the break id is valid. if (isolate->debug()->break_id() == 0 || break_id != isolate->debug()->break_id()) { return isolate->Throw( isolate->heap()->illegal_execution_state_string()); } return isolate->heap()->true_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameCount) { HandleScope scope(isolate); ASSERT(args.length() == 1); // Check arguments. Object* result; { MaybeObject* maybe_result = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_result->ToObject(&result)) return maybe_result; } // Count all frames which are relevant to debugging stack trace. int n = 0; StackFrame::Id id = isolate->debug()->break_frame_id(); if (id == StackFrame::NO_ID) { // If there is no JavaScript stack frame count is 0. return Smi::FromInt(0); } for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) { n += it.frame()->GetInlineCount(); } return Smi::FromInt(n); } class FrameInspector { public: FrameInspector(JavaScriptFrame* frame, int inlined_jsframe_index, Isolate* isolate) : frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) { // Calculate the deoptimized frame. if (frame->is_optimized()) { deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame( frame, inlined_jsframe_index, isolate); } has_adapted_arguments_ = frame_->has_adapted_arguments(); is_bottommost_ = inlined_jsframe_index == 0; is_optimized_ = frame_->is_optimized(); } ~FrameInspector() { // Get rid of the calculated deoptimized frame if any. if (deoptimized_frame_ != NULL) { Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_, isolate_); } } int GetParametersCount() { return is_optimized_ ? deoptimized_frame_->parameters_count() : frame_->ComputeParametersCount(); } int expression_count() { return deoptimized_frame_->expression_count(); } Object* GetFunction() { return is_optimized_ ? deoptimized_frame_->GetFunction() : frame_->function(); } Object* GetParameter(int index) { return is_optimized_ ? deoptimized_frame_->GetParameter(index) : frame_->GetParameter(index); } Object* GetExpression(int index) { return is_optimized_ ? deoptimized_frame_->GetExpression(index) : frame_->GetExpression(index); } int GetSourcePosition() { return is_optimized_ ? deoptimized_frame_->GetSourcePosition() : frame_->LookupCode()->SourcePosition(frame_->pc()); } bool IsConstructor() { return is_optimized_ && !is_bottommost_ ? deoptimized_frame_->HasConstructStub() : frame_->IsConstructor(); } // To inspect all the provided arguments the frame might need to be // replaced with the arguments frame. void SetArgumentsFrame(JavaScriptFrame* frame) { ASSERT(has_adapted_arguments_); frame_ = frame; is_optimized_ = frame_->is_optimized(); ASSERT(!is_optimized_); } private: JavaScriptFrame* frame_; DeoptimizedFrameInfo* deoptimized_frame_; Isolate* isolate_; bool is_optimized_; bool is_bottommost_; bool has_adapted_arguments_; DISALLOW_COPY_AND_ASSIGN(FrameInspector); }; static const int kFrameDetailsFrameIdIndex = 0; static const int kFrameDetailsReceiverIndex = 1; static const int kFrameDetailsFunctionIndex = 2; static const int kFrameDetailsArgumentCountIndex = 3; static const int kFrameDetailsLocalCountIndex = 4; static const int kFrameDetailsSourcePositionIndex = 5; static const int kFrameDetailsConstructCallIndex = 6; static const int kFrameDetailsAtReturnIndex = 7; static const int kFrameDetailsFlagsIndex = 8; static const int kFrameDetailsFirstDynamicIndex = 9; static SaveContext* FindSavedContextForFrame(Isolate* isolate, JavaScriptFrame* frame) { SaveContext* save = isolate->save_context(); while (save != NULL && !save->IsBelowFrame(frame)) { save = save->prev(); } ASSERT(save != NULL); return save; } // Return an array with frame details // args[0]: number: break id // args[1]: number: frame index // // The array returned contains the following information: // 0: Frame id // 1: Receiver // 2: Function // 3: Argument count // 4: Local count // 5: Source position // 6: Constructor call // 7: Is at return // 8: Flags // Arguments name, value // Locals name, value // Return value if any RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameDetails) { HandleScope scope(isolate); ASSERT(args.length() == 2); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); Heap* heap = isolate->heap(); // Find the relevant frame with the requested index. StackFrame::Id id = isolate->debug()->break_frame_id(); if (id == StackFrame::NO_ID) { // If there are no JavaScript stack frames return undefined. return heap->undefined_value(); } int count = 0; JavaScriptFrameIterator it(isolate, id); for (; !it.done(); it.Advance()) { if (index < count + it.frame()->GetInlineCount()) break; count += it.frame()->GetInlineCount(); } if (it.done()) return heap->undefined_value(); bool is_optimized = it.frame()->is_optimized(); int inlined_jsframe_index = 0; // Inlined frame index in optimized frame. if (is_optimized) { inlined_jsframe_index = it.frame()->GetInlineCount() - (index - count) - 1; } FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate); // Traverse the saved contexts chain to find the active context for the // selected frame. SaveContext* save = FindSavedContextForFrame(isolate, it.frame()); // Get the frame id. Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate); // Find source position in unoptimized code. int position = frame_inspector.GetSourcePosition(); // Check for constructor frame. bool constructor = frame_inspector.IsConstructor(); // Get scope info and read from it for local variable information. Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction())); Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); ASSERT(*scope_info != ScopeInfo::Empty(isolate)); // Get the locals names and values into a temporary array. // // TODO(1240907): Hide compiler-introduced stack variables // (e.g. .result)? For users of the debugger, they will probably be // confusing. Handle<FixedArray> locals = isolate->factory()->NewFixedArray(scope_info->LocalCount() * 2); // Fill in the values of the locals. int i = 0; for (; i < scope_info->StackLocalCount(); ++i) { // Use the value from the stack. locals->set(i * 2, scope_info->LocalName(i)); locals->set(i * 2 + 1, frame_inspector.GetExpression(i)); } if (i < scope_info->LocalCount()) { // Get the context containing declarations. Handle<Context> context( Context::cast(it.frame()->context())->declaration_context()); for (; i < scope_info->LocalCount(); ++i) { Handle<String> name(scope_info->LocalName(i)); VariableMode mode; InitializationFlag init_flag; locals->set(i * 2, *name); locals->set(i * 2 + 1, context->get( scope_info->ContextSlotIndex(*name, &mode, &init_flag))); } } // Check whether this frame is positioned at return. If not top // frame or if the frame is optimized it cannot be at a return. bool at_return = false; if (!is_optimized && index == 0) { at_return = isolate->debug()->IsBreakAtReturn(it.frame()); } // If positioned just before return find the value to be returned and add it // to the frame information. Handle<Object> return_value = isolate->factory()->undefined_value(); if (at_return) { StackFrameIterator it2(isolate); Address internal_frame_sp = NULL; while (!it2.done()) { if (it2.frame()->is_internal()) { internal_frame_sp = it2.frame()->sp(); } else { if (it2.frame()->is_java_script()) { if (it2.frame()->id() == it.frame()->id()) { // The internal frame just before the JavaScript frame contains the // value to return on top. A debug break at return will create an // internal frame to store the return value (eax/rax/r0) before // entering the debug break exit frame. if (internal_frame_sp != NULL) { return_value = Handle<Object>(Memory::Object_at(internal_frame_sp), isolate); break; } } } // Indicate that the previous frame was not an internal frame. internal_frame_sp = NULL; } it2.Advance(); } } // Now advance to the arguments adapter frame (if any). It contains all // the provided parameters whereas the function frame always have the number // of arguments matching the functions parameters. The rest of the // information (except for what is collected above) is the same. if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) { it.AdvanceToArgumentsFrame(); frame_inspector.SetArgumentsFrame(it.frame()); } // Find the number of arguments to fill. At least fill the number of // parameters for the function and fill more if more parameters are provided. int argument_count = scope_info->ParameterCount(); if (argument_count < frame_inspector.GetParametersCount()) { argument_count = frame_inspector.GetParametersCount(); } // Calculate the size of the result. int details_size = kFrameDetailsFirstDynamicIndex + 2 * (argument_count + scope_info->LocalCount()) + (at_return ? 1 : 0); Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size); // Add the frame id. details->set(kFrameDetailsFrameIdIndex, *frame_id); // Add the function (same as in function frame). details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction()); // Add the arguments count. details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count)); // Add the locals count details->set(kFrameDetailsLocalCountIndex, Smi::FromInt(scope_info->LocalCount())); // Add the source position. if (position != RelocInfo::kNoPosition) { details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position)); } else { details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value()); } // Add the constructor information. details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor)); // Add the at return information. details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return)); // Add flags to indicate information on whether this frame is // bit 0: invoked in the debugger context. // bit 1: optimized frame. // bit 2: inlined in optimized frame int flags = 0; if (*save->context() == *isolate->debug()->debug_context()) { flags |= 1 << 0; } if (is_optimized) { flags |= 1 << 1; flags |= inlined_jsframe_index << 2; } details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags)); // Fill the dynamic part. int details_index = kFrameDetailsFirstDynamicIndex; // Add arguments name and value. for (int i = 0; i < argument_count; i++) { // Name of the argument. if (i < scope_info->ParameterCount()) { details->set(details_index++, scope_info->ParameterName(i)); } else { details->set(details_index++, heap->undefined_value()); } // Parameter value. if (i < frame_inspector.GetParametersCount()) { // Get the value from the stack. details->set(details_index++, frame_inspector.GetParameter(i)); } else { details->set(details_index++, heap->undefined_value()); } } // Add locals name and value from the temporary copy from the function frame. for (int i = 0; i < scope_info->LocalCount() * 2; i++) { details->set(details_index++, locals->get(i)); } // Add the value being returned. if (at_return) { details->set(details_index++, *return_value); } // Add the receiver (same as in function frame). // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE // THE FRAME ITERATOR TO WRAP THE RECEIVER. Handle<Object> receiver(it.frame()->receiver(), isolate); if (!receiver->IsJSObject() && shared->is_classic_mode() && !function->IsBuiltin()) { // If the receiver is not a JSObject and the function is not a // builtin or strict-mode we have hit an optimization where a // value object is not converted into a wrapped JS objects. To // hide this optimization from the debugger, we wrap the receiver // by creating correct wrapper object based on the calling frame's // native context. it.Advance(); Handle<Context> calling_frames_native_context( Context::cast(Context::cast(it.frame()->context())->native_context())); ASSERT(!receiver->IsUndefined() && !receiver->IsNull()); receiver = isolate->factory()->ToObject(receiver, calling_frames_native_context); } details->set(kFrameDetailsReceiverIndex, *receiver); ASSERT_EQ(details_size, details_index); return *isolate->factory()->NewJSArrayWithElements(details); } // Create a plain JSObject which materializes the local scope for the specified // frame. static Handle<JSObject> MaterializeStackLocalsWithFrameInspector( Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function, FrameInspector* frame_inspector) { Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); // First fill all parameters. for (int i = 0; i < scope_info->ParameterCount(); ++i) { Handle<Object> value(i < frame_inspector->GetParametersCount() ? frame_inspector->GetParameter(i) : isolate->heap()->undefined_value(), isolate); ASSERT(!value->IsTheHole()); RETURN_IF_EMPTY_HANDLE_VALUE( isolate, Runtime::SetObjectProperty(isolate, target, Handle<String>(scope_info->ParameterName(i)), value, NONE, kNonStrictMode), Handle<JSObject>()); } // Second fill all stack locals. for (int i = 0; i < scope_info->StackLocalCount(); ++i) { Handle<Object> value(frame_inspector->GetExpression(i), isolate); if (value->IsTheHole()) continue; RETURN_IF_EMPTY_HANDLE_VALUE( isolate, Runtime::SetObjectProperty( isolate, target, Handle<String>(scope_info->StackLocalName(i)), value, NONE, kNonStrictMode), Handle<JSObject>()); } return target; } static void UpdateStackLocalsFromMaterializedObject(Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function, JavaScriptFrame* frame, int inlined_jsframe_index) { if (inlined_jsframe_index != 0 || frame->is_optimized()) { // Optimized frames are not supported. // TODO(yangguo): make sure all code deoptimized when debugger is active // and assert that this cannot happen. return; } Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); // Parameters. for (int i = 0; i < scope_info->ParameterCount(); ++i) { ASSERT(!frame->GetParameter(i)->IsTheHole()); HandleScope scope(isolate); Handle<Object> value = GetProperty( isolate, target, Handle<String>(scope_info->ParameterName(i))); frame->SetParameterValue(i, *value); } // Stack locals. for (int i = 0; i < scope_info->StackLocalCount(); ++i) { if (frame->GetExpression(i)->IsTheHole()) continue; HandleScope scope(isolate); Handle<Object> value = GetProperty( isolate, target, Handle<String>(scope_info->StackLocalName(i))); frame->SetExpression(i, *value); } } static Handle<JSObject> MaterializeLocalContext(Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function, JavaScriptFrame* frame) { HandleScope scope(isolate); Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); if (!scope_info->HasContext()) return target; // Third fill all context locals. Handle<Context> frame_context(Context::cast(frame->context())); Handle<Context> function_context(frame_context->declaration_context()); if (!ScopeInfo::CopyContextLocalsToScopeObject( scope_info, function_context, target)) { return Handle<JSObject>(); } // Finally copy any properties from the function context extension. // These will be variables introduced by eval. if (function_context->closure() == *function) { if (function_context->has_extension() && !function_context->IsNativeContext()) { Handle<JSObject> ext(JSObject::cast(function_context->extension())); bool threw = false; Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS, &threw); if (threw) return Handle<JSObject>(); for (int i = 0; i < keys->length(); i++) { // Names of variables introduced by eval are strings. ASSERT(keys->get(i)->IsString()); Handle<String> key(String::cast(keys->get(i))); RETURN_IF_EMPTY_HANDLE_VALUE( isolate, Runtime::SetObjectProperty(isolate, target, key, GetProperty(isolate, ext, key), NONE, kNonStrictMode), Handle<JSObject>()); } } } return target; } static Handle<JSObject> MaterializeLocalScope( Isolate* isolate, JavaScriptFrame* frame, int inlined_jsframe_index) { FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate); Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction())); Handle<JSObject> local_scope = isolate->factory()->NewJSObject(isolate->object_function()); local_scope = MaterializeStackLocalsWithFrameInspector( isolate, local_scope, function, &frame_inspector); RETURN_IF_EMPTY_HANDLE_VALUE(isolate, local_scope, Handle<JSObject>()); return MaterializeLocalContext(isolate, local_scope, function, frame); } // Set the context local variable value. static bool SetContextLocalValue(Isolate* isolate, Handle<ScopeInfo> scope_info, Handle<Context> context, Handle<String> variable_name, Handle<Object> new_value) { for (int i = 0; i < scope_info->ContextLocalCount(); i++) { Handle<String> next_name(scope_info->ContextLocalName(i)); if (variable_name->Equals(*next_name)) { VariableMode mode; InitializationFlag init_flag; int context_index = scope_info->ContextSlotIndex(*next_name, &mode, &init_flag); context->set(context_index, *new_value); return true; } } return false; } static bool SetLocalVariableValue(Isolate* isolate, JavaScriptFrame* frame, int inlined_jsframe_index, Handle<String> variable_name, Handle<Object> new_value) { if (inlined_jsframe_index != 0 || frame->is_optimized()) { // Optimized frames are not supported. return false; } Handle<JSFunction> function(frame->function()); Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); bool default_result = false; // Parameters. for (int i = 0; i < scope_info->ParameterCount(); ++i) { if (scope_info->ParameterName(i)->Equals(*variable_name)) { frame->SetParameterValue(i, *new_value); // Argument might be shadowed in heap context, don't stop here. default_result = true; } } // Stack locals. for (int i = 0; i < scope_info->StackLocalCount(); ++i) { if (scope_info->StackLocalName(i)->Equals(*variable_name)) { frame->SetExpression(i, *new_value); return true; } } if (scope_info->HasContext()) { // Context locals. Handle<Context> frame_context(Context::cast(frame->context())); Handle<Context> function_context(frame_context->declaration_context()); if (SetContextLocalValue( isolate, scope_info, function_context, variable_name, new_value)) { return true; } // Function context extension. These are variables introduced by eval. if (function_context->closure() == *function) { if (function_context->has_extension() && !function_context->IsNativeContext()) { Handle<JSObject> ext(JSObject::cast(function_context->extension())); if (JSReceiver::HasProperty(ext, variable_name)) { // We don't expect this to do anything except replacing // property value. Runtime::SetObjectProperty(isolate, ext, variable_name, new_value, NONE, kNonStrictMode); return true; } } } } return default_result; } // Create a plain JSObject which materializes the closure content for the // context. static Handle<JSObject> MaterializeClosure(Isolate* isolate, Handle<Context> context) { ASSERT(context->IsFunctionContext()); Handle<SharedFunctionInfo> shared(context->closure()->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); // Allocate and initialize a JSObject with all the content of this function // closure. Handle<JSObject> closure_scope = isolate->factory()->NewJSObject(isolate->object_function()); // Fill all context locals to the context extension. if (!ScopeInfo::CopyContextLocalsToScopeObject( scope_info, context, closure_scope)) { return Handle<JSObject>(); } // Finally copy any properties from the function context extension. This will // be variables introduced by eval. if (context->has_extension()) { Handle<JSObject> ext(JSObject::cast(context->extension())); bool threw = false; Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS, &threw); if (threw) return Handle<JSObject>(); for (int i = 0; i < keys->length(); i++) { // Names of variables introduced by eval are strings. ASSERT(keys->get(i)->IsString()); Handle<String> key(String::cast(keys->get(i))); RETURN_IF_EMPTY_HANDLE_VALUE( isolate, Runtime::SetObjectProperty(isolate, closure_scope, key, GetProperty(isolate, ext, key), NONE, kNonStrictMode), Handle<JSObject>()); } } return closure_scope; } // This method copies structure of MaterializeClosure method above. static bool SetClosureVariableValue(Isolate* isolate, Handle<Context> context, Handle<String> variable_name, Handle<Object> new_value) { ASSERT(context->IsFunctionContext()); Handle<SharedFunctionInfo> shared(context->closure()->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); // Context locals to the context extension. if (SetContextLocalValue( isolate, scope_info, context, variable_name, new_value)) { return true; } // Properties from the function context extension. This will // be variables introduced by eval. if (context->has_extension()) { Handle<JSObject> ext(JSObject::cast(context->extension())); if (JSReceiver::HasProperty(ext, variable_name)) { // We don't expect this to do anything except replacing property value. Runtime::SetObjectProperty(isolate, ext, variable_name, new_value, NONE, kNonStrictMode); return true; } } return false; } // Create a plain JSObject which materializes the scope for the specified // catch context. static Handle<JSObject> MaterializeCatchScope(Isolate* isolate, Handle<Context> context) { ASSERT(context->IsCatchContext()); Handle<String> name(String::cast(context->extension())); Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX), isolate); Handle<JSObject> catch_scope = isolate->factory()->NewJSObject(isolate->object_function()); RETURN_IF_EMPTY_HANDLE_VALUE( isolate, Runtime::SetObjectProperty(isolate, catch_scope, name, thrown_object, NONE, kNonStrictMode), Handle<JSObject>()); return catch_scope; } static bool SetCatchVariableValue(Isolate* isolate, Handle<Context> context, Handle<String> variable_name, Handle<Object> new_value) { ASSERT(context->IsCatchContext()); Handle<String> name(String::cast(context->extension())); if (!name->Equals(*variable_name)) { return false; } context->set(Context::THROWN_OBJECT_INDEX, *new_value); return true; } // Create a plain JSObject which materializes the block scope for the specified // block context. static Handle<JSObject> MaterializeBlockScope( Isolate* isolate, Handle<Context> context) { ASSERT(context->IsBlockContext()); Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension())); // Allocate and initialize a JSObject with all the arguments, stack locals // heap locals and extension properties of the debugged function. Handle<JSObject> block_scope = isolate->factory()->NewJSObject(isolate->object_function()); // Fill all context locals. if (!ScopeInfo::CopyContextLocalsToScopeObject( scope_info, context, block_scope)) { return Handle<JSObject>(); } return block_scope; } // Create a plain JSObject which materializes the module scope for the specified // module context. static Handle<JSObject> MaterializeModuleScope( Isolate* isolate, Handle<Context> context) { ASSERT(context->IsModuleContext()); Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension())); // Allocate and initialize a JSObject with all the members of the debugged // module. Handle<JSObject> module_scope = isolate->factory()->NewJSObject(isolate->object_function()); // Fill all context locals. if (!ScopeInfo::CopyContextLocalsToScopeObject( scope_info, context, module_scope)) { return Handle<JSObject>(); } return module_scope; } // Iterate over the actual scopes visible from a stack frame or from a closure. // The iteration proceeds from the innermost visible nested scope outwards. // All scopes are backed by an actual context except the local scope, // which is inserted "artificially" in the context chain. class ScopeIterator { public: enum ScopeType { ScopeTypeGlobal = 0, ScopeTypeLocal, ScopeTypeWith, ScopeTypeClosure, ScopeTypeCatch, ScopeTypeBlock, ScopeTypeModule }; ScopeIterator(Isolate* isolate, JavaScriptFrame* frame, int inlined_jsframe_index) : isolate_(isolate), frame_(frame), inlined_jsframe_index_(inlined_jsframe_index), function_(frame->function()), context_(Context::cast(frame->context())), nested_scope_chain_(4), failed_(false) { // Catch the case when the debugger stops in an internal function. Handle<SharedFunctionInfo> shared_info(function_->shared()); Handle<ScopeInfo> scope_info(shared_info->scope_info()); if (shared_info->script() == isolate->heap()->undefined_value()) { while (context_->closure() == *function_) { context_ = Handle<Context>(context_->previous(), isolate_); } return; } // Get the debug info (create it if it does not exist). if (!isolate->debug()->EnsureDebugInfo(shared_info, function_)) { // Return if ensuring debug info failed. return; } Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info); // Find the break point where execution has stopped. BreakLocationIterator break_location_iterator(debug_info, ALL_BREAK_LOCATIONS); // pc points to the instruction after the current one, possibly a break // location as well. So the "- 1" to exclude it from the search. break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1); if (break_location_iterator.IsExit()) { // We are within the return sequence. At the momemt it is not possible to // get a source position which is consistent with the current scope chain. // Thus all nested with, catch and block contexts are skipped and we only // provide the function scope. if (scope_info->HasContext()) { context_ = Handle<Context>(context_->declaration_context(), isolate_); } else { while (context_->closure() == *function_) { context_ = Handle<Context>(context_->previous(), isolate_); } } if (scope_info->scope_type() != EVAL_SCOPE) { nested_scope_chain_.Add(scope_info); } } else { // Reparse the code and analyze the scopes. Handle<Script> script(Script::cast(shared_info->script())); Scope* scope = NULL; // Check whether we are in global, eval or function code. Handle<ScopeInfo> scope_info(shared_info->scope_info()); if (scope_info->scope_type() != FUNCTION_SCOPE) { // Global or eval code. CompilationInfoWithZone info(script); if (scope_info->scope_type() == GLOBAL_SCOPE) { info.MarkAsGlobal(); } else { ASSERT(scope_info->scope_type() == EVAL_SCOPE); info.MarkAsEval(); info.SetContext(Handle<Context>(function_->context())); } if (Parser::Parse(&info) && Scope::Analyze(&info)) { scope = info.function()->scope(); } RetrieveScopeChain(scope, shared_info); } else { // Function code CompilationInfoWithZone info(shared_info); if (Parser::Parse(&info) && Scope::Analyze(&info)) { scope = info.function()->scope(); } RetrieveScopeChain(scope, shared_info); } } } ScopeIterator(Isolate* isolate, Handle<JSFunction> function) : isolate_(isolate), frame_(NULL), inlined_jsframe_index_(0), function_(function), context_(function->context()), failed_(false) { if (function->IsBuiltin()) { context_ = Handle<Context>(); } } // More scopes? bool Done() { ASSERT(!failed_); return context_.is_null(); } bool Failed() { return failed_; } // Move to the next scope. void Next() { ASSERT(!failed_); ScopeType scope_type = Type(); if (scope_type == ScopeTypeGlobal) { // The global scope is always the last in the chain. ASSERT(context_->IsNativeContext()); context_ = Handle<Context>(); return; } if (nested_scope_chain_.is_empty()) { context_ = Handle<Context>(context_->previous(), isolate_); } else { if (nested_scope_chain_.last()->HasContext()) { ASSERT(context_->previous() != NULL); context_ = Handle<Context>(context_->previous(), isolate_); } nested_scope_chain_.RemoveLast(); } } // Return the type of the current scope. ScopeType Type() { ASSERT(!failed_); if (!nested_scope_chain_.is_empty()) { Handle<ScopeInfo> scope_info = nested_scope_chain_.last(); switch (scope_info->scope_type()) { case FUNCTION_SCOPE: ASSERT(context_->IsFunctionContext() || !scope_info->HasContext()); return ScopeTypeLocal; case MODULE_SCOPE: ASSERT(context_->IsModuleContext()); return ScopeTypeModule; case GLOBAL_SCOPE: ASSERT(context_->IsNativeContext()); return ScopeTypeGlobal; case WITH_SCOPE: ASSERT(context_->IsWithContext()); return ScopeTypeWith; case CATCH_SCOPE: ASSERT(context_->IsCatchContext()); return ScopeTypeCatch; case BLOCK_SCOPE: ASSERT(!scope_info->HasContext() || context_->IsBlockContext()); return ScopeTypeBlock; case EVAL_SCOPE: UNREACHABLE(); } } if (context_->IsNativeContext()) { ASSERT(context_->global_object()->IsGlobalObject()); return ScopeTypeGlobal; } if (context_->IsFunctionContext()) { return ScopeTypeClosure; } if (context_->IsCatchContext()) { return ScopeTypeCatch; } if (context_->IsBlockContext()) { return ScopeTypeBlock; } if (context_->IsModuleContext()) { return ScopeTypeModule; } ASSERT(context_->IsWithContext()); return ScopeTypeWith; } // Return the JavaScript object with the content of the current scope. Handle<JSObject> ScopeObject() { ASSERT(!failed_); switch (Type()) { case ScopeIterator::ScopeTypeGlobal: return Handle<JSObject>(CurrentContext()->global_object()); case ScopeIterator::ScopeTypeLocal: // Materialize the content of the local scope into a JSObject. ASSERT(nested_scope_chain_.length() == 1); return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_); case ScopeIterator::ScopeTypeWith: // Return the with object. return Handle<JSObject>(JSObject::cast(CurrentContext()->extension())); case ScopeIterator::ScopeTypeCatch: return MaterializeCatchScope(isolate_, CurrentContext()); case ScopeIterator::ScopeTypeClosure: // Materialize the content of the closure scope into a JSObject. return MaterializeClosure(isolate_, CurrentContext()); case ScopeIterator::ScopeTypeBlock: return MaterializeBlockScope(isolate_, CurrentContext()); case ScopeIterator::ScopeTypeModule: return MaterializeModuleScope(isolate_, CurrentContext()); } UNREACHABLE(); return Handle<JSObject>(); } bool SetVariableValue(Handle<String> variable_name, Handle<Object> new_value) { ASSERT(!failed_); switch (Type()) { case ScopeIterator::ScopeTypeGlobal: break; case ScopeIterator::ScopeTypeLocal: return SetLocalVariableValue(isolate_, frame_, inlined_jsframe_index_, variable_name, new_value); case ScopeIterator::ScopeTypeWith: break; case ScopeIterator::ScopeTypeCatch: return SetCatchVariableValue(isolate_, CurrentContext(), variable_name, new_value); case ScopeIterator::ScopeTypeClosure: return SetClosureVariableValue(isolate_, CurrentContext(), variable_name, new_value); case ScopeIterator::ScopeTypeBlock: // TODO(2399): should we implement it? break; case ScopeIterator::ScopeTypeModule: // TODO(2399): should we implement it? break; } return false; } Handle<ScopeInfo> CurrentScopeInfo() { ASSERT(!failed_); if (!nested_scope_chain_.is_empty()) { return nested_scope_chain_.last(); } else if (context_->IsBlockContext()) { return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension())); } else if (context_->IsFunctionContext()) { return Handle<ScopeInfo>(context_->closure()->shared()->scope_info()); } return Handle<ScopeInfo>::null(); } // Return the context for this scope. For the local context there might not // be an actual context. Handle<Context> CurrentContext() { ASSERT(!failed_); if (Type() == ScopeTypeGlobal || nested_scope_chain_.is_empty()) { return context_; } else if (nested_scope_chain_.last()->HasContext()) { return context_; } else { return Handle<Context>(); } } #ifdef DEBUG // Debug print of the content of the current scope. void DebugPrint() { ASSERT(!failed_); switch (Type()) { case ScopeIterator::ScopeTypeGlobal: PrintF("Global:\n"); CurrentContext()->Print(); break; case ScopeIterator::ScopeTypeLocal: { PrintF("Local:\n"); function_->shared()->scope_info()->Print(); if (!CurrentContext().is_null()) { CurrentContext()->Print(); if (CurrentContext()->has_extension()) { Handle<Object> extension(CurrentContext()->extension(), isolate_); if (extension->IsJSContextExtensionObject()) { extension->Print(); } } } break; } case ScopeIterator::ScopeTypeWith: PrintF("With:\n"); CurrentContext()->extension()->Print(); break; case ScopeIterator::ScopeTypeCatch: PrintF("Catch:\n"); CurrentContext()->extension()->Print(); CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print(); break; case ScopeIterator::ScopeTypeClosure: PrintF("Closure:\n"); CurrentContext()->Print(); if (CurrentContext()->has_extension()) { Handle<Object> extension(CurrentContext()->extension(), isolate_); if (extension->IsJSContextExtensionObject()) { extension->Print(); } } break; default: UNREACHABLE(); } PrintF("\n"); } #endif private: Isolate* isolate_; JavaScriptFrame* frame_; int inlined_jsframe_index_; Handle<JSFunction> function_; Handle<Context> context_; List<Handle<ScopeInfo> > nested_scope_chain_; bool failed_; void RetrieveScopeChain(Scope* scope, Handle<SharedFunctionInfo> shared_info) { if (scope != NULL) { int source_position = shared_info->code()->SourcePosition(frame_->pc()); scope->GetNestedScopeChain(&nested_scope_chain_, source_position); } else { // A failed reparse indicates that the preparser has diverged from the // parser or that the preparse data given to the initial parse has been // faulty. We fail in debug mode but in release mode we only provide the // information we get from the context chain but nothing about // completely stack allocated scopes or stack allocated locals. // Or it could be due to stack overflow. ASSERT(isolate_->has_pending_exception()); failed_ = true; } } DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator); }; RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeCount) { HandleScope scope(isolate); ASSERT(args.length() == 2); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator it(isolate, id); JavaScriptFrame* frame = it.frame(); // Count the visible scopes. int n = 0; for (ScopeIterator it(isolate, frame, 0); !it.Done(); it.Next()) { n++; } return Smi::FromInt(n); } // Returns the list of step-in positions (text offset) in a function of the // stack frame in a range from the current debug break position to the end // of the corresponding statement. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetStepInPositions) { HandleScope scope(isolate); ASSERT(args.length() == 2); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator frame_it(isolate, id); RUNTIME_ASSERT(!frame_it.done()); JavaScriptFrame* frame = frame_it.frame(); Handle<JSFunction> fun = Handle<JSFunction>(frame->function()); Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>(fun->shared()); if (!isolate->debug()->EnsureDebugInfo(shared, fun)) { return isolate->heap()->undefined_value(); } Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared); int len = 0; Handle<JSArray> array(isolate->factory()->NewJSArray(10)); // Find the break point where execution has stopped. BreakLocationIterator break_location_iterator(debug_info, ALL_BREAK_LOCATIONS); break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1); int current_statement_pos = break_location_iterator.statement_position(); while (!break_location_iterator.Done()) { bool accept; if (break_location_iterator.pc() > frame->pc()) { accept = true; } else { StackFrame::Id break_frame_id = isolate->debug()->break_frame_id(); // The break point is near our pc. Could be a step-in possibility, // that is currently taken by active debugger call. if (break_frame_id == StackFrame::NO_ID) { // We are not stepping. accept = false; } else { JavaScriptFrameIterator additional_frame_it(isolate, break_frame_id); // If our frame is a top frame and we are stepping, we can do step-in // at this place. accept = additional_frame_it.frame()->id() == id; } } if (accept) { if (break_location_iterator.IsStepInLocation(isolate)) { Smi* position_value = Smi::FromInt(break_location_iterator.position()); JSObject::SetElement(array, len, Handle<Object>(position_value, isolate), NONE, kNonStrictMode); len++; } } // Advance iterator. break_location_iterator.Next(); if (current_statement_pos != break_location_iterator.statement_position()) { break; } } return *array; } static const int kScopeDetailsTypeIndex = 0; static const int kScopeDetailsObjectIndex = 1; static const int kScopeDetailsSize = 2; static MaybeObject* MaterializeScopeDetails(Isolate* isolate, ScopeIterator* it) { // Calculate the size of the result. int details_size = kScopeDetailsSize; Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size); // Fill in scope details. details->set(kScopeDetailsTypeIndex, Smi::FromInt(it->Type())); Handle<JSObject> scope_object = it->ScopeObject(); RETURN_IF_EMPTY_HANDLE(isolate, scope_object); details->set(kScopeDetailsObjectIndex, *scope_object); return *isolate->factory()->NewJSArrayWithElements(details); } // Return an array with scope details // args[0]: number: break id // args[1]: number: frame index // args[2]: number: inlined frame index // args[3]: number: scope index // // The array returned contains the following information: // 0: Scope type // 1: Scope object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeDetails) { HandleScope scope(isolate); ASSERT(args.length() == 4); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator frame_it(isolate, id); JavaScriptFrame* frame = frame_it.frame(); // Find the requested scope. int n = 0; ScopeIterator it(isolate, frame, inlined_jsframe_index); for (; !it.Done() && n < index; it.Next()) { n++; } if (it.Done()) { return isolate->heap()->undefined_value(); } return MaterializeScopeDetails(isolate, &it); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionScopeCount) { HandleScope scope(isolate); ASSERT(args.length() == 1); // Check arguments. CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); // Count the visible scopes. int n = 0; for (ScopeIterator it(isolate, fun); !it.Done(); it.Next()) { n++; } return Smi::FromInt(n); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionScopeDetails) { HandleScope scope(isolate); ASSERT(args.length() == 2); // Check arguments. CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); // Find the requested scope. int n = 0; ScopeIterator it(isolate, fun); for (; !it.Done() && n < index; it.Next()) { n++; } if (it.Done()) { return isolate->heap()->undefined_value(); } return MaterializeScopeDetails(isolate, &it); } static bool SetScopeVariableValue(ScopeIterator* it, int index, Handle<String> variable_name, Handle<Object> new_value) { for (int n = 0; !it->Done() && n < index; it->Next()) { n++; } if (it->Done()) { return false; } return it->SetVariableValue(variable_name, new_value); } // Change variable value in closure or local scope // args[0]: number or JsFunction: break id or function // args[1]: number: frame index (when arg[0] is break id) // args[2]: number: inlined frame index (when arg[0] is break id) // args[3]: number: scope index // args[4]: string: variable name // args[5]: object: new value // // Return true if success and false otherwise RUNTIME_FUNCTION(MaybeObject*, Runtime_SetScopeVariableValue) { HandleScope scope(isolate); ASSERT(args.length() == 6); // Check arguments. CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]); CONVERT_ARG_HANDLE_CHECKED(String, variable_name, 4); Handle<Object> new_value = args.at<Object>(5); bool res; if (args[0]->IsNumber()) { Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator frame_it(isolate, id); JavaScriptFrame* frame = frame_it.frame(); ScopeIterator it(isolate, frame, inlined_jsframe_index); res = SetScopeVariableValue(&it, index, variable_name, new_value); } else { CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); ScopeIterator it(isolate, fun); res = SetScopeVariableValue(&it, index, variable_name, new_value); } return isolate->heap()->ToBoolean(res); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrintScopes) { HandleScope scope(isolate); ASSERT(args.length() == 0); #ifdef DEBUG // Print the scopes for the top frame. StackFrameLocator locator(isolate); JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); for (ScopeIterator it(isolate, frame, 0); !it.Done(); it.Next()) { it.DebugPrint(); } #endif return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadCount) { HandleScope scope(isolate); ASSERT(args.length() == 1); // Check arguments. Object* result; { MaybeObject* maybe_result = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_result->ToObject(&result)) return maybe_result; } // Count all archived V8 threads. int n = 0; for (ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse(); thread != NULL; thread = thread->Next()) { n++; } // Total number of threads is current thread and archived threads. return Smi::FromInt(n + 1); } static const int kThreadDetailsCurrentThreadIndex = 0; static const int kThreadDetailsThreadIdIndex = 1; static const int kThreadDetailsSize = 2; // Return an array with thread details // args[0]: number: break id // args[1]: number: thread index // // The array returned contains the following information: // 0: Is current thread? // 1: Thread id RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadDetails) { HandleScope scope(isolate); ASSERT(args.length() == 2); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); // Allocate array for result. Handle<FixedArray> details = isolate->factory()->NewFixedArray(kThreadDetailsSize); // Thread index 0 is current thread. if (index == 0) { // Fill the details. details->set(kThreadDetailsCurrentThreadIndex, isolate->heap()->true_value()); details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(ThreadId::Current().ToInteger())); } else { // Find the thread with the requested index. int n = 1; ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse(); while (index != n && thread != NULL) { thread = thread->Next(); n++; } if (thread == NULL) { return isolate->heap()->undefined_value(); } // Fill the details. details->set(kThreadDetailsCurrentThreadIndex, isolate->heap()->false_value()); details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(thread->id().ToInteger())); } // Convert to JS array and return. return *isolate->factory()->NewJSArrayWithElements(details); } // Sets the disable break state // args[0]: disable break state RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDisableBreak) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0); isolate->debug()->set_disable_break(disable_break); return isolate->heap()->undefined_value(); } static bool IsPositionAlignmentCodeCorrect(int alignment) { return alignment == STATEMENT_ALIGNED || alignment == BREAK_POSITION_ALIGNED; } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetBreakLocations) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[1]); if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) { return isolate->ThrowIllegalOperation(); } BreakPositionAlignment alignment = static_cast<BreakPositionAlignment>(statement_aligned_code); Handle<SharedFunctionInfo> shared(fun->shared()); // Find the number of break points Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared, alignment); if (break_locations->IsUndefined()) return isolate->heap()->undefined_value(); // Return array as JS array return *isolate->factory()->NewJSArrayWithElements( Handle<FixedArray>::cast(break_locations)); } // Set a break point in a function. // args[0]: function // args[1]: number: break source position (within the function source) // args[2]: number: break point object RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFunctionBreakPoint) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); RUNTIME_ASSERT(source_position >= 0); Handle<Object> break_point_object_arg = args.at<Object>(2); // Set break point. isolate->debug()->SetBreakPoint(function, break_point_object_arg, &source_position); return Smi::FromInt(source_position); } // Changes the state of a break point in a script and returns source position // where break point was set. NOTE: Regarding performance see the NOTE for // GetScriptFromScriptData. // args[0]: script to set break point in // args[1]: number: break source position (within the script source) // args[2]: number, breakpoint position alignment // args[3]: number: break point object RUNTIME_FUNCTION(MaybeObject*, Runtime_SetScriptBreakPoint) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); RUNTIME_ASSERT(source_position >= 0); CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[2]); Handle<Object> break_point_object_arg = args.at<Object>(3); if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) { return isolate->ThrowIllegalOperation(); } BreakPositionAlignment alignment = static_cast<BreakPositionAlignment>(statement_aligned_code); // Get the script from the script wrapper. RUNTIME_ASSERT(wrapper->value()->IsScript()); Handle<Script> script(Script::cast(wrapper->value())); // Set break point. if (!isolate->debug()->SetBreakPointForScript(script, break_point_object_arg, &source_position, alignment)) { return isolate->heap()->undefined_value(); } return Smi::FromInt(source_position); } // Clear a break point // args[0]: number: break point object RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearBreakPoint) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> break_point_object_arg = args.at<Object>(0); // Clear break point. isolate->debug()->ClearBreakPoint(break_point_object_arg); return isolate->heap()->undefined_value(); } // Change the state of break on exceptions. // args[0]: Enum value indicating whether to affect caught/uncaught exceptions. // args[1]: Boolean indicating on/off. RUNTIME_FUNCTION(MaybeObject*, Runtime_ChangeBreakOnException) { HandleScope scope(isolate); ASSERT(args.length() == 2); RUNTIME_ASSERT(args[0]->IsNumber()); CONVERT_BOOLEAN_ARG_CHECKED(enable, 1); // If the number doesn't match an enum value, the ChangeBreakOnException // function will default to affecting caught exceptions. ExceptionBreakType type = static_cast<ExceptionBreakType>(NumberToUint32(args[0])); // Update break point state. isolate->debug()->ChangeBreakOnException(type, enable); return isolate->heap()->undefined_value(); } // Returns the state of break on exceptions // args[0]: boolean indicating uncaught exceptions RUNTIME_FUNCTION(MaybeObject*, Runtime_IsBreakOnException) { HandleScope scope(isolate); ASSERT(args.length() == 1); RUNTIME_ASSERT(args[0]->IsNumber()); ExceptionBreakType type = static_cast<ExceptionBreakType>(NumberToUint32(args[0])); bool result = isolate->debug()->IsBreakOnException(type); return Smi::FromInt(result); } // Prepare for stepping // args[0]: break id for checking execution state // args[1]: step action from the enumeration StepAction // args[2]: number of times to perform the step, for step out it is the number // of frames to step down. RUNTIME_FUNCTION(MaybeObject*, Runtime_PrepareStep) { HandleScope scope(isolate); ASSERT(args.length() == 4); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } if (!args[1]->IsNumber() || !args[2]->IsNumber()) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } CONVERT_NUMBER_CHECKED(int, wrapped_frame_id, Int32, args[3]); StackFrame::Id frame_id; if (wrapped_frame_id == 0) { frame_id = StackFrame::NO_ID; } else { frame_id = UnwrapFrameId(wrapped_frame_id); } // Get the step action and check validity. StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1])); if (step_action != StepIn && step_action != StepNext && step_action != StepOut && step_action != StepInMin && step_action != StepMin) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } if (frame_id != StackFrame::NO_ID && step_action != StepNext && step_action != StepMin && step_action != StepOut) { return isolate->ThrowIllegalOperation(); } // Get the number of steps. int step_count = NumberToInt32(args[2]); if (step_count < 1) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } // Clear all current stepping setup. isolate->debug()->ClearStepping(); // Prepare step. isolate->debug()->PrepareStep(static_cast<StepAction>(step_action), step_count, frame_id); return isolate->heap()->undefined_value(); } // Clear all stepping set by PrepareStep. RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearStepping) { HandleScope scope(isolate); ASSERT(args.length() == 0); isolate->debug()->ClearStepping(); return isolate->heap()->undefined_value(); } // Helper function to find or create the arguments object for // Runtime_DebugEvaluate. static Handle<JSObject> MaterializeArgumentsObject( Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function) { // Do not materialize the arguments object for eval or top-level code. // Skip if "arguments" is already taken. if (!function->shared()->is_function() || JSReceiver::HasLocalProperty(target, isolate->factory()->arguments_string())) { return target; } // FunctionGetArguments can't throw an exception. Handle<JSObject> arguments = Handle<JSObject>::cast( Accessors::FunctionGetArguments(function)); Runtime::SetObjectProperty(isolate, target, isolate->factory()->arguments_string(), arguments, ::NONE, kNonStrictMode); return target; } // Compile and evaluate source for the given context. static MaybeObject* DebugEvaluate(Isolate* isolate, Handle<Context> context, Handle<Object> context_extension, Handle<Object> receiver, Handle<String> source) { if (context_extension->IsJSObject()) { Handle<JSObject> extension = Handle<JSObject>::cast(context_extension); Handle<JSFunction> closure(context->closure(), isolate); context = isolate->factory()->NewWithContext(closure, context, extension); } Handle<SharedFunctionInfo> shared = Compiler::CompileEval( source, context, context->IsNativeContext(), CLASSIC_MODE, NO_PARSE_RESTRICTION, RelocInfo::kNoPosition); RETURN_IF_EMPTY_HANDLE(isolate, shared); Handle<JSFunction> eval_fun = isolate->factory()->NewFunctionFromSharedFunctionInfo( shared, context, NOT_TENURED); bool pending_exception; Handle<Object> result = Execution::Call( isolate, eval_fun, receiver, 0, NULL, &pending_exception); if (pending_exception) return Failure::Exception(); // Skip the global proxy as it has no properties and always delegates to the // real global object. if (result->IsJSGlobalProxy()) { result = Handle<JSObject>(JSObject::cast(result->GetPrototype(isolate))); } // Clear the oneshot breakpoints so that the debugger does not step further. isolate->debug()->ClearStepping(); return *result; } // Evaluate a piece of JavaScript in the context of a stack frame for // debugging. Things that need special attention are: // - Parameters and stack-allocated locals need to be materialized. Altered // values need to be written back to the stack afterwards. // - The arguments object needs to materialized. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluate) { HandleScope scope(isolate); // Check the execution state and decode arguments frame and source to be // evaluated. ASSERT(args.length() == 6); Object* check_result; { MaybeObject* maybe_result = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_result->ToObject(&check_result)) return maybe_result; } CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); CONVERT_ARG_HANDLE_CHECKED(String, source, 3); CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4); Handle<Object> context_extension(args[5], isolate); // Handle the processing of break. DisableBreak disable_break_save(isolate, disable_break); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator it(isolate, id); JavaScriptFrame* frame = it.frame(); FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate); Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction())); // Traverse the saved contexts chain to find the active context for the // selected frame. SaveContext* save = FindSavedContextForFrame(isolate, frame); SaveContext savex(isolate); isolate->set_context(*(save->context())); // Evaluate on the context of the frame. Handle<Context> context(Context::cast(frame->context())); ASSERT(!context.is_null()); // Materialize stack locals and the arguments object. Handle<JSObject> materialized = isolate->factory()->NewJSObject(isolate->object_function()); materialized = MaterializeStackLocalsWithFrameInspector( isolate, materialized, function, &frame_inspector); RETURN_IF_EMPTY_HANDLE(isolate, materialized); materialized = MaterializeArgumentsObject(isolate, materialized, function); RETURN_IF_EMPTY_HANDLE(isolate, materialized); // Add the materialized object in a with-scope to shadow the stack locals. context = isolate->factory()->NewWithContext(function, context, materialized); Handle<Object> receiver(frame->receiver(), isolate); Object* evaluate_result_object; { MaybeObject* maybe_result = DebugEvaluate(isolate, context, context_extension, receiver, source); if (!maybe_result->ToObject(&evaluate_result_object)) return maybe_result; } Handle<Object> result(evaluate_result_object, isolate); // Write back potential changes to materialized stack locals to the stack. UpdateStackLocalsFromMaterializedObject( isolate, materialized, function, frame, inlined_jsframe_index); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluateGlobal) { HandleScope scope(isolate); // Check the execution state and decode arguments frame and source to be // evaluated. ASSERT(args.length() == 4); Object* check_result; { MaybeObject* maybe_result = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_result->ToObject(&check_result)) return maybe_result; } CONVERT_ARG_HANDLE_CHECKED(String, source, 1); CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2); Handle<Object> context_extension(args[3], isolate); // Handle the processing of break. DisableBreak disable_break_save(isolate, disable_break); // Enter the top context from before the debugger was invoked. SaveContext save(isolate); SaveContext* top = &save; while (top != NULL && *top->context() == *isolate->debug()->debug_context()) { top = top->prev(); } if (top != NULL) { isolate->set_context(*top->context()); } // Get the native context now set to the top context from before the // debugger was invoked. Handle<Context> context = isolate->native_context(); Handle<Object> receiver = isolate->global_object(); return DebugEvaluate(isolate, context, context_extension, receiver, source); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetLoadedScripts) { HandleScope scope(isolate); ASSERT(args.length() == 0); // Fill the script objects. Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts(); // Convert the script objects to proper JS objects. for (int i = 0; i < instances->length(); i++) { Handle<Script> script = Handle<Script>(Script::cast(instances->get(i))); // Get the script wrapper in a local handle before calling GetScriptWrapper, // because using // instances->set(i, *GetScriptWrapper(script)) // is unsafe as GetScriptWrapper might call GC and the C++ compiler might // already have dereferenced the instances handle. Handle<JSValue> wrapper = GetScriptWrapper(script); instances->set(i, *wrapper); } // Return result as a JS array. Handle<JSObject> result = isolate->factory()->NewJSObject(isolate->array_function()); isolate->factory()->SetContent(Handle<JSArray>::cast(result), instances); return *result; } // Helper function used by Runtime_DebugReferencedBy below. static int DebugReferencedBy(HeapIterator* iterator, JSObject* target, Object* instance_filter, int max_references, FixedArray* instances, int instances_size, JSFunction* arguments_function) { Isolate* isolate = target->GetIsolate(); SealHandleScope shs(isolate); DisallowHeapAllocation no_allocation; // Iterate the heap. int count = 0; JSObject* last = NULL; HeapObject* heap_obj = NULL; while (((heap_obj = iterator->next()) != NULL) && (max_references == 0 || count < max_references)) { // Only look at all JSObjects. if (heap_obj->IsJSObject()) { // Skip context extension objects and argument arrays as these are // checked in the context of functions using them. JSObject* obj = JSObject::cast(heap_obj); if (obj->IsJSContextExtensionObject() || obj->map()->constructor() == arguments_function) { continue; } // Check if the JS object has a reference to the object looked for. if (obj->ReferencesObject(target)) { // Check instance filter if supplied. This is normally used to avoid // references from mirror objects (see Runtime_IsInPrototypeChain). if (!instance_filter->IsUndefined()) { Object* V = obj; while (true) { Object* prototype = V->GetPrototype(isolate); if (prototype->IsNull()) { break; } if (instance_filter == prototype) { obj = NULL; // Don't add this object. break; } V = prototype; } } if (obj != NULL) { // Valid reference found add to instance array if supplied an update // count. if (instances != NULL && count < instances_size) { instances->set(count, obj); } last = obj; count++; } } } } // Check for circular reference only. This can happen when the object is only // referenced from mirrors and has a circular reference in which case the // object is not really alive and would have been garbage collected if not // referenced from the mirror. if (count == 1 && last == target) { count = 0; } // Return the number of referencing objects found. return count; } // Scan the heap for objects with direct references to an object // args[0]: the object to find references to // args[1]: constructor function for instances to exclude (Mirror) // args[2]: the the maximum number of objects to return RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugReferencedBy) { SealHandleScope shs(isolate); ASSERT(args.length() == 3); // First perform a full GC in order to avoid references from dead objects. isolate->heap()->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugReferencedBy"); // The heap iterator reserves the right to do a GC to make the heap iterable. // Due to the GC above we know it won't need to do that, but it seems cleaner // to get the heap iterator constructed before we start having unprotected // Object* locals that are not protected by handles. // Check parameters. CONVERT_ARG_CHECKED(JSObject, target, 0); Object* instance_filter = args[1]; RUNTIME_ASSERT(instance_filter->IsUndefined() || instance_filter->IsJSObject()); CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]); RUNTIME_ASSERT(max_references >= 0); // Get the constructor function for context extension and arguments array. JSObject* arguments_boilerplate = isolate->context()->native_context()->arguments_boilerplate(); JSFunction* arguments_function = JSFunction::cast(arguments_boilerplate->map()->constructor()); // Get the number of referencing objects. int count; Heap* heap = isolate->heap(); HeapIterator heap_iterator(heap); count = DebugReferencedBy(&heap_iterator, target, instance_filter, max_references, NULL, 0, arguments_function); // Allocate an array to hold the result. Object* object; { MaybeObject* maybe_object = heap->AllocateFixedArray(count); if (!maybe_object->ToObject(&object)) return maybe_object; } FixedArray* instances = FixedArray::cast(object); // Fill the referencing objects. // AllocateFixedArray above does not make the heap non-iterable. ASSERT(heap->IsHeapIterable()); HeapIterator heap_iterator2(heap); count = DebugReferencedBy(&heap_iterator2, target, instance_filter, max_references, instances, count, arguments_function); // Return result as JS array. Object* result; MaybeObject* maybe_result = heap->AllocateJSObject( isolate->context()->native_context()->array_function()); if (!maybe_result->ToObject(&result)) return maybe_result; return JSArray::cast(result)->SetContent(instances); } // Helper function used by Runtime_DebugConstructedBy below. static int DebugConstructedBy(HeapIterator* iterator, JSFunction* constructor, int max_references, FixedArray* instances, int instances_size) { DisallowHeapAllocation no_allocation; // Iterate the heap. int count = 0; HeapObject* heap_obj = NULL; while (((heap_obj = iterator->next()) != NULL) && (max_references == 0 || count < max_references)) { // Only look at all JSObjects. if (heap_obj->IsJSObject()) { JSObject* obj = JSObject::cast(heap_obj); if (obj->map()->constructor() == constructor) { // Valid reference found add to instance array if supplied an update // count. if (instances != NULL && count < instances_size) { instances->set(count, obj); } count++; } } } // Return the number of referencing objects found. return count; } // Scan the heap for objects constructed by a specific function. // args[0]: the constructor to find instances of // args[1]: the the maximum number of objects to return RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugConstructedBy) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); // First perform a full GC in order to avoid dead objects. Heap* heap = isolate->heap(); heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy"); // Check parameters. CONVERT_ARG_CHECKED(JSFunction, constructor, 0); CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]); RUNTIME_ASSERT(max_references >= 0); // Get the number of referencing objects. int count; HeapIterator heap_iterator(heap); count = DebugConstructedBy(&heap_iterator, constructor, max_references, NULL, 0); // Allocate an array to hold the result. Object* object; { MaybeObject* maybe_object = heap->AllocateFixedArray(count); if (!maybe_object->ToObject(&object)) return maybe_object; } FixedArray* instances = FixedArray::cast(object); ASSERT(isolate->heap()->IsHeapIterable()); // Fill the referencing objects. HeapIterator heap_iterator2(heap); count = DebugConstructedBy(&heap_iterator2, constructor, max_references, instances, count); // Return result as JS array. Object* result; { MaybeObject* maybe_result = isolate->heap()->AllocateJSObject( isolate->context()->native_context()->array_function()); if (!maybe_result->ToObject(&result)) return maybe_result; } return JSArray::cast(result)->SetContent(instances); } // Find the effective prototype object as returned by __proto__. // args[0]: the object to find the prototype for. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPrototype) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, obj, 0); return GetPrototypeSkipHiddenPrototypes(isolate, obj); } // Patches script source (should be called upon BeforeCompile event). RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugSetScriptSource) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0); CONVERT_ARG_HANDLE_CHECKED(String, source, 1); RUNTIME_ASSERT(script_wrapper->value()->IsScript()); Handle<Script> script(Script::cast(script_wrapper->value())); int compilation_state = script->compilation_state(); RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL); script->set_source(*source); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SystemBreak) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); OS::DebugBreak(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleFunction) { HandleScope scope(isolate); #ifdef DEBUG ASSERT(args.length() == 1); // Get the function and make sure it is compiled. CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0); if (!JSFunction::EnsureCompiled(func, KEEP_EXCEPTION)) { return Failure::Exception(); } func->code()->PrintLn(); #endif // DEBUG return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleConstructor) { HandleScope scope(isolate); #ifdef DEBUG ASSERT(args.length() == 1); // Get the function and make sure it is compiled. CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0); if (!JSFunction::EnsureCompiled(func, KEEP_EXCEPTION)) { return Failure::Exception(); } func->shared()->construct_stub()->PrintLn(); #endif // DEBUG return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetInferredName) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return f->shared()->inferred_name(); } static int FindSharedFunctionInfosForScript(HeapIterator* iterator, Script* script, FixedArray* buffer) { DisallowHeapAllocation no_allocation; int counter = 0; int buffer_size = buffer->length(); for (HeapObject* obj = iterator->next(); obj != NULL; obj = iterator->next()) { ASSERT(obj != NULL); if (!obj->IsSharedFunctionInfo()) { continue; } SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); if (shared->script() != script) { continue; } if (counter < buffer_size) { buffer->set(counter, shared); } counter++; } return counter; } // For a script finds all SharedFunctionInfo's in the heap that points // to this script. Returns JSArray of SharedFunctionInfo wrapped // in OpaqueReferences. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFindSharedFunctionInfosForScript) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSValue, script_value, 0); RUNTIME_ASSERT(script_value->value()->IsScript()); Handle<Script> script = Handle<Script>(Script::cast(script_value->value())); const int kBufferSize = 32; Handle<FixedArray> array; array = isolate->factory()->NewFixedArray(kBufferSize); int number; Heap* heap = isolate->heap(); { heap->EnsureHeapIsIterable(); DisallowHeapAllocation no_allocation; HeapIterator heap_iterator(heap); Script* scr = *script; FixedArray* arr = *array; number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr); } if (number > kBufferSize) { array = isolate->factory()->NewFixedArray(number); heap->EnsureHeapIsIterable(); DisallowHeapAllocation no_allocation; HeapIterator heap_iterator(heap); Script* scr = *script; FixedArray* arr = *array; FindSharedFunctionInfosForScript(&heap_iterator, scr, arr); } Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array); result->set_length(Smi::FromInt(number)); LiveEdit::WrapSharedFunctionInfos(result); return *result; } // For a script calculates compilation information about all its functions. // The script source is explicitly specified by the second argument. // The source of the actual script is not used, however it is important that // all generated code keeps references to this particular instance of script. // Returns a JSArray of compilation infos. The array is ordered so that // each function with all its descendant is always stored in a continues range // with the function itself going first. The root function is a script function. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditGatherCompileInfo) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSValue, script, 0); CONVERT_ARG_HANDLE_CHECKED(String, source, 1); RUNTIME_ASSERT(script->value()->IsScript()); Handle<Script> script_handle = Handle<Script>(Script::cast(script->value())); JSArray* result = LiveEdit::GatherCompileInfo(script_handle, source); if (isolate->has_pending_exception()) { return Failure::Exception(); } return result; } // Changes the source of the script to a new_source. // If old_script_name is provided (i.e. is a String), also creates a copy of // the script with its original source and sends notification to debugger. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceScript) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(JSValue, original_script_value, 0); CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1); Handle<Object> old_script_name(args[2], isolate); RUNTIME_ASSERT(original_script_value->value()->IsScript()); Handle<Script> original_script(Script::cast(original_script_value->value())); Object* old_script = LiveEdit::ChangeScriptSource(original_script, new_source, old_script_name); if (old_script->IsScript()) { Handle<Script> script_handle(Script::cast(old_script)); return *(GetScriptWrapper(script_handle)); } else { return isolate->heap()->null_value(); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSourceUpdated) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0); return LiveEdit::FunctionSourceUpdated(shared_info); } // Replaces code of SharedFunctionInfo with a new one. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceFunctionCode) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1); return LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info); } // Connects SharedFunctionInfo to another script. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSetScript) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 2); Handle<Object> function_object(args[0], isolate); Handle<Object> script_object(args[1], isolate); if (function_object->IsJSValue()) { Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object); if (script_object->IsJSValue()) { RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript()); Script* script = Script::cast(JSValue::cast(*script_object)->value()); script_object = Handle<Object>(script, isolate); } LiveEdit::SetFunctionScript(function_wrapper, script_object); } else { // Just ignore this. We may not have a SharedFunctionInfo for some functions // and we check it in this function. } return isolate->heap()->undefined_value(); } // In a code of a parent function replaces original function as embedded object // with a substitution one. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceRefToNestedFunction) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0); CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1); CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2); LiveEdit::ReplaceRefToNestedFunction(parent_wrapper, orig_wrapper, subst_wrapper); return isolate->heap()->undefined_value(); } // Updates positions of a shared function info (first parameter) according // to script source change. Text change is described in second parameter as // array of groups of 3 numbers: // (change_begin, change_end, change_end_new_position). // Each group describes a change in text; groups are sorted by change_begin. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditPatchFunctionPositions) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1); return LiveEdit::PatchFunctionPositions(shared_array, position_change_array); } // For array of SharedFunctionInfo's (each wrapped in JSValue) // checks that none of them have activations on stacks (of any thread). // Returns array of the same length with corresponding results of // LiveEdit::FunctionPatchabilityStatus type. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCheckAndDropActivations) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0); CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1); return *LiveEdit::CheckAndDropActivations(shared_array, do_drop); } // Compares 2 strings line-by-line, then token-wise and returns diff in form // of JSArray of triplets (pos1, pos1_end, pos2_end) describing list // of diff chunks. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCompareStrings) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, s1, 0); CONVERT_ARG_HANDLE_CHECKED(String, s2, 1); return *LiveEdit::CompareStrings(s1, s2); } // Restarts a call frame and completely drops all frames above. // Returns true if successful. Otherwise returns undefined or an error message. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditRestartFrame) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 2); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); Heap* heap = isolate->heap(); // Find the relevant frame with the requested index. StackFrame::Id id = isolate->debug()->break_frame_id(); if (id == StackFrame::NO_ID) { // If there are no JavaScript stack frames return undefined. return heap->undefined_value(); } int count = 0; JavaScriptFrameIterator it(isolate, id); for (; !it.done(); it.Advance()) { if (index < count + it.frame()->GetInlineCount()) break; count += it.frame()->GetInlineCount(); } if (it.done()) return heap->undefined_value(); const char* error_message = LiveEdit::RestartFrame(it.frame()); if (error_message) { return *(isolate->factory()->InternalizeUtf8String(error_message)); } return heap->true_value(); } // A testing entry. Returns statement position which is the closest to // source_position. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionCodePositionFromSource) { HandleScope scope(isolate); CHECK(isolate->debugger()->live_edit_enabled()); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); Handle<Code> code(function->code(), isolate); if (code->kind() != Code::FUNCTION && code->kind() != Code::OPTIMIZED_FUNCTION) { return isolate->heap()->undefined_value(); } RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION)); int closest_pc = 0; int distance = kMaxInt; while (!it.done()) { int statement_position = static_cast<int>(it.rinfo()->data()); // Check if this break point is closer that what was previously found. if (source_position <= statement_position && statement_position - source_position < distance) { closest_pc = static_cast<int>(it.rinfo()->pc() - code->instruction_start()); distance = statement_position - source_position; // Check whether we can't get any closer. if (distance == 0) break; } it.next(); } return Smi::FromInt(closest_pc); } // Calls specified function with or without entering the debugger. // This is used in unit tests to run code as if debugger is entered or simply // to have a stack with C++ frame in the middle. RUNTIME_FUNCTION(MaybeObject*, Runtime_ExecuteInDebugContext) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1); Handle<Object> result; bool pending_exception; { if (without_debugger) { result = Execution::Call(isolate, function, isolate->global_object(), 0, NULL, &pending_exception); } else { EnterDebugger enter_debugger(isolate); result = Execution::Call(isolate, function, isolate->global_object(), 0, NULL, &pending_exception); } } if (!pending_exception) { return *result; } else { return Failure::Exception(); } } // Sets a v8 flag. RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFlags) { SealHandleScope shs(isolate); CONVERT_ARG_CHECKED(String, arg, 0); SmartArrayPointer<char> flags = arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); FlagList::SetFlagsFromString(*flags, StrLength(*flags)); return isolate->heap()->undefined_value(); } // Performs a GC. // Presently, it only does a full GC. RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectGarbage) { SealHandleScope shs(isolate); isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage"); return isolate->heap()->undefined_value(); } // Gets the current heap usage. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetHeapUsage) { SealHandleScope shs(isolate); int usage = static_cast<int>(isolate->heap()->SizeOfObjects()); if (!Smi::IsValid(usage)) { return *isolate->factory()->NewNumberFromInt(usage); } return Smi::FromInt(usage); } #endif // ENABLE_DEBUGGER_SUPPORT #ifdef V8_I18N_SUPPORT RUNTIME_FUNCTION(MaybeObject*, Runtime_CanonicalizeLanguageTag) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, locale_id_str, 0); v8::String::Utf8Value locale_id(v8::Utils::ToLocal(locale_id_str)); // Return value which denotes invalid language tag. const char* const kInvalidTag = "invalid-tag"; UErrorCode error = U_ZERO_ERROR; char icu_result[ULOC_FULLNAME_CAPACITY]; int icu_length = 0; uloc_forLanguageTag(*locale_id, icu_result, ULOC_FULLNAME_CAPACITY, &icu_length, &error); if (U_FAILURE(error) || icu_length == 0) { return isolate->heap()->AllocateStringFromOneByte(CStrVector(kInvalidTag)); } char result[ULOC_FULLNAME_CAPACITY]; // Force strict BCP47 rules. uloc_toLanguageTag(icu_result, result, ULOC_FULLNAME_CAPACITY, TRUE, &error); if (U_FAILURE(error)) { return isolate->heap()->AllocateStringFromOneByte(CStrVector(kInvalidTag)); } return isolate->heap()->AllocateStringFromOneByte(CStrVector(result)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_AvailableLocalesOf) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, service, 0); const icu::Locale* available_locales = NULL; int32_t count = 0; if (service->IsUtf8EqualTo(CStrVector("collator"))) { available_locales = icu::Collator::getAvailableLocales(count); } else if (service->IsUtf8EqualTo(CStrVector("numberformat"))) { available_locales = icu::NumberFormat::getAvailableLocales(count); } else if (service->IsUtf8EqualTo(CStrVector("dateformat"))) { available_locales = icu::DateFormat::getAvailableLocales(count); } else if (service->IsUtf8EqualTo(CStrVector("breakiterator"))) { available_locales = icu::BreakIterator::getAvailableLocales(count); } UErrorCode error = U_ZERO_ERROR; char result[ULOC_FULLNAME_CAPACITY]; Handle<JSObject> locales = isolate->factory()->NewJSObject(isolate->object_function()); for (int32_t i = 0; i < count; ++i) { const char* icu_name = available_locales[i].getName(); error = U_ZERO_ERROR; // No need to force strict BCP47 rules. uloc_toLanguageTag(icu_name, result, ULOC_FULLNAME_CAPACITY, FALSE, &error); if (U_FAILURE(error)) { // This shouldn't happen, but lets not break the user. continue; } RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( locales, isolate->factory()->NewStringFromAscii(CStrVector(result)), isolate->factory()->NewNumber(i), NONE)); } return *locales; } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetDefaultICULocale) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); icu::Locale default_locale; // Set the locale char result[ULOC_FULLNAME_CAPACITY]; UErrorCode status = U_ZERO_ERROR; uloc_toLanguageTag( default_locale.getName(), result, ULOC_FULLNAME_CAPACITY, FALSE, &status); if (U_SUCCESS(status)) { return isolate->heap()->AllocateStringFromOneByte(CStrVector(result)); } return isolate->heap()->AllocateStringFromOneByte(CStrVector("und")); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLanguageTagVariants) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, input, 0); uint32_t length = static_cast<uint32_t>(input->length()->Number()); Handle<FixedArray> output = isolate->factory()->NewFixedArray(length); Handle<Name> maximized = isolate->factory()->NewStringFromAscii(CStrVector("maximized")); Handle<Name> base = isolate->factory()->NewStringFromAscii(CStrVector("base")); for (unsigned int i = 0; i < length; ++i) { MaybeObject* maybe_string = input->GetElement(isolate, i); Object* locale_id; if (!maybe_string->ToObject(&locale_id) || !locale_id->IsString()) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } v8::String::Utf8Value utf8_locale_id( v8::Utils::ToLocal(Handle<String>(String::cast(locale_id)))); UErrorCode error = U_ZERO_ERROR; // Convert from BCP47 to ICU format. // de-DE-u-co-phonebk -> de_DE@collation=phonebook char icu_locale[ULOC_FULLNAME_CAPACITY]; int icu_locale_length = 0; uloc_forLanguageTag(*utf8_locale_id, icu_locale, ULOC_FULLNAME_CAPACITY, &icu_locale_length, &error); if (U_FAILURE(error) || icu_locale_length == 0) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } // Maximize the locale. // de_DE@collation=phonebook -> de_Latn_DE@collation=phonebook char icu_max_locale[ULOC_FULLNAME_CAPACITY]; uloc_addLikelySubtags( icu_locale, icu_max_locale, ULOC_FULLNAME_CAPACITY, &error); // Remove extensions from maximized locale. // de_Latn_DE@collation=phonebook -> de_Latn_DE char icu_base_max_locale[ULOC_FULLNAME_CAPACITY]; uloc_getBaseName( icu_max_locale, icu_base_max_locale, ULOC_FULLNAME_CAPACITY, &error); // Get original name without extensions. // de_DE@collation=phonebook -> de_DE char icu_base_locale[ULOC_FULLNAME_CAPACITY]; uloc_getBaseName( icu_locale, icu_base_locale, ULOC_FULLNAME_CAPACITY, &error); // Convert from ICU locale format to BCP47 format. // de_Latn_DE -> de-Latn-DE char base_max_locale[ULOC_FULLNAME_CAPACITY]; uloc_toLanguageTag(icu_base_max_locale, base_max_locale, ULOC_FULLNAME_CAPACITY, FALSE, &error); // de_DE -> de-DE char base_locale[ULOC_FULLNAME_CAPACITY]; uloc_toLanguageTag( icu_base_locale, base_locale, ULOC_FULLNAME_CAPACITY, FALSE, &error); if (U_FAILURE(error)) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } Handle<JSObject> result = isolate->factory()->NewJSObject(isolate->object_function()); RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( result, maximized, isolate->factory()->NewStringFromAscii(CStrVector(base_max_locale)), NONE)); RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( result, base, isolate->factory()->NewStringFromAscii(CStrVector(base_locale)), NONE)); output->set(i, *result); } Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(output); result->set_length(Smi::FromInt(length)); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateDateTimeFormat) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, locale, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2); Handle<ObjectTemplateInfo> date_format_template = I18N::GetTemplate(isolate); // Create an empty object wrapper. bool has_pending_exception = false; Handle<JSObject> local_object = Execution::InstantiateObject( date_format_template, &has_pending_exception); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } // Set date time formatter as internal field of the resulting JS object. icu::SimpleDateFormat* date_format = DateFormat::InitializeDateTimeFormat( isolate, locale, options, resolved); if (!date_format) return isolate->ThrowIllegalOperation(); local_object->SetInternalField(0, reinterpret_cast<Smi*>(date_format)); RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( local_object, isolate->factory()->NewStringFromAscii(CStrVector("dateFormat")), isolate->factory()->NewStringFromAscii(CStrVector("valid")), NONE)); // Make object handle weak so we can delete the data format once GC kicks in. Handle<Object> wrapper = isolate->global_handles()->Create(*local_object); GlobalHandles::MakeWeak(reinterpret_cast<Object**>(wrapper.location()), NULL, DateFormat::DeleteDateFormat); return *local_object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_InternalDateFormat) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0); CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 1); bool has_pending_exception = false; Handle<Object> value = Execution::ToNumber(isolate, date, &has_pending_exception); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } icu::SimpleDateFormat* date_format = DateFormat::UnpackDateFormat(isolate, date_format_holder); if (!date_format) return isolate->ThrowIllegalOperation(); icu::UnicodeString result; date_format->format(value->Number(), result); return *isolate->factory()->NewStringFromTwoByte( Vector<const uint16_t>( reinterpret_cast<const uint16_t*>(result.getBuffer()), result.length())); } RUNTIME_FUNCTION(MaybeObject*, Runtime_InternalDateParse) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0); CONVERT_ARG_HANDLE_CHECKED(String, date_string, 1); v8::String::Utf8Value utf8_date(v8::Utils::ToLocal(date_string)); icu::UnicodeString u_date(icu::UnicodeString::fromUTF8(*utf8_date)); icu::SimpleDateFormat* date_format = DateFormat::UnpackDateFormat(isolate, date_format_holder); if (!date_format) return isolate->ThrowIllegalOperation(); UErrorCode status = U_ZERO_ERROR; UDate date = date_format->parse(u_date, status); if (U_FAILURE(status)) return isolate->heap()->undefined_value(); bool has_pending_exception = false; Handle<JSDate> result = Handle<JSDate>::cast( Execution::NewDate( isolate, static_cast<double>(date), &has_pending_exception)); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateNumberFormat) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, locale, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2); Handle<ObjectTemplateInfo> number_format_template = I18N::GetTemplate(isolate); // Create an empty object wrapper. bool has_pending_exception = false; Handle<JSObject> local_object = Execution::InstantiateObject( number_format_template, &has_pending_exception); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } // Set number formatter as internal field of the resulting JS object. icu::DecimalFormat* number_format = NumberFormat::InitializeNumberFormat( isolate, locale, options, resolved); if (!number_format) return isolate->ThrowIllegalOperation(); local_object->SetInternalField(0, reinterpret_cast<Smi*>(number_format)); RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( local_object, isolate->factory()->NewStringFromAscii(CStrVector("numberFormat")), isolate->factory()->NewStringFromAscii(CStrVector("valid")), NONE)); Handle<Object> wrapper = isolate->global_handles()->Create(*local_object); GlobalHandles::MakeWeak(reinterpret_cast<Object**>(wrapper.location()), NULL, NumberFormat::DeleteNumberFormat); return *local_object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_InternalNumberFormat) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, number, 1); bool has_pending_exception = false; Handle<Object> value = Execution::ToNumber( isolate, number, &has_pending_exception); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } icu::DecimalFormat* number_format = NumberFormat::UnpackNumberFormat(isolate, number_format_holder); if (!number_format) return isolate->ThrowIllegalOperation(); icu::UnicodeString result; number_format->format(value->Number(), result); return *isolate->factory()->NewStringFromTwoByte( Vector<const uint16_t>( reinterpret_cast<const uint16_t*>(result.getBuffer()), result.length())); } RUNTIME_FUNCTION(MaybeObject*, Runtime_InternalNumberParse) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0); CONVERT_ARG_HANDLE_CHECKED(String, number_string, 1); v8::String::Utf8Value utf8_number(v8::Utils::ToLocal(number_string)); icu::UnicodeString u_number(icu::UnicodeString::fromUTF8(*utf8_number)); icu::DecimalFormat* number_format = NumberFormat::UnpackNumberFormat(isolate, number_format_holder); if (!number_format) return isolate->ThrowIllegalOperation(); UErrorCode status = U_ZERO_ERROR; icu::Formattable result; // ICU 4.6 doesn't support parseCurrency call. We need to wait for ICU49 // to be part of Chrome. // TODO(cira): Include currency parsing code using parseCurrency call. // We need to check if the formatter parses all currencies or only the // one it was constructed with (it will impact the API - how to return ISO // code and the value). number_format->parse(u_number, result, status); if (U_FAILURE(status)) return isolate->heap()->undefined_value(); switch (result.getType()) { case icu::Formattable::kDouble: return *isolate->factory()->NewNumber(result.getDouble()); case icu::Formattable::kLong: return *isolate->factory()->NewNumberFromInt(result.getLong()); case icu::Formattable::kInt64: return *isolate->factory()->NewNumber( static_cast<double>(result.getInt64())); default: return isolate->heap()->undefined_value(); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateCollator) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, locale, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2); Handle<ObjectTemplateInfo> collator_template = I18N::GetTemplate(isolate); // Create an empty object wrapper. bool has_pending_exception = false; Handle<JSObject> local_object = Execution::InstantiateObject( collator_template, &has_pending_exception); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } // Set collator as internal field of the resulting JS object. icu::Collator* collator = Collator::InitializeCollator( isolate, locale, options, resolved); if (!collator) return isolate->ThrowIllegalOperation(); local_object->SetInternalField(0, reinterpret_cast<Smi*>(collator)); RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( local_object, isolate->factory()->NewStringFromAscii(CStrVector("collator")), isolate->factory()->NewStringFromAscii(CStrVector("valid")), NONE)); Handle<Object> wrapper = isolate->global_handles()->Create(*local_object); GlobalHandles::MakeWeak(reinterpret_cast<Object**>(wrapper.location()), NULL, Collator::DeleteCollator); return *local_object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_InternalCompare) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSObject, collator_holder, 0); CONVERT_ARG_HANDLE_CHECKED(String, string1, 1); CONVERT_ARG_HANDLE_CHECKED(String, string2, 2); icu::Collator* collator = Collator::UnpackCollator(isolate, collator_holder); if (!collator) return isolate->ThrowIllegalOperation(); v8::String::Value string_value1(v8::Utils::ToLocal(string1)); v8::String::Value string_value2(v8::Utils::ToLocal(string2)); const UChar* u_string1 = reinterpret_cast<const UChar*>(*string_value1); const UChar* u_string2 = reinterpret_cast<const UChar*>(*string_value2); UErrorCode status = U_ZERO_ERROR; UCollationResult result = collator->compare(u_string1, string_value1.length(), u_string2, string_value2.length(), status); if (U_FAILURE(status)) return isolate->ThrowIllegalOperation(); return *isolate->factory()->NewNumberFromInt(result); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateBreakIterator) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, locale, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2); Handle<ObjectTemplateInfo> break_iterator_template = I18N::GetTemplate2(isolate); // Create an empty object wrapper. bool has_pending_exception = false; Handle<JSObject> local_object = Execution::InstantiateObject( break_iterator_template, &has_pending_exception); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } // Set break iterator as internal field of the resulting JS object. icu::BreakIterator* break_iterator = BreakIterator::InitializeBreakIterator( isolate, locale, options, resolved); if (!break_iterator) return isolate->ThrowIllegalOperation(); local_object->SetInternalField(0, reinterpret_cast<Smi*>(break_iterator)); // Make sure that the pointer to adopted text is NULL. local_object->SetInternalField(1, reinterpret_cast<Smi*>(NULL)); RETURN_IF_EMPTY_HANDLE(isolate, JSObject::SetLocalPropertyIgnoreAttributes( local_object, isolate->factory()->NewStringFromAscii(CStrVector("breakIterator")), isolate->factory()->NewStringFromAscii(CStrVector("valid")), NONE)); // Make object handle weak so we can delete the break iterator once GC kicks // in. Handle<Object> wrapper = isolate->global_handles()->Create(*local_object); GlobalHandles::MakeWeak(reinterpret_cast<Object**>(wrapper.location()), NULL, BreakIterator::DeleteBreakIterator); return *local_object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_BreakIteratorAdoptText) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); CONVERT_ARG_HANDLE_CHECKED(String, text, 1); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); icu::UnicodeString* u_text = reinterpret_cast<icu::UnicodeString*>( break_iterator_holder->GetInternalField(1)); delete u_text; v8::String::Value text_value(v8::Utils::ToLocal(text)); u_text = new icu::UnicodeString( reinterpret_cast<const UChar*>(*text_value), text_value.length()); break_iterator_holder->SetInternalField(1, reinterpret_cast<Smi*>(u_text)); break_iterator->setText(*u_text); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_BreakIteratorFirst) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); return *isolate->factory()->NewNumberFromInt(break_iterator->first()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_BreakIteratorNext) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); return *isolate->factory()->NewNumberFromInt(break_iterator->next()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_BreakIteratorCurrent) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); return *isolate->factory()->NewNumberFromInt(break_iterator->current()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_BreakIteratorBreakType) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); // TODO(cira): Remove cast once ICU fixes base BreakIterator class. icu::RuleBasedBreakIterator* rule_based_iterator = static_cast<icu::RuleBasedBreakIterator*>(break_iterator); int32_t status = rule_based_iterator->getRuleStatus(); // Keep return values in sync with JavaScript BreakType enum. if (status >= UBRK_WORD_NONE && status < UBRK_WORD_NONE_LIMIT) { return *isolate->factory()->NewStringFromAscii(CStrVector("none")); } else if (status >= UBRK_WORD_NUMBER && status < UBRK_WORD_NUMBER_LIMIT) { return *isolate->factory()->NewStringFromAscii(CStrVector("number")); } else if (status >= UBRK_WORD_LETTER && status < UBRK_WORD_LETTER_LIMIT) { return *isolate->factory()->NewStringFromAscii(CStrVector("letter")); } else if (status >= UBRK_WORD_KANA && status < UBRK_WORD_KANA_LIMIT) { return *isolate->factory()->NewStringFromAscii(CStrVector("kana")); } else if (status >= UBRK_WORD_IDEO && status < UBRK_WORD_IDEO_LIMIT) { return *isolate->factory()->NewStringFromAscii(CStrVector("ideo")); } else { return *isolate->factory()->NewStringFromAscii(CStrVector("unknown")); } } #endif // V8_I18N_SUPPORT // Finds the script object from the script data. NOTE: This operation uses // heap traversal to find the function generated for the source position // for the requested break point. For lazily compiled functions several heap // traversals might be required rendering this operation as a rather slow // operation. However for setting break points which is normally done through // some kind of user interaction the performance is not crucial. static Handle<Object> Runtime_GetScriptFromScriptName( Handle<String> script_name) { // Scan the heap for Script objects to find the script with the requested // script data. Handle<Script> script; Factory* factory = script_name->GetIsolate()->factory(); Heap* heap = script_name->GetHeap(); heap->EnsureHeapIsIterable(); DisallowHeapAllocation no_allocation_during_heap_iteration; HeapIterator iterator(heap); HeapObject* obj = NULL; while (script.is_null() && ((obj = iterator.next()) != NULL)) { // If a script is found check if it has the script data requested. if (obj->IsScript()) { if (Script::cast(obj)->name()->IsString()) { if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) { script = Handle<Script>(Script::cast(obj)); } } } } // If no script with the requested script data is found return undefined. if (script.is_null()) return factory->undefined_value(); // Return the script found. return GetScriptWrapper(script); } // Get the script object from script data. NOTE: Regarding performance // see the NOTE for GetScriptFromScriptData. // args[0]: script data for the script to find the source for RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScript) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(String, script_name, 0); // Find the requested script. Handle<Object> result = Runtime_GetScriptFromScriptName(Handle<String>(script_name)); return *result; } // Collect the raw data for a stack trace. Returns an array of 4 // element segments each containing a receiver, function, code and // native code offset. RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectStackTrace) { HandleScope scope(isolate); ASSERT_EQ(args.length(), 3); CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0); Handle<Object> caller = args.at<Object>(1); CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[2]); // Optionally capture a more detailed stack trace for the message. isolate->CaptureAndSetDetailedStackTrace(error_object); // Capture a simple stack trace for the stack property. return *isolate->CaptureSimpleStackTrace(error_object, caller, limit); } // Retrieve the stack trace. This is the raw stack trace that yet has to // be formatted. Since we only need this once, clear it afterwards. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetAndClearOverflowedStackTrace) { HandleScope scope(isolate); ASSERT_EQ(args.length(), 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0); Handle<String> key = isolate->factory()->hidden_stack_trace_string(); Handle<Object> result(error_object->GetHiddenProperty(*key), isolate); if (result->IsTheHole()) return isolate->heap()->undefined_value(); RUNTIME_ASSERT(result->IsJSArray() || result->IsUndefined()); JSObject::DeleteHiddenProperty(error_object, key); return *result; } // Returns V8 version as a string. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetV8Version) { SealHandleScope shs(isolate); ASSERT_EQ(args.length(), 0); const char* version_string = v8::V8::GetVersion(); return isolate->heap()->AllocateStringFromOneByte(CStrVector(version_string), NOT_TENURED); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Abort) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); OS::PrintError("abort: %s\n", reinterpret_cast<char*>(args[0]) + args.smi_at(1)); isolate->PrintStack(stderr); OS::Abort(); UNREACHABLE(); return NULL; } RUNTIME_FUNCTION(MaybeObject*, Runtime_AbortJS) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, message, 0); OS::PrintError("abort: %s\n", *message->ToCString()); isolate->PrintStack(stderr); OS::Abort(); UNREACHABLE(); return NULL; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FlattenString) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, str, 0); FlattenString(str); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyContextDisposed) { HandleScope scope(isolate); ASSERT(args.length() == 0); isolate->heap()->NotifyContextDisposed(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MigrateInstance) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); if (!object->IsJSObject()) return Smi::FromInt(0); Handle<JSObject> js_object = Handle<JSObject>::cast(object); if (!js_object->map()->is_deprecated()) return Smi::FromInt(0); JSObject::MigrateInstance(js_object); return *object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFromCache) { SealHandleScope shs(isolate); // This is only called from codegen, so checks might be more lax. CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0); Object* key = args[1]; int finger_index = cache->finger_index(); Object* o = cache->get(finger_index); if (o == key) { // The fastest case: hit the same place again. return cache->get(finger_index + 1); } for (int i = finger_index - 2; i >= JSFunctionResultCache::kEntriesIndex; i -= 2) { o = cache->get(i); if (o == key) { cache->set_finger_index(i); return cache->get(i + 1); } } int size = cache->size(); ASSERT(size <= cache->length()); for (int i = size - 2; i > finger_index; i -= 2) { o = cache->get(i); if (o == key) { cache->set_finger_index(i); return cache->get(i + 1); } } // There is no value in the cache. Invoke the function and cache result. HandleScope scope(isolate); Handle<JSFunctionResultCache> cache_handle(cache); Handle<Object> key_handle(key, isolate); Handle<Object> value; { Handle<JSFunction> factory(JSFunction::cast( cache_handle->get(JSFunctionResultCache::kFactoryIndex))); // TODO(antonm): consider passing a receiver when constructing a cache. Handle<Object> receiver(isolate->native_context()->global_object(), isolate); // This handle is nor shared, nor used later, so it's safe. Handle<Object> argv[] = { key_handle }; bool pending_exception; value = Execution::Call(isolate, factory, receiver, ARRAY_SIZE(argv), argv, &pending_exception); if (pending_exception) return Failure::Exception(); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { cache_handle->JSFunctionResultCacheVerify(); } #endif // Function invocation may have cleared the cache. Reread all the data. finger_index = cache_handle->finger_index(); size = cache_handle->size(); // If we have spare room, put new data into it, otherwise evict post finger // entry which is likely to be the least recently used. int index = -1; if (size < cache_handle->length()) { cache_handle->set_size(size + JSFunctionResultCache::kEntrySize); index = size; } else { index = finger_index + JSFunctionResultCache::kEntrySize; if (index == cache_handle->length()) { index = JSFunctionResultCache::kEntriesIndex; } } ASSERT(index % 2 == 0); ASSERT(index >= JSFunctionResultCache::kEntriesIndex); ASSERT(index < cache_handle->length()); cache_handle->set(index, *key_handle); cache_handle->set(index + 1, *value); cache_handle->set_finger_index(index); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { cache_handle->JSFunctionResultCacheVerify(); } #endif return *value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetStartPosition) { SealHandleScope shs(isolate); CONVERT_ARG_CHECKED(JSMessageObject, message, 0); return Smi::FromInt(message->start_position()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetScript) { SealHandleScope shs(isolate); CONVERT_ARG_CHECKED(JSMessageObject, message, 0); return message->script(); } #ifdef DEBUG // ListNatives is ONLY used by the fuzz-natives.js in debug mode // Exclude the code in release mode. RUNTIME_FUNCTION(MaybeObject*, Runtime_ListNatives) { HandleScope scope(isolate); ASSERT(args.length() == 0); #define COUNT_ENTRY(Name, argc, ressize) + 1 int entry_count = 0 RUNTIME_FUNCTION_LIST(COUNT_ENTRY) INLINE_FUNCTION_LIST(COUNT_ENTRY) INLINE_RUNTIME_FUNCTION_LIST(COUNT_ENTRY); #undef COUNT_ENTRY Factory* factory = isolate->factory(); Handle<FixedArray> elements = factory->NewFixedArray(entry_count); int index = 0; bool inline_runtime_functions = false; #define ADD_ENTRY(Name, argc, ressize) \ { \ HandleScope inner(isolate); \ Handle<String> name; \ /* Inline runtime functions have an underscore in front of the name. */ \ if (inline_runtime_functions) { \ name = factory->NewStringFromAscii( \ Vector<const char>("_" #Name, StrLength("_" #Name))); \ } else { \ name = factory->NewStringFromAscii( \ Vector<const char>(#Name, StrLength(#Name))); \ } \ Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \ pair_elements->set(0, *name); \ pair_elements->set(1, Smi::FromInt(argc)); \ Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \ elements->set(index++, *pair); \ } inline_runtime_functions = false; RUNTIME_FUNCTION_LIST(ADD_ENTRY) inline_runtime_functions = true; INLINE_FUNCTION_LIST(ADD_ENTRY) INLINE_RUNTIME_FUNCTION_LIST(ADD_ENTRY) #undef ADD_ENTRY ASSERT_EQ(index, entry_count); Handle<JSArray> result = factory->NewJSArrayWithElements(elements); return *result; } #endif RUNTIME_FUNCTION(MaybeObject*, Runtime_Log) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, format, 0); CONVERT_ARG_CHECKED(JSArray, elms, 1); DisallowHeapAllocation no_gc; String::FlatContent format_content = format->GetFlatContent(); RUNTIME_ASSERT(format_content.IsAscii()); Vector<const uint8_t> chars = format_content.ToOneByteVector(); isolate->logger()->LogRuntime(Vector<const char>::cast(chars), elms); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IS_VAR) { UNREACHABLE(); // implemented as macro in the parser return NULL; } #define ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(Name) \ RUNTIME_FUNCTION(MaybeObject*, Runtime_Has##Name) { \ CONVERT_ARG_CHECKED(JSObject, obj, 0); \ return isolate->heap()->ToBoolean(obj->Has##Name()); \ } ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastObjectElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiOrObjectElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastDoubleElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastHoleyElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(DictionaryElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(NonStrictArgumentsElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalPixelElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalArrayElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalByteElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedByteElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalShortElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedShortElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalIntElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedIntElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalFloatElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalDoubleElements) // Properties test sitting with elements tests - not fooling anyone. ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastProperties) #undef ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION RUNTIME_FUNCTION(MaybeObject*, Runtime_HaveSameMap) { SealHandleScope shs(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSObject, obj1, 0); CONVERT_ARG_CHECKED(JSObject, obj2, 1); return isolate->heap()->ToBoolean(obj1->map() == obj2->map()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsAccessCheckNeeded) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(HeapObject, obj, 0); return isolate->heap()->ToBoolean(obj->IsAccessCheckNeeded()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsObserved) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); if (!args[0]->IsJSReceiver()) return isolate->heap()->false_value(); JSReceiver* obj = JSReceiver::cast(args[0]); if (obj->IsJSGlobalProxy()) { Object* proto = obj->GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); obj = JSReceiver::cast(proto); } return isolate->heap()->ToBoolean(obj->map()->is_observed()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetIsObserved) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, obj, 0); if (obj->IsJSGlobalProxy()) { Object* proto = obj->GetPrototype(); if (proto->IsNull()) return isolate->heap()->undefined_value(); ASSERT(proto->IsJSGlobalObject()); obj = handle(JSReceiver::cast(proto)); } if (obj->IsJSProxy()) return isolate->heap()->undefined_value(); ASSERT(!(obj->map()->is_observed() && obj->IsJSObject() && Handle<JSObject>::cast(obj)->HasFastElements())); ASSERT(obj->IsJSObject()); JSObject::SetObserved(Handle<JSObject>::cast(obj)); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetMicrotaskPending) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); CONVERT_BOOLEAN_ARG_CHECKED(new_state, 0); bool old_state = isolate->microtask_pending(); isolate->set_microtask_pending(new_state); return isolate->heap()->ToBoolean(old_state); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetObservationState) { SealHandleScope shs(isolate); ASSERT(args.length() == 0); return isolate->heap()->observation_state(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ObservationWeakMapCreate) { HandleScope scope(isolate); ASSERT(args.length() == 0); // TODO(adamk): Currently this runtime function is only called three times per // isolate. If it's called more often, the map should be moved into the // strong root list. Handle<Map> map = isolate->factory()->NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize); Handle<JSWeakMap> weakmap = Handle<JSWeakMap>::cast(isolate->factory()->NewJSObjectFromMap(map)); return WeakCollectionInitialize(isolate, weakmap); } RUNTIME_FUNCTION(MaybeObject*, Runtime_UnwrapGlobalProxy) { SealHandleScope shs(isolate); ASSERT(args.length() == 1); Object* object = args[0]; if (object->IsJSGlobalProxy()) { object = object->GetPrototype(isolate); if (object->IsNull()) return isolate->heap()->undefined_value(); } return object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsAccessAllowedForObserver) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSFunction, observer, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 1); ASSERT(object->IsAccessCheckNeeded()); Handle<Object> key = args.at<Object>(2); SaveContext save(isolate); isolate->set_context(observer->context()); if (!isolate->MayNamedAccess(*object, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { return isolate->heap()->false_value(); } bool access_allowed = false; uint32_t index = 0; if (key->ToArrayIndex(&index) || (key->IsString() && String::cast(*key)->AsArrayIndex(&index))) { access_allowed = isolate->MayIndexedAccess(*object, index, v8::ACCESS_GET) && isolate->MayIndexedAccess(*object, index, v8::ACCESS_HAS); } else { access_allowed = isolate->MayNamedAccess(*object, *key, v8::ACCESS_GET) && isolate->MayNamedAccess(*object, *key, v8::ACCESS_HAS); } return isolate->heap()->ToBoolean(access_allowed); } static MaybeObject* ArrayConstructorCommon(Isolate* isolate, Handle<JSFunction> constructor, Handle<AllocationSite> site, Arguments* caller_args) { bool holey = false; bool can_use_type_feedback = true; if (caller_args->length() == 1) { Object* argument_one = (*caller_args)[0]; if (argument_one->IsSmi()) { int value = Smi::cast(argument_one)->value(); if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) { // the array is a dictionary in this case. can_use_type_feedback = false; } else if (value != 0) { holey = true; } } else { // Non-smi length argument produces a dictionary can_use_type_feedback = false; } } JSArray* array; MaybeObject* maybe_array; if (!site.is_null() && can_use_type_feedback) { ElementsKind to_kind = site->GetElementsKind(); if (holey && !IsFastHoleyElementsKind(to_kind)) { to_kind = GetHoleyElementsKind(to_kind); // Update the allocation site info to reflect the advice alteration. site->SetElementsKind(to_kind); } maybe_array = isolate->heap()->AllocateJSObjectWithAllocationSite( *constructor, site); if (!maybe_array->To(&array)) return maybe_array; } else { maybe_array = isolate->heap()->AllocateJSObject(*constructor); if (!maybe_array->To(&array)) return maybe_array; // We might need to transition to holey ElementsKind kind = constructor->initial_map()->elements_kind(); if (holey && !IsFastHoleyElementsKind(kind)) { kind = GetHoleyElementsKind(kind); maybe_array = array->TransitionElementsKind(kind); if (maybe_array->IsFailure()) return maybe_array; } } maybe_array = isolate->heap()->AllocateJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS); if (maybe_array->IsFailure()) return maybe_array; ElementsKind old_kind = array->GetElementsKind(); maybe_array = ArrayConstructInitializeElements(array, caller_args); if (maybe_array->IsFailure()) return maybe_array; if (!site.is_null() && (old_kind != array->GetElementsKind() || !can_use_type_feedback)) { // The arguments passed in caused a transition. This kind of complexity // can't be dealt with in the inlined hydrogen array constructor case. // We must mark the allocationsite as un-inlinable. site->SetDoNotInlineCall(); } return array; } RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayConstructor) { HandleScope scope(isolate); // If we get 2 arguments then they are the stub parameters (constructor, type // info). If we get 4, then the first one is a pointer to the arguments // passed by the caller, and the last one is the length of the arguments // passed to the caller (redundant, but useful to check on the deoptimizer // with an assert). Arguments empty_args(0, NULL); bool no_caller_args = args.length() == 2; ASSERT(no_caller_args || args.length() == 4); int parameters_start = no_caller_args ? 0 : 1; Arguments* caller_args = no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]); CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start); CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1); #ifdef DEBUG if (!no_caller_args) { CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2); ASSERT(arg_count == caller_args->length()); } #endif Handle<AllocationSite> site; if (!type_info.is_null() && *type_info != isolate->heap()->undefined_value() && Cell::cast(*type_info)->value()->IsAllocationSite()) { site = Handle<AllocationSite>( AllocationSite::cast(Cell::cast(*type_info)->value()), isolate); ASSERT(!site->SitePointsToLiteral()); } return ArrayConstructorCommon(isolate, constructor, site, caller_args); } RUNTIME_FUNCTION(MaybeObject*, Runtime_InternalArrayConstructor) { HandleScope scope(isolate); Arguments empty_args(0, NULL); bool no_caller_args = args.length() == 1; ASSERT(no_caller_args || args.length() == 3); int parameters_start = no_caller_args ? 0 : 1; Arguments* caller_args = no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]); CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start); #ifdef DEBUG if (!no_caller_args) { CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1); ASSERT(arg_count == caller_args->length()); } #endif return ArrayConstructorCommon(isolate, constructor, Handle<AllocationSite>::null(), caller_args); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MaxSmi) { return Smi::FromInt(Smi::kMaxValue); } // ---------------------------------------------------------------------------- // Implementation of Runtime #define F(name, number_of_args, result_size) \ { Runtime::k##name, Runtime::RUNTIME, #name, \ FUNCTION_ADDR(Runtime_##name), number_of_args, result_size }, #define I(name, number_of_args, result_size) \ { Runtime::kInline##name, Runtime::INLINE, \ "_" #name, NULL, number_of_args, result_size }, static const Runtime::Function kIntrinsicFunctions[] = { RUNTIME_FUNCTION_LIST(F) INLINE_FUNCTION_LIST(I) INLINE_RUNTIME_FUNCTION_LIST(I) }; MaybeObject* Runtime::InitializeIntrinsicFunctionNames(Heap* heap, Object* dictionary) { ASSERT(dictionary != NULL); ASSERT(NameDictionary::cast(dictionary)->NumberOfElements() == 0); for (int i = 0; i < kNumFunctions; ++i) { Object* name_string; { MaybeObject* maybe_name_string = heap->InternalizeUtf8String(kIntrinsicFunctions[i].name); if (!maybe_name_string->ToObject(&name_string)) return maybe_name_string; } NameDictionary* name_dictionary = NameDictionary::cast(dictionary); { MaybeObject* maybe_dictionary = name_dictionary->Add( String::cast(name_string), Smi::FromInt(i), PropertyDetails(NONE, NORMAL, Representation::None())); if (!maybe_dictionary->ToObject(&dictionary)) { // Non-recoverable failure. Calling code must restart heap // initialization. return maybe_dictionary; } } } return dictionary; } const Runtime::Function* Runtime::FunctionForName(Handle<String> name) { Heap* heap = name->GetHeap(); int entry = heap->intrinsic_function_names()->FindEntry(*name); if (entry != kNotFound) { Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry); int function_index = Smi::cast(smi_index)->value(); return &(kIntrinsicFunctions[function_index]); } return NULL; } const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) { return &(kIntrinsicFunctions[static_cast<int>(id)]); } void Runtime::PerformGC(Object* result, Isolate* isolate) { Failure* failure = Failure::cast(result); if (failure->IsRetryAfterGC()) { if (isolate->heap()->new_space()->AddFreshPage()) { return; } // Try to do a garbage collection; ignore it if it fails. The C // entry stub will throw an out-of-memory exception in that case. isolate->heap()->CollectGarbage(failure->allocation_space(), "Runtime::PerformGC"); } else { // Handle last resort GC and make sure to allow future allocations // to grow the heap without causing GCs (if possible). isolate->counters()->gc_last_resort_from_js()->Increment(); isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "Runtime::PerformGC"); } } } } // namespace v8::internal