.explicit .text .ident "ia64.S, Version 2.1" .ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" // // ==================================================================== // Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL // project. // // Rights for redistribution and usage in source and binary forms are // granted according to the OpenSSL license. Warranty of any kind is // disclaimed. // ==================================================================== // // Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is // different from Itanium to this module viewpoint. Most notably, is it // "wider" than Itanium? Can you experience loop scalability as // discussed in commentary sections? Not really:-( Itanium2 has 6 // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to // spin twice as fast, as I need 8 IALU ports. Amount of floating point // ports is the same, i.e. 2, while I need 4. In other words, to this // module Itanium2 remains effectively as "wide" as Itanium. Yet it's // essentially different in respect to this module, and a re-tune was // required. Well, because some intruction latencies has changed. Most // noticeably those intensively used: // // Itanium Itanium2 // ldf8 9 6 L2 hit // ld8 2 1 L1 hit // getf 2 5 // xma[->getf] 7[+1] 4[+0] // add[->st8] 1[+1] 1[+0] // // What does it mean? You might ratiocinate that the original code // should run just faster... Because sum of latencies is smaller... // Wrong! Note that getf latency increased. This means that if a loop is // scheduled for lower latency (as they were), then it will suffer from // stall condition and the code will therefore turn anti-scalable, e.g. // original bn_mul_words spun at 5*n or 2.5 times slower than expected // on Itanium2! What to do? Reschedule loops for Itanium2? But then // Itanium would exhibit anti-scalability. So I've chosen to reschedule // for worst latency for every instruction aiming for best *all-round* // performance. // Q. How much faster does it get? // A. Here is the output from 'openssl speed rsa dsa' for vanilla // 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat // Linux 7.1 2.96-81): // // sign verify sign/s verify/s // rsa 512 bits 0.0036s 0.0003s 275.3 2999.2 // rsa 1024 bits 0.0203s 0.0011s 49.3 894.1 // rsa 2048 bits 0.1331s 0.0040s 7.5 250.9 // rsa 4096 bits 0.9270s 0.0147s 1.1 68.1 // sign verify sign/s verify/s // dsa 512 bits 0.0035s 0.0043s 288.3 234.8 // dsa 1024 bits 0.0111s 0.0135s 90.0 74.2 // // And here is similar output but for this assembler // implementation:-) // // sign verify sign/s verify/s // rsa 512 bits 0.0021s 0.0001s 549.4 9638.5 // rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1 // rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3 // rsa 4096 bits 0.1295s 0.0018s 7.7 561.5 // sign verify sign/s verify/s // dsa 512 bits 0.0012s 0.0013s 891.9 756.6 // dsa 1024 bits 0.0023s 0.0028s 440.4 376.2 // // Yes, you may argue that it's not fair comparison as it's // possible to craft the C implementation with BN_UMULT_HIGH // inline assembler macro. But of course! Here is the output // with the macro: // // sign verify sign/s verify/s // rsa 512 bits 0.0020s 0.0002s 495.0 6561.0 // rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7 // rsa 2048 bits 0.0519s 0.0015s 19.3 667.3 // rsa 4096 bits 0.3464s 0.0053s 2.9 187.7 // sign verify sign/s verify/s // dsa 512 bits 0.0016s 0.0020s 613.1 510.5 // dsa 1024 bits 0.0045s 0.0054s 221.0 183.9 // // My code is still way faster, huh:-) And I believe that even // higher performance can be achieved. Note that as keys get // longer, performance gain is larger. Why? According to the // profiler there is another player in the field, namely // BN_from_montgomery consuming larger and larger portion of CPU // time as keysize decreases. I therefore consider putting effort // to assembler implementation of the following routine: // // void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0) // { // int i,j; // BN_ULONG v; // // for (i=0; i<nl; i++) // { // v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2); // nrp++; // rp++; // if (((nrp[-1]+=v)&BN_MASK2) < v) // for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ; // } // } // // It might as well be beneficial to implement even combaX // variants, as it appears as it can literally unleash the // performance (see comment section to bn_mul_comba8 below). // // And finally for your reference the output for 0.9.6a compiled // with SGIcc version 0.01.0-12 (keep in mind that for the moment // of this writing it's not possible to convince SGIcc to use // BN_UMULT_HIGH inline assembler macro, yet the code is fast, // i.e. for a compiler generated one:-): // // sign verify sign/s verify/s // rsa 512 bits 0.0022s 0.0002s 452.7 5894.3 // rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9 // rsa 2048 bits 0.0578s 0.0017s 17.3 600.2 // rsa 4096 bits 0.3838s 0.0061s 2.6 164.5 // sign verify sign/s verify/s // dsa 512 bits 0.0018s 0.0022s 547.3 459.6 // dsa 1024 bits 0.0051s 0.0062s 196.6 161.3 // // Oh! Benchmarks were performed on 733MHz Lion-class Itanium // system running Redhat Linux 7.1 (very special thanks to Ray // McCaffity of Williams Communications for providing an account). // // Q. What's the heck with 'rum 1<<5' at the end of every function? // A. Well, by clearing the "upper FP registers written" bit of the // User Mask I want to excuse the kernel from preserving upper // (f32-f128) FP register bank over process context switch, thus // minimizing bus bandwidth consumption during the switch (i.e. // after PKI opration completes and the program is off doing // something else like bulk symmetric encryption). Having said // this, I also want to point out that it might be good idea // to compile the whole toolkit (as well as majority of the // programs for that matter) with -mfixed-range=f32-f127 command // line option. No, it doesn't prevent the compiler from writing // to upper bank, but at least discourages to do so. If you don't // like the idea you have the option to compile the module with // -Drum=nop.m in command line. // #if defined(_HPUX_SOURCE) && !defined(_LP64) #define ADDP addp4 #else #define ADDP add #endif #if 1 // // bn_[add|sub]_words routines. // // Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the // data reside in L1 cache, i.e. 2 ticks away). It's possible to // compress the epilogue and get down to 2*n+6, but at the cost of // scalability (the neat feature of this implementation is that it // shall automagically spin in n+5 on "wider" IA-64 implementations:-) // I consider that the epilogue is short enough as it is to trade tiny // performance loss on Itanium for scalability. // // BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) // .global bn_add_words# .proc bn_add_words# .align 64 .skip 32 // makes the loop body aligned at 64-byte boundary bn_add_words: .prologue .save ar.pfs,r2 { .mii; alloc r2=ar.pfs,4,12,0,16 cmp4.le p6,p0=r35,r0 };; { .mfb; mov r8=r0 // return value (p6) br.ret.spnt.many b0 };; { .mib; sub r10=r35,r0,1 .save ar.lc,r3 mov r3=ar.lc brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16 } { .mib; ADDP r14=0,r32 // rp .save pr,r9 mov r9=pr };; .body { .mii; ADDP r15=0,r33 // ap mov ar.lc=r10 mov ar.ec=6 } { .mib; ADDP r16=0,r34 // bp mov pr.rot=1<<16 };; .L_bn_add_words_ctop: { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) (p18) add r39=r37,r34 (p19) cmp.ltu.unc p56,p0=r40,r38 } { .mfb; (p0) nop.m 0x0 (p0) nop.f 0x0 (p0) nop.b 0x0 } { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) (p58) cmp.eq.or p57,p0=-1,r41 // (p20) (p58) add r41=1,r41 } // (p20) { .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r (p0) nop.f 0x0 br.ctop.sptk .L_bn_add_words_ctop };; .L_bn_add_words_cend: { .mii; (p59) add r8=1,r8 // return value mov pr=r9,0x1ffff mov ar.lc=r3 } { .mbb; nop.b 0x0 br.ret.sptk.many b0 };; .endp bn_add_words# // // BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) // .global bn_sub_words# .proc bn_sub_words# .align 64 .skip 32 // makes the loop body aligned at 64-byte boundary bn_sub_words: .prologue .save ar.pfs,r2 { .mii; alloc r2=ar.pfs,4,12,0,16 cmp4.le p6,p0=r35,r0 };; { .mfb; mov r8=r0 // return value (p6) br.ret.spnt.many b0 };; { .mib; sub r10=r35,r0,1 .save ar.lc,r3 mov r3=ar.lc brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16 } { .mib; ADDP r14=0,r32 // rp .save pr,r9 mov r9=pr };; .body { .mii; ADDP r15=0,r33 // ap mov ar.lc=r10 mov ar.ec=6 } { .mib; ADDP r16=0,r34 // bp mov pr.rot=1<<16 };; .L_bn_sub_words_ctop: { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) (p18) sub r39=r37,r34 (p19) cmp.gtu.unc p56,p0=r40,r38 } { .mfb; (p0) nop.m 0x0 (p0) nop.f 0x0 (p0) nop.b 0x0 } { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) (p58) cmp.eq.or p57,p0=0,r41 // (p20) (p58) add r41=-1,r41 } // (p20) { .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r (p0) nop.b 0x0 br.ctop.sptk .L_bn_sub_words_ctop };; .L_bn_sub_words_cend: { .mii; (p59) add r8=1,r8 // return value mov pr=r9,0x1ffff mov ar.lc=r3 } { .mbb; nop.b 0x0 br.ret.sptk.many b0 };; .endp bn_sub_words# #endif #if 0 #define XMA_TEMPTATION #endif #if 1 // // BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) // .global bn_mul_words# .proc bn_mul_words# .align 64 .skip 32 // makes the loop body aligned at 64-byte boundary bn_mul_words: .prologue .save ar.pfs,r2 #ifdef XMA_TEMPTATION { .mfi; alloc r2=ar.pfs,4,0,0,0 };; #else { .mfi; alloc r2=ar.pfs,4,12,0,16 };; #endif { .mib; mov r8=r0 // return value cmp4.le p6,p0=r34,r0 (p6) br.ret.spnt.many b0 };; { .mii; sub r10=r34,r0,1 .save ar.lc,r3 mov r3=ar.lc .save pr,r9 mov r9=pr };; .body { .mib; setf.sig f8=r35 // w mov pr.rot=0x800001<<16 // ------^----- serves as (p50) at first (p27) brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16 } #ifndef XMA_TEMPTATION { .mmi; ADDP r14=0,r32 // rp ADDP r15=0,r33 // ap mov ar.lc=r10 } { .mmi; mov r40=0 // serves as r35 at first (p27) mov ar.ec=13 };; // This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium // L2 cache (i.e. 9 ticks away) as floating point load/store instructions // bypass L1 cache and L2 latency is actually best-case scenario for // ldf8. The loop is not scalable and shall run in 2*(n+12) even on // "wider" IA-64 implementations. It's a trade-off here. n+24 loop // would give us ~5% in *overall* performance improvement on "wider" // IA-64, but would hurt Itanium for about same because of longer // epilogue. As it's a matter of few percents in either case I've // chosen to trade the scalability for development time (you can see // this very instruction sequence in bn_mul_add_words loop which in // turn is scalable). .L_bn_mul_words_ctop: { .mfi; (p25) getf.sig r36=f52 // low (p21) xmpy.lu f48=f37,f8 (p28) cmp.ltu p54,p50=r41,r39 } { .mfi; (p16) ldf8 f32=[r15],8 (p21) xmpy.hu f40=f37,f8 (p0) nop.i 0x0 };; { .mii; (p25) getf.sig r32=f44 // high .pred.rel "mutex",p50,p54 (p50) add r40=r38,r35 // (p27) (p54) add r40=r38,r35,1 } // (p27) { .mfb; (p28) st8 [r14]=r41,8 (p0) nop.f 0x0 br.ctop.sptk .L_bn_mul_words_ctop };; .L_bn_mul_words_cend: { .mii; nop.m 0x0 .pred.rel "mutex",p51,p55 (p51) add r8=r36,r0 (p55) add r8=r36,r0,1 } { .mfb; nop.m 0x0 nop.f 0x0 nop.b 0x0 } #else // XMA_TEMPTATION setf.sig f37=r0 // serves as carry at (p18) tick mov ar.lc=r10 mov ar.ec=5;; // Most of you examining this code very likely wonder why in the name // of Intel the following loop is commented out? Indeed, it looks so // neat that you find it hard to believe that it's something wrong // with it, right? The catch is that every iteration depends on the // result from previous one and the latter isn't available instantly. // The loop therefore spins at the latency of xma minus 1, or in other // words at 6*(n+4) ticks:-( Compare to the "production" loop above // that runs in 2*(n+11) where the low latency problem is worked around // by moving the dependency to one-tick latent interger ALU. Note that // "distance" between ldf8 and xma is not latency of ldf8, but the // *difference* between xma and ldf8 latencies. .L_bn_mul_words_ctop: { .mfi; (p16) ldf8 f32=[r33],8 (p18) xma.hu f38=f34,f8,f39 } { .mfb; (p20) stf8 [r32]=f37,8 (p18) xma.lu f35=f34,f8,f39 br.ctop.sptk .L_bn_mul_words_ctop };; .L_bn_mul_words_cend: getf.sig r8=f41 // the return value #endif // XMA_TEMPTATION { .mii; nop.m 0x0 mov pr=r9,0x1ffff mov ar.lc=r3 } { .mfb; rum 1<<5 // clear um.mfh nop.f 0x0 br.ret.sptk.many b0 };; .endp bn_mul_words# #endif #if 1 // // BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) // .global bn_mul_add_words# .proc bn_mul_add_words# .align 64 .skip 48 // makes the loop body aligned at 64-byte boundary bn_mul_add_words: .prologue .save ar.pfs,r2 { .mmi; alloc r2=ar.pfs,4,4,0,8 cmp4.le p6,p0=r34,r0 .save ar.lc,r3 mov r3=ar.lc };; { .mib; mov r8=r0 // return value sub r10=r34,r0,1 (p6) br.ret.spnt.many b0 };; { .mib; setf.sig f8=r35 // w .save pr,r9 mov r9=pr brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16 } .body { .mmi; ADDP r14=0,r32 // rp ADDP r15=0,r33 // ap mov ar.lc=r10 } { .mii; ADDP r16=0,r32 // rp copy mov pr.rot=0x2001<<16 // ------^----- serves as (p40) at first (p27) mov ar.ec=11 };; // This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on // Itanium 2. Yes, unlike previous versions it scales:-) Previous // version was peforming *all* additions in IALU and was starving // for those even on Itanium 2. In this version one addition is // moved to FPU and is folded with multiplication. This is at cost // of propogating the result from previous call to this subroutine // to L2 cache... In other words negligible even for shorter keys. // *Overall* performance improvement [over previous version] varies // from 11 to 22 percent depending on key length. .L_bn_mul_add_words_ctop: .pred.rel "mutex",p40,p42 { .mfi; (p23) getf.sig r36=f45 // low (p20) xma.lu f42=f36,f8,f50 // low (p40) add r39=r39,r35 } // (p27) { .mfi; (p16) ldf8 f32=[r15],8 // *(ap++) (p20) xma.hu f36=f36,f8,f50 // high (p42) add r39=r39,r35,1 };; // (p27) { .mmi; (p24) getf.sig r32=f40 // high (p16) ldf8 f46=[r16],8 // *(rp1++) (p40) cmp.ltu p41,p39=r39,r35 } // (p27) { .mib; (p26) st8 [r14]=r39,8 // *(rp2++) (p42) cmp.leu p41,p39=r39,r35 // (p27) br.ctop.sptk .L_bn_mul_add_words_ctop};; .L_bn_mul_add_words_cend: { .mmi; .pred.rel "mutex",p40,p42 (p40) add r8=r35,r0 (p42) add r8=r35,r0,1 mov pr=r9,0x1ffff } { .mib; rum 1<<5 // clear um.mfh mov ar.lc=r3 br.ret.sptk.many b0 };; .endp bn_mul_add_words# #endif #if 1 // // void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) // .global bn_sqr_words# .proc bn_sqr_words# .align 64 .skip 32 // makes the loop body aligned at 64-byte boundary bn_sqr_words: .prologue .save ar.pfs,r2 { .mii; alloc r2=ar.pfs,3,0,0,0 sxt4 r34=r34 };; { .mii; cmp.le p6,p0=r34,r0 mov r8=r0 } // return value { .mfb; ADDP r32=0,r32 nop.f 0x0 (p6) br.ret.spnt.many b0 };; { .mii; sub r10=r34,r0,1 .save ar.lc,r3 mov r3=ar.lc .save pr,r9 mov r9=pr };; .body { .mib; ADDP r33=0,r33 mov pr.rot=1<<16 brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16 } { .mii; add r34=8,r32 mov ar.lc=r10 mov ar.ec=18 };; // 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's // possible to compress the epilogue (I'm getting tired to write this // comment over and over) and get down to 2*n+16 at the cost of // scalability. The decision will very likely be reconsidered after the // benchmark program is profiled. I.e. if perfomance gain on Itanium // will appear larger than loss on "wider" IA-64, then the loop should // be explicitely split and the epilogue compressed. .L_bn_sqr_words_ctop: { .mfi; (p16) ldf8 f32=[r33],8 (p25) xmpy.lu f42=f41,f41 (p0) nop.i 0x0 } { .mib; (p33) stf8 [r32]=f50,16 (p0) nop.i 0x0 (p0) nop.b 0x0 } { .mfi; (p0) nop.m 0x0 (p25) xmpy.hu f52=f41,f41 (p0) nop.i 0x0 } { .mib; (p33) stf8 [r34]=f60,16 (p0) nop.i 0x0 br.ctop.sptk .L_bn_sqr_words_ctop };; .L_bn_sqr_words_cend: { .mii; nop.m 0x0 mov pr=r9,0x1ffff mov ar.lc=r3 } { .mfb; rum 1<<5 // clear um.mfh nop.f 0x0 br.ret.sptk.many b0 };; .endp bn_sqr_words# #endif #if 1 // Apparently we win nothing by implementing special bn_sqr_comba8. // Yes, it is possible to reduce the number of multiplications by // almost factor of two, but then the amount of additions would // increase by factor of two (as we would have to perform those // otherwise performed by xma ourselves). Normally we would trade // anyway as multiplications are way more expensive, but not this // time... Multiplication kernel is fully pipelined and as we drain // one 128-bit multiplication result per clock cycle multiplications // are effectively as inexpensive as additions. Special implementation // might become of interest for "wider" IA-64 implementation as you'll // be able to get through the multiplication phase faster (there won't // be any stall issues as discussed in the commentary section below and // you therefore will be able to employ all 4 FP units)... But these // Itanium days it's simply too hard to justify the effort so I just // drop down to bn_mul_comba8 code:-) // // void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) // .global bn_sqr_comba8# .proc bn_sqr_comba8# .align 64 bn_sqr_comba8: .prologue .save ar.pfs,r2 #if defined(_HPUX_SOURCE) && !defined(_LP64) { .mii; alloc r2=ar.pfs,2,1,0,0 addp4 r33=0,r33 addp4 r32=0,r32 };; { .mii; #else { .mii; alloc r2=ar.pfs,2,1,0,0 #endif mov r34=r33 add r14=8,r33 };; .body { .mii; add r17=8,r34 add r15=16,r33 add r18=16,r34 } { .mfb; add r16=24,r33 br .L_cheat_entry_point8 };; .endp bn_sqr_comba8# #endif #if 1 // I've estimated this routine to run in ~120 ticks, but in reality // (i.e. according to ar.itc) it takes ~160 ticks. Are those extra // cycles consumed for instructions fetch? Or did I misinterpret some // clause in Itanium µ-architecture manual? Comments are welcomed and // highly appreciated. // // On Itanium 2 it takes ~190 ticks. This is because of stalls on // result from getf.sig. I do nothing about it at this point for // reasons depicted below. // // However! It should be noted that even 160 ticks is darn good result // as it's over 10 (yes, ten, spelled as t-e-n) times faster than the // C version (compiled with gcc with inline assembler). I really // kicked compiler's butt here, didn't I? Yeah! This brings us to the // following statement. It's damn shame that this routine isn't called // very often nowadays! According to the profiler most CPU time is // consumed by bn_mul_add_words called from BN_from_montgomery. In // order to estimate what we're missing, I've compared the performance // of this routine against "traditional" implementation, i.e. against // following routine: // // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) // { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); // r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); // r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); // r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); // r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); // r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); // r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); // r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); // } // // The one below is over 8 times faster than the one above:-( Even // more reasons to "combafy" bn_mul_add_mont... // // And yes, this routine really made me wish there were an optimizing // assembler! It also feels like it deserves a dedication. // // To my wife for being there and to my kids... // // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) // #define carry1 r14 #define carry2 r15 #define carry3 r34 .global bn_mul_comba8# .proc bn_mul_comba8# .align 64 bn_mul_comba8: .prologue .save ar.pfs,r2 #if defined(_HPUX_SOURCE) && !defined(_LP64) { .mii; alloc r2=ar.pfs,3,0,0,0 addp4 r33=0,r33 addp4 r34=0,r34 };; { .mii; addp4 r32=0,r32 #else { .mii; alloc r2=ar.pfs,3,0,0,0 #endif add r14=8,r33 add r17=8,r34 } .body { .mii; add r15=16,r33 add r18=16,r34 add r16=24,r33 } .L_cheat_entry_point8: { .mmi; add r19=24,r34 ldf8 f32=[r33],32 };; { .mmi; ldf8 f120=[r34],32 ldf8 f121=[r17],32 } { .mmi; ldf8 f122=[r18],32 ldf8 f123=[r19],32 };; { .mmi; ldf8 f124=[r34] ldf8 f125=[r17] } { .mmi; ldf8 f126=[r18] ldf8 f127=[r19] } { .mmi; ldf8 f33=[r14],32 ldf8 f34=[r15],32 } { .mmi; ldf8 f35=[r16],32;; ldf8 f36=[r33] } { .mmi; ldf8 f37=[r14] ldf8 f38=[r15] } { .mfi; ldf8 f39=[r16] // -------\ Entering multiplier's heaven /------- // ------------\ /------------ // -----------------\ /----------------- // ----------------------\/---------------------- xma.hu f41=f32,f120,f0 } { .mfi; xma.lu f40=f32,f120,f0 };; // (*) { .mfi; xma.hu f51=f32,f121,f0 } { .mfi; xma.lu f50=f32,f121,f0 };; { .mfi; xma.hu f61=f32,f122,f0 } { .mfi; xma.lu f60=f32,f122,f0 };; { .mfi; xma.hu f71=f32,f123,f0 } { .mfi; xma.lu f70=f32,f123,f0 };; { .mfi; xma.hu f81=f32,f124,f0 } { .mfi; xma.lu f80=f32,f124,f0 };; { .mfi; xma.hu f91=f32,f125,f0 } { .mfi; xma.lu f90=f32,f125,f0 };; { .mfi; xma.hu f101=f32,f126,f0 } { .mfi; xma.lu f100=f32,f126,f0 };; { .mfi; xma.hu f111=f32,f127,f0 } { .mfi; xma.lu f110=f32,f127,f0 };;// // (*) You can argue that splitting at every second bundle would // prevent "wider" IA-64 implementations from achieving the peak // performance. Well, not really... The catch is that if you // intend to keep 4 FP units busy by splitting at every fourth // bundle and thus perform these 16 multiplications in 4 ticks, // the first bundle *below* would stall because the result from // the first xma bundle *above* won't be available for another 3 // ticks (if not more, being an optimist, I assume that "wider" // implementation will have same latency:-). This stall will hold // you back and the performance would be as if every second bundle // were split *anyway*... { .mfi; getf.sig r16=f40 xma.hu f42=f33,f120,f41 add r33=8,r32 } { .mfi; xma.lu f41=f33,f120,f41 };; { .mfi; getf.sig r24=f50 xma.hu f52=f33,f121,f51 } { .mfi; xma.lu f51=f33,f121,f51 };; { .mfi; st8 [r32]=r16,16 xma.hu f62=f33,f122,f61 } { .mfi; xma.lu f61=f33,f122,f61 };; { .mfi; xma.hu f72=f33,f123,f71 } { .mfi; xma.lu f71=f33,f123,f71 };; { .mfi; xma.hu f82=f33,f124,f81 } { .mfi; xma.lu f81=f33,f124,f81 };; { .mfi; xma.hu f92=f33,f125,f91 } { .mfi; xma.lu f91=f33,f125,f91 };; { .mfi; xma.hu f102=f33,f126,f101 } { .mfi; xma.lu f101=f33,f126,f101 };; { .mfi; xma.hu f112=f33,f127,f111 } { .mfi; xma.lu f111=f33,f127,f111 };;// //-------------------------------------------------// { .mfi; getf.sig r25=f41 xma.hu f43=f34,f120,f42 } { .mfi; xma.lu f42=f34,f120,f42 };; { .mfi; getf.sig r16=f60 xma.hu f53=f34,f121,f52 } { .mfi; xma.lu f52=f34,f121,f52 };; { .mfi; getf.sig r17=f51 xma.hu f63=f34,f122,f62 add r25=r25,r24 } { .mfi; xma.lu f62=f34,f122,f62 mov carry1=0 };; { .mfi; cmp.ltu p6,p0=r25,r24 xma.hu f73=f34,f123,f72 } { .mfi; xma.lu f72=f34,f123,f72 };; { .mfi; st8 [r33]=r25,16 xma.hu f83=f34,f124,f82 (p6) add carry1=1,carry1 } { .mfi; xma.lu f82=f34,f124,f82 };; { .mfi; xma.hu f93=f34,f125,f92 } { .mfi; xma.lu f92=f34,f125,f92 };; { .mfi; xma.hu f103=f34,f126,f102 } { .mfi; xma.lu f102=f34,f126,f102 };; { .mfi; xma.hu f113=f34,f127,f112 } { .mfi; xma.lu f112=f34,f127,f112 };;// //-------------------------------------------------// { .mfi; getf.sig r18=f42 xma.hu f44=f35,f120,f43 add r17=r17,r16 } { .mfi; xma.lu f43=f35,f120,f43 };; { .mfi; getf.sig r24=f70 xma.hu f54=f35,f121,f53 } { .mfi; mov carry2=0 xma.lu f53=f35,f121,f53 };; { .mfi; getf.sig r25=f61 xma.hu f64=f35,f122,f63 cmp.ltu p7,p0=r17,r16 } { .mfi; add r18=r18,r17 xma.lu f63=f35,f122,f63 };; { .mfi; getf.sig r26=f52 xma.hu f74=f35,f123,f73 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r18,r17 xma.lu f73=f35,f123,f73 add r18=r18,carry1 };; { .mfi; xma.hu f84=f35,f124,f83 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r18,carry1 xma.lu f83=f35,f124,f83 };; { .mfi; st8 [r32]=r18,16 xma.hu f94=f35,f125,f93 (p7) add carry2=1,carry2 } { .mfi; xma.lu f93=f35,f125,f93 };; { .mfi; xma.hu f104=f35,f126,f103 } { .mfi; xma.lu f103=f35,f126,f103 };; { .mfi; xma.hu f114=f35,f127,f113 } { .mfi; mov carry1=0 xma.lu f113=f35,f127,f113 add r25=r25,r24 };;// //-------------------------------------------------// { .mfi; getf.sig r27=f43 xma.hu f45=f36,f120,f44 cmp.ltu p6,p0=r25,r24 } { .mfi; xma.lu f44=f36,f120,f44 add r26=r26,r25 };; { .mfi; getf.sig r16=f80 xma.hu f55=f36,f121,f54 (p6) add carry1=1,carry1 } { .mfi; xma.lu f54=f36,f121,f54 };; { .mfi; getf.sig r17=f71 xma.hu f65=f36,f122,f64 cmp.ltu p6,p0=r26,r25 } { .mfi; xma.lu f64=f36,f122,f64 add r27=r27,r26 };; { .mfi; getf.sig r18=f62 xma.hu f75=f36,f123,f74 (p6) add carry1=1,carry1 } { .mfi; cmp.ltu p6,p0=r27,r26 xma.lu f74=f36,f123,f74 add r27=r27,carry2 };; { .mfi; getf.sig r19=f53 xma.hu f85=f36,f124,f84 (p6) add carry1=1,carry1 } { .mfi; xma.lu f84=f36,f124,f84 cmp.ltu p6,p0=r27,carry2 };; { .mfi; st8 [r33]=r27,16 xma.hu f95=f36,f125,f94 (p6) add carry1=1,carry1 } { .mfi; xma.lu f94=f36,f125,f94 };; { .mfi; xma.hu f105=f36,f126,f104 } { .mfi; mov carry2=0 xma.lu f104=f36,f126,f104 add r17=r17,r16 };; { .mfi; xma.hu f115=f36,f127,f114 cmp.ltu p7,p0=r17,r16 } { .mfi; xma.lu f114=f36,f127,f114 add r18=r18,r17 };;// //-------------------------------------------------// { .mfi; getf.sig r20=f44 xma.hu f46=f37,f120,f45 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r18,r17 xma.lu f45=f37,f120,f45 add r19=r19,r18 };; { .mfi; getf.sig r24=f90 xma.hu f56=f37,f121,f55 } { .mfi; xma.lu f55=f37,f121,f55 };; { .mfi; getf.sig r25=f81 xma.hu f66=f37,f122,f65 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r19,r18 xma.lu f65=f37,f122,f65 add r20=r20,r19 };; { .mfi; getf.sig r26=f72 xma.hu f76=f37,f123,f75 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r20,r19 xma.lu f75=f37,f123,f75 add r20=r20,carry1 };; { .mfi; getf.sig r27=f63 xma.hu f86=f37,f124,f85 (p7) add carry2=1,carry2 } { .mfi; xma.lu f85=f37,f124,f85 cmp.ltu p7,p0=r20,carry1 };; { .mfi; getf.sig r28=f54 xma.hu f96=f37,f125,f95 (p7) add carry2=1,carry2 } { .mfi; st8 [r32]=r20,16 xma.lu f95=f37,f125,f95 };; { .mfi; xma.hu f106=f37,f126,f105 } { .mfi; mov carry1=0 xma.lu f105=f37,f126,f105 add r25=r25,r24 };; { .mfi; xma.hu f116=f37,f127,f115 cmp.ltu p6,p0=r25,r24 } { .mfi; xma.lu f115=f37,f127,f115 add r26=r26,r25 };;// //-------------------------------------------------// { .mfi; getf.sig r29=f45 xma.hu f47=f38,f120,f46 (p6) add carry1=1,carry1 } { .mfi; cmp.ltu p6,p0=r26,r25 xma.lu f46=f38,f120,f46 add r27=r27,r26 };; { .mfi; getf.sig r16=f100 xma.hu f57=f38,f121,f56 (p6) add carry1=1,carry1 } { .mfi; cmp.ltu p6,p0=r27,r26 xma.lu f56=f38,f121,f56 add r28=r28,r27 };; { .mfi; getf.sig r17=f91 xma.hu f67=f38,f122,f66 (p6) add carry1=1,carry1 } { .mfi; cmp.ltu p6,p0=r28,r27 xma.lu f66=f38,f122,f66 add r29=r29,r28 };; { .mfi; getf.sig r18=f82 xma.hu f77=f38,f123,f76 (p6) add carry1=1,carry1 } { .mfi; cmp.ltu p6,p0=r29,r28 xma.lu f76=f38,f123,f76 add r29=r29,carry2 };; { .mfi; getf.sig r19=f73 xma.hu f87=f38,f124,f86 (p6) add carry1=1,carry1 } { .mfi; xma.lu f86=f38,f124,f86 cmp.ltu p6,p0=r29,carry2 };; { .mfi; getf.sig r20=f64 xma.hu f97=f38,f125,f96 (p6) add carry1=1,carry1 } { .mfi; st8 [r33]=r29,16 xma.lu f96=f38,f125,f96 };; { .mfi; getf.sig r21=f55 xma.hu f107=f38,f126,f106 } { .mfi; mov carry2=0 xma.lu f106=f38,f126,f106 add r17=r17,r16 };; { .mfi; xma.hu f117=f38,f127,f116 cmp.ltu p7,p0=r17,r16 } { .mfi; xma.lu f116=f38,f127,f116 add r18=r18,r17 };;// //-------------------------------------------------// { .mfi; getf.sig r22=f46 xma.hu f48=f39,f120,f47 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r18,r17 xma.lu f47=f39,f120,f47 add r19=r19,r18 };; { .mfi; getf.sig r24=f110 xma.hu f58=f39,f121,f57 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r19,r18 xma.lu f57=f39,f121,f57 add r20=r20,r19 };; { .mfi; getf.sig r25=f101 xma.hu f68=f39,f122,f67 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r20,r19 xma.lu f67=f39,f122,f67 add r21=r21,r20 };; { .mfi; getf.sig r26=f92 xma.hu f78=f39,f123,f77 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r21,r20 xma.lu f77=f39,f123,f77 add r22=r22,r21 };; { .mfi; getf.sig r27=f83 xma.hu f88=f39,f124,f87 (p7) add carry2=1,carry2 } { .mfi; cmp.ltu p7,p0=r22,r21 xma.lu f87=f39,f124,f87 add r22=r22,carry1 };; { .mfi; getf.sig r28=f74 xma.hu f98=f39,f125,f97 (p7) add carry2=1,carry2 } { .mfi; xma.lu f97=f39,f125,f97 cmp.ltu p7,p0=r22,carry1 };; { .mfi; getf.sig r29=f65 xma.hu f108=f39,f126,f107 (p7) add carry2=1,carry2 } { .mfi; st8 [r32]=r22,16 xma.lu f107=f39,f126,f107 };; { .mfi; getf.sig r30=f56 xma.hu f118=f39,f127,f117 } { .mfi; xma.lu f117=f39,f127,f117 };;// //-------------------------------------------------// // Leaving muliplier's heaven... Quite a ride, huh? { .mii; getf.sig r31=f47 add r25=r25,r24 mov carry1=0 };; { .mii; getf.sig r16=f111 cmp.ltu p6,p0=r25,r24 add r26=r26,r25 };; { .mfb; getf.sig r17=f102 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r26,r25 add r27=r27,r26 };; { .mfb; nop.m 0x0 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r27,r26 add r28=r28,r27 };; { .mii; getf.sig r18=f93 add r17=r17,r16 mov carry3=0 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r28,r27 add r29=r29,r28 };; { .mii; getf.sig r19=f84 cmp.ltu p7,p0=r17,r16 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r29,r28 add r30=r30,r29 };; { .mii; getf.sig r20=f75 add r18=r18,r17 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r30,r29 add r31=r31,r30 };; { .mfb; getf.sig r21=f66 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r18,r17 add r19=r19,r18 } { .mfb; nop.m 0x0 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r31,r30 add r31=r31,carry2 };; { .mfb; getf.sig r22=f57 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r19,r18 add r20=r20,r19 } { .mfb; nop.m 0x0 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r31,carry2 };; { .mfb; getf.sig r23=f48 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r20,r19 add r21=r21,r20 } { .mii; (p6) add carry1=1,carry1 } { .mfb; st8 [r33]=r31,16 };; { .mfb; getf.sig r24=f112 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r21,r20 add r22=r22,r21 };; { .mfb; getf.sig r25=f103 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r22,r21 add r23=r23,r22 };; { .mfb; getf.sig r26=f94 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r23,r22 add r23=r23,carry1 };; { .mfb; getf.sig r27=f85 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p8=r23,carry1};; { .mii; getf.sig r28=f76 add r25=r25,r24 mov carry1=0 } { .mii; st8 [r32]=r23,16 (p7) add carry2=1,carry3 (p8) add carry2=0,carry3 };; { .mfb; nop.m 0x0 } { .mii; getf.sig r29=f67 cmp.ltu p6,p0=r25,r24 add r26=r26,r25 };; { .mfb; getf.sig r30=f58 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r26,r25 add r27=r27,r26 };; { .mfb; getf.sig r16=f113 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r27,r26 add r28=r28,r27 };; { .mfb; getf.sig r17=f104 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r28,r27 add r29=r29,r28 };; { .mfb; getf.sig r18=f95 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r29,r28 add r30=r30,r29 };; { .mii; getf.sig r19=f86 add r17=r17,r16 mov carry3=0 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r30,r29 add r30=r30,carry2 };; { .mii; getf.sig r20=f77 cmp.ltu p7,p0=r17,r16 add r18=r18,r17 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r30,carry2 };; { .mfb; getf.sig r21=f68 } { .mii; st8 [r33]=r30,16 (p6) add carry1=1,carry1 };; { .mfb; getf.sig r24=f114 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r18,r17 add r19=r19,r18 };; { .mfb; getf.sig r25=f105 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r19,r18 add r20=r20,r19 };; { .mfb; getf.sig r26=f96 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r20,r19 add r21=r21,r20 };; { .mfb; getf.sig r27=f87 } { .mii; (p7) add carry3=1,carry3 cmp.ltu p7,p0=r21,r20 add r21=r21,carry1 };; { .mib; getf.sig r28=f78 add r25=r25,r24 } { .mib; (p7) add carry3=1,carry3 cmp.ltu p7,p8=r21,carry1};; { .mii; st8 [r32]=r21,16 (p7) add carry2=1,carry3 (p8) add carry2=0,carry3 } { .mii; mov carry1=0 cmp.ltu p6,p0=r25,r24 add r26=r26,r25 };; { .mfb; getf.sig r16=f115 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r26,r25 add r27=r27,r26 };; { .mfb; getf.sig r17=f106 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r27,r26 add r28=r28,r27 };; { .mfb; getf.sig r18=f97 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r28,r27 add r28=r28,carry2 };; { .mib; getf.sig r19=f88 add r17=r17,r16 } { .mib; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r28,carry2 };; { .mii; st8 [r33]=r28,16 (p6) add carry1=1,carry1 } { .mii; mov carry2=0 cmp.ltu p7,p0=r17,r16 add r18=r18,r17 };; { .mfb; getf.sig r24=f116 } { .mii; (p7) add carry2=1,carry2 cmp.ltu p7,p0=r18,r17 add r19=r19,r18 };; { .mfb; getf.sig r25=f107 } { .mii; (p7) add carry2=1,carry2 cmp.ltu p7,p0=r19,r18 add r19=r19,carry1 };; { .mfb; getf.sig r26=f98 } { .mii; (p7) add carry2=1,carry2 cmp.ltu p7,p0=r19,carry1};; { .mii; st8 [r32]=r19,16 (p7) add carry2=1,carry2 } { .mfb; add r25=r25,r24 };; { .mfb; getf.sig r16=f117 } { .mii; mov carry1=0 cmp.ltu p6,p0=r25,r24 add r26=r26,r25 };; { .mfb; getf.sig r17=f108 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r26,r25 add r26=r26,carry2 };; { .mfb; nop.m 0x0 } { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r26,carry2 };; { .mii; st8 [r33]=r26,16 (p6) add carry1=1,carry1 } { .mfb; add r17=r17,r16 };; { .mfb; getf.sig r24=f118 } { .mii; mov carry2=0 cmp.ltu p7,p0=r17,r16 add r17=r17,carry1 };; { .mii; (p7) add carry2=1,carry2 cmp.ltu p7,p0=r17,carry1};; { .mii; st8 [r32]=r17 (p7) add carry2=1,carry2 };; { .mfb; add r24=r24,carry2 };; { .mib; st8 [r33]=r24 } { .mib; rum 1<<5 // clear um.mfh br.ret.sptk.many b0 };; .endp bn_mul_comba8# #undef carry3 #undef carry2 #undef carry1 #endif #if 1 // It's possible to make it faster (see comment to bn_sqr_comba8), but // I reckon it doesn't worth the effort. Basically because the routine // (actually both of them) practically never called... So I just play // same trick as with bn_sqr_comba8. // // void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) // .global bn_sqr_comba4# .proc bn_sqr_comba4# .align 64 bn_sqr_comba4: .prologue .save ar.pfs,r2 #if defined(_HPUX_SOURCE) && !defined(_LP64) { .mii; alloc r2=ar.pfs,2,1,0,0 addp4 r32=0,r32 addp4 r33=0,r33 };; { .mii; #else { .mii; alloc r2=ar.pfs,2,1,0,0 #endif mov r34=r33 add r14=8,r33 };; .body { .mii; add r17=8,r34 add r15=16,r33 add r18=16,r34 } { .mfb; add r16=24,r33 br .L_cheat_entry_point4 };; .endp bn_sqr_comba4# #endif #if 1 // Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever... // // void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) // #define carry1 r14 #define carry2 r15 .global bn_mul_comba4# .proc bn_mul_comba4# .align 64 bn_mul_comba4: .prologue .save ar.pfs,r2 #if defined(_HPUX_SOURCE) && !defined(_LP64) { .mii; alloc r2=ar.pfs,3,0,0,0 addp4 r33=0,r33 addp4 r34=0,r34 };; { .mii; addp4 r32=0,r32 #else { .mii; alloc r2=ar.pfs,3,0,0,0 #endif add r14=8,r33 add r17=8,r34 } .body { .mii; add r15=16,r33 add r18=16,r34 add r16=24,r33 };; .L_cheat_entry_point4: { .mmi; add r19=24,r34 ldf8 f32=[r33] } { .mmi; ldf8 f120=[r34] ldf8 f121=[r17] };; { .mmi; ldf8 f122=[r18] ldf8 f123=[r19] } { .mmi; ldf8 f33=[r14] ldf8 f34=[r15] } { .mfi; ldf8 f35=[r16] xma.hu f41=f32,f120,f0 } { .mfi; xma.lu f40=f32,f120,f0 };; { .mfi; xma.hu f51=f32,f121,f0 } { .mfi; xma.lu f50=f32,f121,f0 };; { .mfi; xma.hu f61=f32,f122,f0 } { .mfi; xma.lu f60=f32,f122,f0 };; { .mfi; xma.hu f71=f32,f123,f0 } { .mfi; xma.lu f70=f32,f123,f0 };;// // Major stall takes place here, and 3 more places below. Result from // first xma is not available for another 3 ticks. { .mfi; getf.sig r16=f40 xma.hu f42=f33,f120,f41 add r33=8,r32 } { .mfi; xma.lu f41=f33,f120,f41 };; { .mfi; getf.sig r24=f50 xma.hu f52=f33,f121,f51 } { .mfi; xma.lu f51=f33,f121,f51 };; { .mfi; st8 [r32]=r16,16 xma.hu f62=f33,f122,f61 } { .mfi; xma.lu f61=f33,f122,f61 };; { .mfi; xma.hu f72=f33,f123,f71 } { .mfi; xma.lu f71=f33,f123,f71 };;// //-------------------------------------------------// { .mfi; getf.sig r25=f41 xma.hu f43=f34,f120,f42 } { .mfi; xma.lu f42=f34,f120,f42 };; { .mfi; getf.sig r16=f60 xma.hu f53=f34,f121,f52 } { .mfi; xma.lu f52=f34,f121,f52 };; { .mfi; getf.sig r17=f51 xma.hu f63=f34,f122,f62 add r25=r25,r24 } { .mfi; mov carry1=0 xma.lu f62=f34,f122,f62 };; { .mfi; st8 [r33]=r25,16 xma.hu f73=f34,f123,f72 cmp.ltu p6,p0=r25,r24 } { .mfi; xma.lu f72=f34,f123,f72 };;// //-------------------------------------------------// { .mfi; getf.sig r18=f42 xma.hu f44=f35,f120,f43 (p6) add carry1=1,carry1 } { .mfi; add r17=r17,r16 xma.lu f43=f35,f120,f43 mov carry2=0 };; { .mfi; getf.sig r24=f70 xma.hu f54=f35,f121,f53 cmp.ltu p7,p0=r17,r16 } { .mfi; xma.lu f53=f35,f121,f53 };; { .mfi; getf.sig r25=f61 xma.hu f64=f35,f122,f63 add r18=r18,r17 } { .mfi; xma.lu f63=f35,f122,f63 (p7) add carry2=1,carry2 };; { .mfi; getf.sig r26=f52 xma.hu f74=f35,f123,f73 cmp.ltu p7,p0=r18,r17 } { .mfi; xma.lu f73=f35,f123,f73 add r18=r18,carry1 };; //-------------------------------------------------// { .mii; st8 [r32]=r18,16 (p7) add carry2=1,carry2 cmp.ltu p7,p0=r18,carry1 };; { .mfi; getf.sig r27=f43 // last major stall (p7) add carry2=1,carry2 };; { .mii; getf.sig r16=f71 add r25=r25,r24 mov carry1=0 };; { .mii; getf.sig r17=f62 cmp.ltu p6,p0=r25,r24 add r26=r26,r25 };; { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r26,r25 add r27=r27,r26 };; { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r27,r26 add r27=r27,carry2 };; { .mii; getf.sig r18=f53 (p6) add carry1=1,carry1 cmp.ltu p6,p0=r27,carry2 };; { .mfi; st8 [r33]=r27,16 (p6) add carry1=1,carry1 } { .mii; getf.sig r19=f44 add r17=r17,r16 mov carry2=0 };; { .mii; getf.sig r24=f72 cmp.ltu p7,p0=r17,r16 add r18=r18,r17 };; { .mii; (p7) add carry2=1,carry2 cmp.ltu p7,p0=r18,r17 add r19=r19,r18 };; { .mii; (p7) add carry2=1,carry2 cmp.ltu p7,p0=r19,r18 add r19=r19,carry1 };; { .mii; getf.sig r25=f63 (p7) add carry2=1,carry2 cmp.ltu p7,p0=r19,carry1};; { .mii; st8 [r32]=r19,16 (p7) add carry2=1,carry2 } { .mii; getf.sig r26=f54 add r25=r25,r24 mov carry1=0 };; { .mii; getf.sig r16=f73 cmp.ltu p6,p0=r25,r24 add r26=r26,r25 };; { .mii; (p6) add carry1=1,carry1 cmp.ltu p6,p0=r26,r25 add r26=r26,carry2 };; { .mii; getf.sig r17=f64 (p6) add carry1=1,carry1 cmp.ltu p6,p0=r26,carry2 };; { .mii; st8 [r33]=r26,16 (p6) add carry1=1,carry1 } { .mii; getf.sig r24=f74 add r17=r17,r16 mov carry2=0 };; { .mii; cmp.ltu p7,p0=r17,r16 add r17=r17,carry1 };; { .mii; (p7) add carry2=1,carry2 cmp.ltu p7,p0=r17,carry1};; { .mii; st8 [r32]=r17,16 (p7) add carry2=1,carry2 };; { .mii; add r24=r24,carry2 };; { .mii; st8 [r33]=r24 } { .mib; rum 1<<5 // clear um.mfh br.ret.sptk.many b0 };; .endp bn_mul_comba4# #undef carry2 #undef carry1 #endif #if 1 // // BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) // // In the nutshell it's a port of my MIPS III/IV implementation. // #define AT r14 #define H r16 #define HH r20 #define L r17 #define D r18 #define DH r22 #define I r21 #if 0 // Some preprocessors (most notably HP-UX) appear to be allergic to // macros enclosed to parenthesis [as these three were]. #define cont p16 #define break p0 // p20 #define equ p24 #else cont=p16 break=p0 equ=p24 #endif .global abort# .global bn_div_words# .proc bn_div_words# .align 64 bn_div_words: .prologue .save ar.pfs,r2 { .mii; alloc r2=ar.pfs,3,5,0,8 .save b0,r3 mov r3=b0 .save pr,r10 mov r10=pr };; { .mmb; cmp.eq p6,p0=r34,r0 mov r8=-1 (p6) br.ret.spnt.many b0 };; .body { .mii; mov H=r32 // save h mov ar.ec=0 // don't rotate at exit mov pr.rot=0 } { .mii; mov L=r33 // save l mov r36=r0 };; .L_divw_shift: // -vv- note signed comparison { .mfi; (p0) cmp.lt p16,p0=r0,r34 // d (p0) shladd r33=r34,1,r0 } { .mfb; (p0) add r35=1,r36 (p0) nop.f 0x0 (p16) br.wtop.dpnt .L_divw_shift };; { .mii; mov D=r34 shr.u DH=r34,32 sub r35=64,r36 };; { .mii; setf.sig f7=DH shr.u AT=H,r35 mov I=r36 };; { .mib; cmp.ne p6,p0=r0,AT shl H=H,r36 (p6) br.call.spnt.clr b0=abort };; // overflow, die... { .mfi; fcvt.xuf.s1 f7=f7 shr.u AT=L,r35 };; { .mii; shl L=L,r36 or H=H,AT };; { .mii; nop.m 0x0 cmp.leu p6,p0=D,H;; (p6) sub H=H,D } { .mlx; setf.sig f14=D movl AT=0xffffffff };; /////////////////////////////////////////////////////////// { .mii; setf.sig f6=H shr.u HH=H,32;; cmp.eq p6,p7=HH,DH };; { .mfb; (p6) setf.sig f8=AT (p7) fcvt.xuf.s1 f6=f6 (p7) br.call.sptk b6=.L_udiv64_32_b6 };; { .mfi; getf.sig r33=f8 // q xmpy.lu f9=f8,f14 } { .mfi; xmpy.hu f10=f8,f14 shrp H=H,L,32 };; { .mmi; getf.sig r35=f9 // tl getf.sig r31=f10 };; // th .L_divw_1st_iter: { .mii; (p0) add r32=-1,r33 (p0) cmp.eq equ,cont=HH,r31 };; { .mii; (p0) cmp.ltu p8,p0=r35,D (p0) sub r34=r35,D (equ) cmp.leu break,cont=r35,H };; { .mib; (cont) cmp.leu cont,break=HH,r31 (p8) add r31=-1,r31 (cont) br.wtop.spnt .L_divw_1st_iter };; /////////////////////////////////////////////////////////// { .mii; sub H=H,r35 shl r8=r33,32 shl L=L,32 };; /////////////////////////////////////////////////////////// { .mii; setf.sig f6=H shr.u HH=H,32;; cmp.eq p6,p7=HH,DH };; { .mfb; (p6) setf.sig f8=AT (p7) fcvt.xuf.s1 f6=f6 (p7) br.call.sptk b6=.L_udiv64_32_b6 };; { .mfi; getf.sig r33=f8 // q xmpy.lu f9=f8,f14 } { .mfi; xmpy.hu f10=f8,f14 shrp H=H,L,32 };; { .mmi; getf.sig r35=f9 // tl getf.sig r31=f10 };; // th .L_divw_2nd_iter: { .mii; (p0) add r32=-1,r33 (p0) cmp.eq equ,cont=HH,r31 };; { .mii; (p0) cmp.ltu p8,p0=r35,D (p0) sub r34=r35,D (equ) cmp.leu break,cont=r35,H };; { .mib; (cont) cmp.leu cont,break=HH,r31 (p8) add r31=-1,r31 (cont) br.wtop.spnt .L_divw_2nd_iter };; /////////////////////////////////////////////////////////// { .mii; sub H=H,r35 or r8=r8,r33 mov ar.pfs=r2 };; { .mii; shr.u r9=H,I // remainder if anybody wants it mov pr=r10,0x1ffff } { .mfb; br.ret.sptk.many b0 };; // Unsigned 64 by 32 (well, by 64 for the moment) bit integer division // procedure. // // inputs: f6 = (double)a, f7 = (double)b // output: f8 = (int)(a/b) // clobbered: f8,f9,f10,f11,pred pred=p15 // One can argue that this snippet is copyrighted to Intel // Corporation, as it's essentially identical to one of those // found in "Divide, Square Root and Remainder" section at // http://www.intel.com/software/products/opensource/libraries/num.htm. // Yes, I admit that the referred code was used as template, // but after I realized that there hardly is any other instruction // sequence which would perform this operation. I mean I figure that // any independent attempt to implement high-performance division // will result in code virtually identical to the Intel code. It // should be noted though that below division kernel is 1 cycle // faster than Intel one (note commented splits:-), not to mention // original prologue (rather lack of one) and epilogue. .align 32 .skip 16 .L_udiv64_32_b6: frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b (pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0 (pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0 (pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0 (pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0 (pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0 (pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1 (pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1 (pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2 (pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2 fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3) br.ret.sptk.many b6;; .endp bn_div_words# #endif