/*--------------------------------------------------------------------*/ /*--- Platform-specific syscalls stuff. syswrap-amd64-linux.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2000-2012 Nicholas Nethercote njn@valgrind.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #if defined(VGP_amd64_linux) #include "pub_core_basics.h" #include "pub_core_vki.h" #include "pub_core_vkiscnums.h" #include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy #include "pub_core_threadstate.h" #include "pub_core_aspacemgr.h" #include "pub_core_debuglog.h" #include "pub_core_options.h" #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_libcproc.h" #include "pub_core_libcsignal.h" #include "pub_core_scheduler.h" #include "pub_core_sigframe.h" #include "pub_core_signals.h" #include "pub_core_syscall.h" #include "pub_core_syswrap.h" #include "pub_core_tooliface.h" #include "pub_core_stacks.h" // VG_(register_stack) #include "priv_types_n_macros.h" #include "priv_syswrap-generic.h" /* for decls of generic wrappers */ #include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */ #include "priv_syswrap-linux-variants.h" /* decls of linux variant wrappers */ #include "priv_syswrap-main.h" /* --------------------------------------------------------------------- clone() handling ------------------------------------------------------------------ */ /* Call f(arg1), but first switch stacks, using 'stack' as the new stack, and use 'retaddr' as f's return-to address. Also, clear all the integer registers before entering f. */ __attribute__((noreturn)) void ML_(call_on_new_stack_0_1) ( Addr stack, Addr retaddr, void (*f)(Word), Word arg1 ); // %rdi == stack // %rsi == retaddr // %rdx == f // %rcx == arg1 asm( ".text\n" ".globl vgModuleLocal_call_on_new_stack_0_1\n" "vgModuleLocal_call_on_new_stack_0_1:\n" " movq %rdi, %rsp\n" // set stack " pushq %rsi\n" // retaddr to stack " pushq %rdx\n" // f to stack " pushq %rcx\n" // arg1 to stack " movq $0, %rax\n" // zero all GP regs " movq $0, %rbx\n" " movq $0, %rcx\n" " movq $0, %rdx\n" " movq $0, %rsi\n" " movq $0, %rdi\n" " movq $0, %rbp\n" " movq $0, %r8\n" " movq $0, %r9\n" " movq $0, %r10\n" " movq $0, %r11\n" " movq $0, %r12\n" " movq $0, %r13\n" " movq $0, %r14\n" " movq $0, %r15\n" " popq %rdi\n" // arg1 to correct arg reg " ret\n" // jump to f " ud2\n" // should never get here ".previous\n" ); /* Perform a clone system call. clone is strange because it has fork()-like return-twice semantics, so it needs special handling here. Upon entry, we have: int (*fn)(void*) in %rdi void* child_stack in %rsi int flags in %rdx void* arg in %rcx pid_t* child_tid in %r8 pid_t* parent_tid in %r9 void* tls_ptr at 8(%rsp) System call requires: int $__NR_clone in %rax int flags in %rdi void* child_stack in %rsi pid_t* parent_tid in %rdx pid_t* child_tid in %r10 void* tls_ptr in %r8 Returns a Long encoded in the linux-amd64 way, not a SysRes. */ #define __NR_CLONE VG_STRINGIFY(__NR_clone) #define __NR_EXIT VG_STRINGIFY(__NR_exit) extern Long do_syscall_clone_amd64_linux ( Word (*fn)(void *), void* stack, Long flags, void* arg, Long* child_tid, Long* parent_tid, vki_modify_ldt_t * ); asm( ".text\n" ".globl do_syscall_clone_amd64_linux\n" "do_syscall_clone_amd64_linux:\n" // set up child stack, temporarily preserving fn and arg " subq $16, %rsi\n" // make space on stack " movq %rcx, 8(%rsi)\n" // save arg " movq %rdi, 0(%rsi)\n" // save fn // setup syscall " movq $"__NR_CLONE", %rax\n" // syscall number " movq %rdx, %rdi\n" // syscall arg1: flags // %rsi already setup // syscall arg2: child_stack " movq %r9, %rdx\n" // syscall arg3: parent_tid " movq %r8, %r10\n" // syscall arg4: child_tid " movq 8(%rsp), %r8\n" // syscall arg5: tls_ptr " syscall\n" // clone() " testq %rax, %rax\n" // child if retval == 0 " jnz 1f\n" // CHILD - call thread function " pop %rax\n" // pop fn " pop %rdi\n" // pop fn arg1: arg " call *%rax\n" // call fn // exit with result " movq %rax, %rdi\n" // arg1: return value from fn " movq $"__NR_EXIT", %rax\n" " syscall\n" // Exit returned?! " ud2\n" "1:\n" // PARENT or ERROR " ret\n" ".previous\n" ); #undef __NR_CLONE #undef __NR_EXIT // forward declaration static void setup_child ( ThreadArchState*, ThreadArchState* ); /* When a client clones, we need to keep track of the new thread. This means: 1. allocate a ThreadId+ThreadState+stack for the the thread 2. initialize the thread's new VCPU state 3. create the thread using the same args as the client requested, but using the scheduler entrypoint for EIP, and a separate stack for ESP. */ static SysRes do_clone ( ThreadId ptid, ULong flags, Addr rsp, Long* parent_tidptr, Long* child_tidptr, Addr tlsaddr ) { static const Bool debug = False; ThreadId ctid = VG_(alloc_ThreadState)(); ThreadState* ptst = VG_(get_ThreadState)(ptid); ThreadState* ctst = VG_(get_ThreadState)(ctid); UWord* stack; NSegment const* seg; SysRes res; Long rax; vki_sigset_t blockall, savedmask; VG_(sigfillset)(&blockall); vg_assert(VG_(is_running_thread)(ptid)); vg_assert(VG_(is_valid_tid)(ctid)); stack = (UWord*)ML_(allocstack)(ctid); if (stack == NULL) { res = VG_(mk_SysRes_Error)( VKI_ENOMEM ); goto out; } /* Copy register state Both parent and child return to the same place, and the code following the clone syscall works out which is which, so we don't need to worry about it. The parent gets the child's new tid returned from clone, but the child gets 0. If the clone call specifies a NULL rsp for the new thread, then it actually gets a copy of the parent's rsp. */ setup_child( &ctst->arch, &ptst->arch ); /* Make sys_clone appear to have returned Success(0) in the child. */ ctst->arch.vex.guest_RAX = 0; if (rsp != 0) ctst->arch.vex.guest_RSP = rsp; ctst->os_state.parent = ptid; /* inherit signal mask */ ctst->sig_mask = ptst->sig_mask; ctst->tmp_sig_mask = ptst->sig_mask; /* Start the child with its threadgroup being the same as the parent's. This is so that any exit_group calls that happen after the child is created but before it sets its os_state.threadgroup field for real (in thread_wrapper in syswrap-linux.c), really kill the new thread. a.k.a this avoids a race condition in which the thread is unkillable (via exit_group) because its threadgroup is not set. The race window is probably only a few hundred or a few thousand cycles long. See #226116. */ ctst->os_state.threadgroup = ptst->os_state.threadgroup; /* We don't really know where the client stack is, because its allocated by the client. The best we can do is look at the memory mappings and try to derive some useful information. We assume that esp starts near its highest possible value, and can only go down to the start of the mmaped segment. */ seg = VG_(am_find_nsegment)((Addr)rsp); if (seg && seg->kind != SkResvn) { ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(rsp); ctst->client_stack_szB = ctst->client_stack_highest_word - seg->start; VG_(register_stack)(seg->start, ctst->client_stack_highest_word); if (debug) VG_(printf)("tid %d: guessed client stack range %#lx-%#lx\n", ctid, seg->start, VG_PGROUNDUP(rsp)); } else { VG_(message)(Vg_UserMsg, "!? New thread %d starts with RSP(%#lx) unmapped\n", ctid, rsp); ctst->client_stack_szB = 0; } /* Assume the clone will succeed, and tell any tool that wants to know that this thread has come into existence. If the clone fails, we'll send out a ll_exit notification for it at the out: label below, to clean up. */ vg_assert(VG_(owns_BigLock_LL)(ptid)); VG_TRACK ( pre_thread_ll_create, ptid, ctid ); if (flags & VKI_CLONE_SETTLS) { if (debug) VG_(printf)("clone child has SETTLS: tls at %#lx\n", tlsaddr); ctst->arch.vex.guest_FS_ZERO = tlsaddr; } flags &= ~VKI_CLONE_SETTLS; /* start the thread with everything blocked */ VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask); /* Create the new thread */ rax = do_syscall_clone_amd64_linux( ML_(start_thread_NORETURN), stack, flags, &VG_(threads)[ctid], child_tidptr, parent_tidptr, NULL ); res = VG_(mk_SysRes_amd64_linux)( rax ); VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL); out: if (sr_isError(res)) { /* clone failed */ VG_(cleanup_thread)(&ctst->arch); ctst->status = VgTs_Empty; /* oops. Better tell the tool the thread exited in a hurry :-) */ VG_TRACK( pre_thread_ll_exit, ctid ); } return res; } /* --------------------------------------------------------------------- More thread stuff ------------------------------------------------------------------ */ void VG_(cleanup_thread) ( ThreadArchState *arch ) { } void setup_child ( /*OUT*/ ThreadArchState *child, /*IN*/ ThreadArchState *parent ) { /* We inherit our parent's guest state. */ child->vex = parent->vex; child->vex_shadow1 = parent->vex_shadow1; child->vex_shadow2 = parent->vex_shadow2; } /* --------------------------------------------------------------------- PRE/POST wrappers for AMD64/Linux-specific syscalls ------------------------------------------------------------------ */ #define PRE(name) DEFN_PRE_TEMPLATE(amd64_linux, name) #define POST(name) DEFN_POST_TEMPLATE(amd64_linux, name) /* Add prototypes for the wrappers declared here, so that gcc doesn't harass us for not having prototypes. Really this is a kludge -- the right thing to do is to make these wrappers 'static' since they aren't visible outside this file, but that requires even more macro magic. */ DECL_TEMPLATE(amd64_linux, sys_clone); DECL_TEMPLATE(amd64_linux, sys_rt_sigreturn); DECL_TEMPLATE(amd64_linux, sys_socket); DECL_TEMPLATE(amd64_linux, sys_setsockopt); DECL_TEMPLATE(amd64_linux, sys_getsockopt); DECL_TEMPLATE(amd64_linux, sys_connect); DECL_TEMPLATE(amd64_linux, sys_accept); DECL_TEMPLATE(amd64_linux, sys_accept4); DECL_TEMPLATE(amd64_linux, sys_sendto); DECL_TEMPLATE(amd64_linux, sys_recvfrom); DECL_TEMPLATE(amd64_linux, sys_sendmsg); DECL_TEMPLATE(amd64_linux, sys_recvmsg); DECL_TEMPLATE(amd64_linux, sys_shutdown); DECL_TEMPLATE(amd64_linux, sys_bind); DECL_TEMPLATE(amd64_linux, sys_listen); DECL_TEMPLATE(amd64_linux, sys_getsockname); DECL_TEMPLATE(amd64_linux, sys_getpeername); DECL_TEMPLATE(amd64_linux, sys_socketpair); DECL_TEMPLATE(amd64_linux, sys_semget); DECL_TEMPLATE(amd64_linux, sys_semop); DECL_TEMPLATE(amd64_linux, sys_semtimedop); DECL_TEMPLATE(amd64_linux, sys_semctl); DECL_TEMPLATE(amd64_linux, sys_msgget); DECL_TEMPLATE(amd64_linux, sys_msgrcv); DECL_TEMPLATE(amd64_linux, sys_msgsnd); DECL_TEMPLATE(amd64_linux, sys_msgctl); DECL_TEMPLATE(amd64_linux, sys_shmget); DECL_TEMPLATE(amd64_linux, wrap_sys_shmat); DECL_TEMPLATE(amd64_linux, sys_shmdt); DECL_TEMPLATE(amd64_linux, sys_shmdt); DECL_TEMPLATE(amd64_linux, sys_shmctl); DECL_TEMPLATE(amd64_linux, sys_arch_prctl); DECL_TEMPLATE(amd64_linux, sys_ptrace); DECL_TEMPLATE(amd64_linux, sys_fadvise64); DECL_TEMPLATE(amd64_linux, sys_mmap); DECL_TEMPLATE(amd64_linux, sys_syscall184); PRE(sys_clone) { ULong cloneflags; PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ2(int, "clone", unsigned long, flags, void *, child_stack); if (ARG1 & VKI_CLONE_PARENT_SETTID) { if (VG_(tdict).track_pre_reg_read) { PRA3("clone", int *, parent_tidptr); } PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } if (ARG1 & VKI_CLONE_SETTLS) { if (VG_(tdict).track_pre_reg_read) { PRA4("clone", vki_modify_ldt_t *, tlsinfo); } PRE_MEM_READ("clone(tlsinfo)", ARG4, sizeof(vki_modify_ldt_t)); if (!VG_(am_is_valid_for_client)(ARG4, sizeof(vki_modify_ldt_t), VKI_PROT_READ)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) { if (VG_(tdict).track_pre_reg_read) { PRA5("clone", int *, child_tidptr); } PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG4, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } cloneflags = ARG1; if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) { SET_STATUS_Failure( VKI_EINVAL ); return; } /* Only look at the flags we really care about */ switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES | VKI_CLONE_VFORK)) { case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES: /* thread creation */ SET_STATUS_from_SysRes( do_clone(tid, ARG1, /* flags */ (Addr)ARG2, /* child ESP */ (Long *)ARG3, /* parent_tidptr */ (Long *)ARG4, /* child_tidptr */ (Addr)ARG5)); /* set_tls */ break; case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */ /* FALLTHROUGH - assume vfork == fork */ cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM); case 0: /* plain fork */ SET_STATUS_from_SysRes( ML_(do_fork_clone)(tid, cloneflags, /* flags */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG4)); /* child_tidptr */ break; default: /* should we just ENOSYS? */ VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%lx\n", ARG1); VG_(message)(Vg_UserMsg, "\n"); VG_(message)(Vg_UserMsg, "The only supported clone() uses are:\n"); VG_(message)(Vg_UserMsg, " - via a threads library (LinuxThreads or NPTL)\n"); VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork\n"); VG_(unimplemented) ("Valgrind does not support general clone()."); } if (SUCCESS) { if (ARG1 & VKI_CLONE_PARENT_SETTID) POST_MEM_WRITE(ARG3, sizeof(Int)); if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) POST_MEM_WRITE(ARG4, sizeof(Int)); /* Thread creation was successful; let the child have the chance to run */ *flags |= SfYieldAfter; } } PRE(sys_rt_sigreturn) { /* This isn't really a syscall at all - it's a misuse of the syscall mechanism by m_sigframe. VG_(sigframe_create) sets the return address of the signal frames it creates to be a short piece of code which does this "syscall". The only purpose of the syscall is to call VG_(sigframe_destroy), which restores the thread's registers from the frame and then removes it. Consequently we must ask the syswrap driver logic not to write back the syscall "result" as that would overwrite the just-restored register state. */ ThreadState* tst; PRINT("sys_rt_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); /* Adjust RSP to point to start of frame; skip back up over handler ret addr */ tst = VG_(get_ThreadState)(tid); tst->arch.vex.guest_RSP -= sizeof(Addr); /* This is only so that the RIP is (might be) useful to report if something goes wrong in the sigreturn. JRS 20070318: no idea what this is for */ ML_(fixup_guest_state_to_restart_syscall)(&tst->arch); /* Restore register state from frame and remove it, as described above */ VG_(sigframe_destroy)(tid, True); /* Tell the driver not to update the guest state with the "result", and set a bogus result to keep it happy. */ *flags |= SfNoWriteResult; SET_STATUS_Success(0); /* Check to see if any signals arose as a result of this. */ *flags |= SfPollAfter; } PRE(sys_arch_prctl) { ThreadState* tst; PRINT( "arch_prctl ( %ld, %lx )", ARG1, ARG2 ); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); // Nb: can't use "ARG2".."ARG5" here because that's our own macro... PRE_REG_READ2(long, "arch_prctl", int, option, unsigned long, arg2); // XXX: totally wrong... we need to look at the 'option' arg, and do // PRE_MEM_READs/PRE_MEM_WRITEs as necessary... /* "do" the syscall ourselves; the kernel never sees it */ if (ARG1 == VKI_ARCH_SET_FS) { tst = VG_(get_ThreadState)(tid); tst->arch.vex.guest_FS_ZERO = ARG2; } else if (ARG1 == VKI_ARCH_GET_FS) { PRE_MEM_WRITE("arch_prctl(addr)", ARG2, sizeof(unsigned long)); tst = VG_(get_ThreadState)(tid); *(unsigned long *)ARG2 = tst->arch.vex.guest_FS_ZERO; POST_MEM_WRITE(ARG2, sizeof(unsigned long)); } else { VG_(core_panic)("Unsupported arch_prtctl option"); } /* Note; the Status writeback to guest state that happens after this wrapper returns does not change guest_FS_ZERO; hence that direct assignment to the guest state is safe here. */ SET_STATUS_Success( 0 ); } // Parts of this are amd64-specific, but the *PEEK* cases are generic. // // ARG3 is only used for pointers into the traced process's address // space and for offsets into the traced process's struct // user_regs_struct. It is never a pointer into this process's memory // space, and we should therefore not check anything it points to. PRE(sys_ptrace) { PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(int, "ptrace", long, request, long, pid, long, addr, long, data); switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: PRE_MEM_WRITE( "ptrace(peek)", ARG4, sizeof (long)); break; case VKI_PTRACE_GETREGS: PRE_MEM_WRITE( "ptrace(getregs)", ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_GETFPREGS: PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4, sizeof (struct vki_user_i387_struct)); break; case VKI_PTRACE_SETREGS: PRE_MEM_READ( "ptrace(setregs)", ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_SETFPREGS: PRE_MEM_READ( "ptrace(setfpregs)", ARG4, sizeof (struct vki_user_i387_struct)); break; case VKI_PTRACE_GETEVENTMSG: PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETSIGINFO: PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t)); break; case VKI_PTRACE_SETSIGINFO: PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t)); break; default: break; } } POST(sys_ptrace) { switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: POST_MEM_WRITE( ARG4, sizeof (long)); break; case VKI_PTRACE_GETREGS: POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_GETFPREGS: POST_MEM_WRITE( ARG4, sizeof (struct vki_user_i387_struct)); break; case VKI_PTRACE_GETEVENTMSG: POST_MEM_WRITE( ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETSIGINFO: /* XXX: This is a simplification. Different parts of the * siginfo_t are valid depending on the type of signal. */ POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t)); break; default: break; } } PRE(sys_socket) { PRINT("sys_socket ( %ld, %ld, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol); } POST(sys_socket) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_socket)(tid, VG_(mk_SysRes_Success)(RES)); SET_STATUS_from_SysRes(r); } PRE(sys_setsockopt) { PRINT("sys_setsockopt ( %ld, %ld, %ld, %#lx, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "setsockopt", int, s, int, level, int, optname, const void *, optval, int, optlen); ML_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_getsockopt) { PRINT("sys_getsockopt ( %ld, %ld, %ld, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "getsockopt", int, s, int, level, int, optname, void *, optval, int, *optlen); ML_(linux_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); } POST(sys_getsockopt) { vg_assert(SUCCESS); ML_(linux_POST_sys_getsockopt)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_connect) { *flags |= SfMayBlock; PRINT("sys_connect ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "connect", int, sockfd, struct sockaddr *, serv_addr, int, addrlen); ML_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3); } PRE(sys_accept) { *flags |= SfMayBlock; PRINT("sys_accept ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "accept", int, s, struct sockaddr *, addr, int, *addrlen); ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3); } POST(sys_accept) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); SET_STATUS_from_SysRes(r); } PRE(sys_accept4) { *flags |= SfMayBlock; PRINT("sys_accept4 ( %ld, %#lx, %ld, %ld )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "accept4", int, s, struct sockaddr *, addr, int, *addrlen, int, flags); ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3); } POST(sys_accept4) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); SET_STATUS_from_SysRes(r); } PRE(sys_sendto) { *flags |= SfMayBlock; PRINT("sys_sendto ( %ld, %#lx, %ld, %lu, %#lx, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); PRE_REG_READ6(long, "sendto", int, s, const void *, msg, int, len, unsigned int, flags, const struct sockaddr *, to, int, tolen); ML_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } PRE(sys_recvfrom) { *flags |= SfMayBlock; PRINT("sys_recvfrom ( %ld, %#lx, %ld, %lu, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); PRE_REG_READ6(long, "recvfrom", int, s, void *, buf, int, len, unsigned int, flags, struct sockaddr *, from, int *, fromlen); ML_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } POST(sys_recvfrom) { vg_assert(SUCCESS); ML_(generic_POST_sys_recvfrom)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } PRE(sys_sendmsg) { *flags |= SfMayBlock; PRINT("sys_sendmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "sendmsg", int, s, const struct msghdr *, msg, int, flags); ML_(generic_PRE_sys_sendmsg)(tid, "msg", (struct vki_msghdr *)ARG2); } PRE(sys_recvmsg) { *flags |= SfMayBlock; PRINT("sys_recvmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags); ML_(generic_PRE_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2); } POST(sys_recvmsg) { ML_(generic_POST_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2, RES); } PRE(sys_shutdown) { *flags |= SfMayBlock; PRINT("sys_shutdown ( %ld, %ld )",ARG1,ARG2); PRE_REG_READ2(int, "shutdown", int, s, int, how); } PRE(sys_bind) { PRINT("sys_bind ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "bind", int, sockfd, struct sockaddr *, my_addr, int, addrlen); ML_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3); } PRE(sys_listen) { PRINT("sys_listen ( %ld, %ld )",ARG1,ARG2); PRE_REG_READ2(long, "listen", int, s, int, backlog); } PRE(sys_getsockname) { PRINT("sys_getsockname ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "getsockname", int, s, struct sockaddr *, name, int *, namelen); ML_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3); } POST(sys_getsockname) { vg_assert(SUCCESS); ML_(generic_POST_sys_getsockname)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); } PRE(sys_getpeername) { PRINT("sys_getpeername ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "getpeername", int, s, struct sockaddr *, name, int *, namelen); ML_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3); } POST(sys_getpeername) { vg_assert(SUCCESS); ML_(generic_POST_sys_getpeername)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); } PRE(sys_socketpair) { PRINT("sys_socketpair ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "socketpair", int, d, int, type, int, protocol, int*, sv); ML_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4); } POST(sys_socketpair) { vg_assert(SUCCESS); ML_(generic_POST_sys_socketpair)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4); } PRE(sys_semget) { PRINT("sys_semget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semget", vki_key_t, key, int, nsems, int, semflg); } PRE(sys_semop) { *flags |= SfMayBlock; PRINT("sys_semop ( %ld, %#lx, %lu )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semop", int, semid, struct sembuf *, sops, unsigned, nsoops); ML_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3); } PRE(sys_semtimedop) { *flags |= SfMayBlock; PRINT("sys_semtimedop ( %ld, %#lx, %lu, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semtimedop", int, semid, struct sembuf *, sops, unsigned, nsoops, struct timespec *, timeout); ML_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4); } PRE(sys_semctl) { switch (ARG3 & ~VKI_IPC_64) { case VKI_IPC_INFO: case VKI_SEM_INFO: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, struct seminfo *, arg); break; case VKI_IPC_STAT: case VKI_SEM_STAT: case VKI_IPC_SET: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, struct semid_ds *, arg); break; case VKI_GETALL: case VKI_SETALL: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, unsigned short *, arg); break; default: PRINT("sys_semctl ( %ld, %ld, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semctl", int, semid, int, semnum, int, cmd); break; } ML_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3|VKI_IPC_64,ARG4); } POST(sys_semctl) { ML_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3|VKI_IPC_64,ARG4); } PRE(sys_msgget) { PRINT("sys_msgget ( %ld, %ld )",ARG1,ARG2); PRE_REG_READ2(long, "msgget", vki_key_t, key, int, msgflg); } PRE(sys_msgsnd) { PRINT("sys_msgsnd ( %ld, %#lx, %ld, %ld )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "msgsnd", int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz, int, msgflg); ML_(linux_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; } PRE(sys_msgrcv) { PRINT("sys_msgrcv ( %ld, %#lx, %ld, %ld, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "msgrcv", int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz, long, msgytp, int, msgflg); ML_(linux_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; } POST(sys_msgrcv) { ML_(linux_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_msgctl) { PRINT("sys_msgctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "msgctl", int, msqid, int, cmd, struct msqid_ds *, buf); ML_(linux_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3); } POST(sys_msgctl) { ML_(linux_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_shmget) { PRINT("sys_shmget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmget", vki_key_t, key, vki_size_t, size, int, shmflg); } PRE(wrap_sys_shmat) { UWord arg2tmp; PRINT("wrap_sys_shmat ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmat", int, shmid, const void *, shmaddr, int, shmflg); arg2tmp = ML_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3); if (arg2tmp == 0) SET_STATUS_Failure( VKI_EINVAL ); else ARG2 = arg2tmp; // used in POST } POST(wrap_sys_shmat) { ML_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_shmdt) { PRINT("sys_shmdt ( %#lx )",ARG1); PRE_REG_READ1(long, "shmdt", const void *, shmaddr); if (!ML_(generic_PRE_sys_shmdt)(tid, ARG1)) SET_STATUS_Failure( VKI_EINVAL ); } POST(sys_shmdt) { ML_(generic_POST_sys_shmdt)(tid, RES,ARG1); } PRE(sys_shmctl) { PRINT("sys_shmctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmctl", int, shmid, int, cmd, struct shmid_ds *, buf); ML_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2|VKI_IPC_64,ARG3); } POST(sys_shmctl) { ML_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2|VKI_IPC_64,ARG3); } PRE(sys_fadvise64) { PRINT("sys_fadvise64 ( %ld, %ld, %lu, %ld )", ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "fadvise64", int, fd, vki_loff_t, offset, vki_size_t, len, int, advice); } PRE(sys_mmap) { SysRes r; PRINT("sys_mmap ( %#lx, %llu, %ld, %ld, %d, %ld )", ARG1, (ULong)ARG2, ARG3, ARG4, (Int)ARG5, ARG6 ); PRE_REG_READ6(long, "mmap", unsigned long, start, unsigned long, length, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, offset); r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 ); SET_STATUS_from_SysRes(r); } /* --------------------------------------------------------------- PRE/POST wrappers for AMD64/Linux-variant specific syscalls ------------------------------------------------------------ */ PRE(sys_syscall184) { Int err; /* 184 is used by sys_bproc. If we're not on a declared bproc variant, fail in the usual way, since it is otherwise unused. */ if (!VG_(strstr)(VG_(clo_kernel_variant), "bproc")) { PRINT("non-existent syscall! (syscall 184)"); PRE_REG_READ0(long, "ni_syscall(184)"); SET_STATUS_Failure( VKI_ENOSYS ); return; } err = ML_(linux_variant_PRE_sys_bproc)( ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 ); if (err) { SET_STATUS_Failure( err ); return; } /* Let it go through. */ *flags |= SfMayBlock; /* who knows? play safe. */ } POST(sys_syscall184) { ML_(linux_variant_POST_sys_bproc)( ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 ); } #undef PRE #undef POST /* --------------------------------------------------------------------- The AMD64/Linux syscall table ------------------------------------------------------------------ */ /* Add an amd64-linux specific wrapper to a syscall table. */ #define PLAX_(const, name) WRAPPER_ENTRY_X_(amd64_linux, const, name) #define PLAXY(const, name) WRAPPER_ENTRY_XY(amd64_linux, const, name) // This table maps from __NR_xxx syscall numbers (from // linux/include/asm-x86_64/unistd.h) to the appropriate PRE/POST sys_foo() // wrappers on AMD64 (as per sys_call_table in // linux/arch/x86_64/kernel/entry.S). // // When implementing these wrappers, you need to work out if the wrapper is // generic, Linux-only (but arch-independent), or AMD64/Linux only. static SyscallTableEntry syscall_table[] = { GENXY(__NR_read, sys_read), // 0 GENX_(__NR_write, sys_write), // 1 GENXY(__NR_open, sys_open), // 2 GENXY(__NR_close, sys_close), // 3 GENXY(__NR_stat, sys_newstat), // 4 GENXY(__NR_fstat, sys_newfstat), // 5 GENXY(__NR_lstat, sys_newlstat), // 6 GENXY(__NR_poll, sys_poll), // 7 LINX_(__NR_lseek, sys_lseek), // 8 PLAX_(__NR_mmap, sys_mmap), // 9 GENXY(__NR_mprotect, sys_mprotect), // 10 GENXY(__NR_munmap, sys_munmap), // 11 GENX_(__NR_brk, sys_brk), // 12 LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 13 LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 14 PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 15 LINXY(__NR_ioctl, sys_ioctl), // 16 GENXY(__NR_pread64, sys_pread64), // 17 GENX_(__NR_pwrite64, sys_pwrite64), // 18 GENXY(__NR_readv, sys_readv), // 19 GENX_(__NR_writev, sys_writev), // 20 GENX_(__NR_access, sys_access), // 21 LINXY(__NR_pipe, sys_pipe), // 22 GENX_(__NR_select, sys_select), // 23 LINX_(__NR_sched_yield, sys_sched_yield), // 24 GENX_(__NR_mremap, sys_mremap), // 25 GENX_(__NR_msync, sys_msync), // 26 GENXY(__NR_mincore, sys_mincore), // 27 GENX_(__NR_madvise, sys_madvise), // 28 PLAX_(__NR_shmget, sys_shmget), // 29 PLAXY(__NR_shmat, wrap_sys_shmat), // 30 PLAXY(__NR_shmctl, sys_shmctl), // 31 GENXY(__NR_dup, sys_dup), // 32 GENXY(__NR_dup2, sys_dup2), // 33 GENX_(__NR_pause, sys_pause), // 34 GENXY(__NR_nanosleep, sys_nanosleep), // 35 GENXY(__NR_getitimer, sys_getitimer), // 36 GENX_(__NR_alarm, sys_alarm), // 37 GENXY(__NR_setitimer, sys_setitimer), // 38 GENX_(__NR_getpid, sys_getpid), // 39 LINXY(__NR_sendfile, sys_sendfile), // 40 PLAXY(__NR_socket, sys_socket), // 41 PLAX_(__NR_connect, sys_connect), // 42 PLAXY(__NR_accept, sys_accept), // 43 PLAX_(__NR_sendto, sys_sendto), // 44 PLAXY(__NR_recvfrom, sys_recvfrom), // 45 PLAX_(__NR_sendmsg, sys_sendmsg), // 46 PLAXY(__NR_recvmsg, sys_recvmsg), // 47 PLAX_(__NR_shutdown, sys_shutdown), // 48 PLAX_(__NR_bind, sys_bind), // 49 PLAX_(__NR_listen, sys_listen), // 50 PLAXY(__NR_getsockname, sys_getsockname), // 51 PLAXY(__NR_getpeername, sys_getpeername), // 52 PLAXY(__NR_socketpair, sys_socketpair), // 53 PLAX_(__NR_setsockopt, sys_setsockopt), // 54 PLAXY(__NR_getsockopt, sys_getsockopt), // 55 PLAX_(__NR_clone, sys_clone), // 56 GENX_(__NR_fork, sys_fork), // 57 GENX_(__NR_vfork, sys_fork), // 58 treat as fork GENX_(__NR_execve, sys_execve), // 59 GENX_(__NR_exit, sys_exit), // 60 GENXY(__NR_wait4, sys_wait4), // 61 GENX_(__NR_kill, sys_kill), // 62 GENXY(__NR_uname, sys_newuname), // 63 PLAX_(__NR_semget, sys_semget), // 64 PLAX_(__NR_semop, sys_semop), // 65 PLAXY(__NR_semctl, sys_semctl), // 66 PLAXY(__NR_shmdt, sys_shmdt), // 67 PLAX_(__NR_msgget, sys_msgget), // 68 PLAX_(__NR_msgsnd, sys_msgsnd), // 69 PLAXY(__NR_msgrcv, sys_msgrcv), // 70 PLAXY(__NR_msgctl, sys_msgctl), // 71 LINXY(__NR_fcntl, sys_fcntl), // 72 GENX_(__NR_flock, sys_flock), // 73 GENX_(__NR_fsync, sys_fsync), // 74 GENX_(__NR_fdatasync, sys_fdatasync), // 75 GENX_(__NR_truncate, sys_truncate), // 76 GENX_(__NR_ftruncate, sys_ftruncate), // 77 GENXY(__NR_getdents, sys_getdents), // 78 GENXY(__NR_getcwd, sys_getcwd), // 79 GENX_(__NR_chdir, sys_chdir), // 80 GENX_(__NR_fchdir, sys_fchdir), // 81 GENX_(__NR_rename, sys_rename), // 82 GENX_(__NR_mkdir, sys_mkdir), // 83 GENX_(__NR_rmdir, sys_rmdir), // 84 GENXY(__NR_creat, sys_creat), // 85 GENX_(__NR_link, sys_link), // 86 GENX_(__NR_unlink, sys_unlink), // 87 GENX_(__NR_symlink, sys_symlink), // 88 GENX_(__NR_readlink, sys_readlink), // 89 GENX_(__NR_chmod, sys_chmod), // 90 GENX_(__NR_fchmod, sys_fchmod), // 91 GENX_(__NR_chown, sys_chown), // 92 GENX_(__NR_fchown, sys_fchown), // 93 GENX_(__NR_lchown, sys_lchown), // 94 GENX_(__NR_umask, sys_umask), // 95 GENXY(__NR_gettimeofday, sys_gettimeofday), // 96 GENXY(__NR_getrlimit, sys_getrlimit), // 97 GENXY(__NR_getrusage, sys_getrusage), // 98 LINXY(__NR_sysinfo, sys_sysinfo), // 99 GENXY(__NR_times, sys_times), // 100 PLAXY(__NR_ptrace, sys_ptrace), // 101 GENX_(__NR_getuid, sys_getuid), // 102 LINXY(__NR_syslog, sys_syslog), // 103 GENX_(__NR_getgid, sys_getgid), // 104 GENX_(__NR_setuid, sys_setuid), // 105 GENX_(__NR_setgid, sys_setgid), // 106 GENX_(__NR_geteuid, sys_geteuid), // 107 GENX_(__NR_getegid, sys_getegid), // 108 GENX_(__NR_setpgid, sys_setpgid), // 109 GENX_(__NR_getppid, sys_getppid), // 110 GENX_(__NR_getpgrp, sys_getpgrp), // 111 GENX_(__NR_setsid, sys_setsid), // 112 GENX_(__NR_setreuid, sys_setreuid), // 113 GENX_(__NR_setregid, sys_setregid), // 114 GENXY(__NR_getgroups, sys_getgroups), // 115 GENX_(__NR_setgroups, sys_setgroups), // 116 LINX_(__NR_setresuid, sys_setresuid), // 117 LINXY(__NR_getresuid, sys_getresuid), // 118 LINX_(__NR_setresgid, sys_setresgid), // 119 LINXY(__NR_getresgid, sys_getresgid), // 120 GENX_(__NR_getpgid, sys_getpgid), // 121 LINX_(__NR_setfsuid, sys_setfsuid), // 122 LINX_(__NR_setfsgid, sys_setfsgid), // 123 GENX_(__NR_getsid, sys_getsid), // 124 LINXY(__NR_capget, sys_capget), // 125 LINX_(__NR_capset, sys_capset), // 126 LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 127 LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 128 LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 129 LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 130 GENXY(__NR_sigaltstack, sys_sigaltstack), // 131 LINX_(__NR_utime, sys_utime), // 132 GENX_(__NR_mknod, sys_mknod), // 133 // (__NR_uselib, sys_uselib), // 134 LINX_(__NR_personality, sys_personality), // 135 // (__NR_ustat, sys_ustat), // 136 GENXY(__NR_statfs, sys_statfs), // 137 GENXY(__NR_fstatfs, sys_fstatfs), // 138 // (__NR_sysfs, sys_sysfs), // 139 GENX_(__NR_getpriority, sys_getpriority), // 140 GENX_(__NR_setpriority, sys_setpriority), // 141 LINXY(__NR_sched_setparam, sys_sched_setparam), // 142 LINXY(__NR_sched_getparam, sys_sched_getparam), // 143 LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 144 LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 145 LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 146 LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 147 LINXY(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 148 GENX_(__NR_mlock, sys_mlock), // 149 GENX_(__NR_munlock, sys_munlock), // 150 GENX_(__NR_mlockall, sys_mlockall), // 151 LINX_(__NR_munlockall, sys_munlockall), // 152 LINX_(__NR_vhangup, sys_vhangup), // 153 // (__NR_modify_ldt, sys_modify_ldt), // 154 // (__NR_pivot_root, sys_pivot_root), // 155 LINXY(__NR__sysctl, sys_sysctl), // 156 LINXY(__NR_prctl, sys_prctl), // 157 PLAX_(__NR_arch_prctl, sys_arch_prctl), // 158 LINXY(__NR_adjtimex, sys_adjtimex), // 159 GENX_(__NR_setrlimit, sys_setrlimit), // 160 GENX_(__NR_chroot, sys_chroot), // 161 GENX_(__NR_sync, sys_sync), // 162 // (__NR_acct, sys_acct), // 163 GENX_(__NR_settimeofday, sys_settimeofday), // 164 LINX_(__NR_mount, sys_mount), // 165 LINX_(__NR_umount2, sys_umount), // 166 // (__NR_swapon, sys_swapon), // 167 // (__NR_swapoff, sys_swapoff), // 168 // (__NR_reboot, sys_reboot), // 169 // (__NR_sethostname, sys_sethostname), // 170 // (__NR_setdomainname, sys_setdomainname), // 171 GENX_(__NR_iopl, sys_iopl), // 172 LINX_(__NR_ioperm, sys_ioperm), // 173 GENX_(__NR_create_module, sys_ni_syscall), // 174 LINX_(__NR_init_module, sys_init_module), // 175 LINX_(__NR_delete_module, sys_delete_module), // 176 // (__NR_get_kernel_syms, sys_ni_syscall), // 177 // (__NR_query_module, sys_ni_syscall), // 178 LINX_(__NR_quotactl, sys_quotactl), // 179 // (__NR_nfsservctl, sys_nfsservctl), // 180 // (__NR_getpmsg, sys_ni_syscall), // 181 // (__NR_putpmsg, sys_ni_syscall), // 182 // (__NR_afs_syscall, sys_ni_syscall), // 183 PLAXY(184, sys_syscall184), // 184 // sys_bproc? // (__NR_security, sys_ni_syscall), // 185 LINX_(__NR_gettid, sys_gettid), // 186 LINX_(__NR_readahead, sys_readahead), // 187 LINX_(__NR_setxattr, sys_setxattr), // 188 LINX_(__NR_lsetxattr, sys_lsetxattr), // 189 LINX_(__NR_fsetxattr, sys_fsetxattr), // 190 LINXY(__NR_getxattr, sys_getxattr), // 191 LINXY(__NR_lgetxattr, sys_lgetxattr), // 192 LINXY(__NR_fgetxattr, sys_fgetxattr), // 193 LINXY(__NR_listxattr, sys_listxattr), // 194 LINXY(__NR_llistxattr, sys_llistxattr), // 195 LINXY(__NR_flistxattr, sys_flistxattr), // 196 LINX_(__NR_removexattr, sys_removexattr), // 197 LINX_(__NR_lremovexattr, sys_lremovexattr), // 198 LINX_(__NR_fremovexattr, sys_fremovexattr), // 199 LINXY(__NR_tkill, sys_tkill), // 200 GENXY(__NR_time, sys_time), /*was sys_time64*/ // 201 LINXY(__NR_futex, sys_futex), // 202 LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 203 LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 204 // (__NR_set_thread_area, sys_ni_syscall), // 205 LINXY(__NR_io_setup, sys_io_setup), // 206 LINX_(__NR_io_destroy, sys_io_destroy), // 207 LINXY(__NR_io_getevents, sys_io_getevents), // 208 LINX_(__NR_io_submit, sys_io_submit), // 209 LINXY(__NR_io_cancel, sys_io_cancel), // 210 // (__NR_get_thread_area, sys_ni_syscall), // 211 LINXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 212 LINXY(__NR_epoll_create, sys_epoll_create), // 213 // (__NR_epoll_ctl_old, sys_ni_syscall), // 214 // (__NR_epoll_wait_old, sys_ni_syscall), // 215 // (__NR_remap_file_pages, sys_remap_file_pages)// 216 GENXY(__NR_getdents64, sys_getdents64), // 217 LINX_(__NR_set_tid_address, sys_set_tid_address),// 218 // (__NR_restart_syscall, sys_restart_syscall),// 219 PLAX_(__NR_semtimedop, sys_semtimedop), // 220 PLAX_(__NR_fadvise64, sys_fadvise64), // 221 LINXY(__NR_timer_create, sys_timer_create), // 222 LINXY(__NR_timer_settime, sys_timer_settime), // 223 LINXY(__NR_timer_gettime, sys_timer_gettime), // 224 LINX_(__NR_timer_getoverrun, sys_timer_getoverrun), // 225 LINX_(__NR_timer_delete, sys_timer_delete), // 226 LINX_(__NR_clock_settime, sys_clock_settime), // 227 LINXY(__NR_clock_gettime, sys_clock_gettime), // 228 LINXY(__NR_clock_getres, sys_clock_getres), // 229 LINXY(__NR_clock_nanosleep, sys_clock_nanosleep),// 230 LINX_(__NR_exit_group, sys_exit_group), // 231 LINXY(__NR_epoll_wait, sys_epoll_wait), // 232 LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 233 LINXY(__NR_tgkill, sys_tgkill), // 234 GENX_(__NR_utimes, sys_utimes), // 235 // (__NR_vserver, sys_ni_syscall), // 236 LINX_(__NR_mbind, sys_mbind), // 237 LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 238 LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 239 LINXY(__NR_mq_open, sys_mq_open), // 240 LINX_(__NR_mq_unlink, sys_mq_unlink), // 241 LINX_(__NR_mq_timedsend, sys_mq_timedsend), // 242 LINXY(__NR_mq_timedreceive, sys_mq_timedreceive),// 243 LINX_(__NR_mq_notify, sys_mq_notify), // 244 LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 245 // (__NR_kexec_load, sys_ni_syscall), // 246 LINXY(__NR_waitid, sys_waitid), // 247 LINX_(__NR_add_key, sys_add_key), // 248 LINX_(__NR_request_key, sys_request_key), // 249 LINXY(__NR_keyctl, sys_keyctl), // 250 LINX_(__NR_ioprio_set, sys_ioprio_set), // 251 LINX_(__NR_ioprio_get, sys_ioprio_get), // 252 LINX_(__NR_inotify_init, sys_inotify_init), // 253 LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 254 LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 255 // LINX_(__NR_migrate_pages, sys_migrate_pages), // 256 LINXY(__NR_openat, sys_openat), // 257 LINX_(__NR_mkdirat, sys_mkdirat), // 258 LINX_(__NR_mknodat, sys_mknodat), // 259 LINX_(__NR_fchownat, sys_fchownat), // 260 LINX_(__NR_futimesat, sys_futimesat), // 261 LINXY(__NR_newfstatat, sys_newfstatat), // 262 LINX_(__NR_unlinkat, sys_unlinkat), // 263 LINX_(__NR_renameat, sys_renameat), // 264 LINX_(__NR_linkat, sys_linkat), // 265 LINX_(__NR_symlinkat, sys_symlinkat), // 266 LINX_(__NR_readlinkat, sys_readlinkat), // 267 LINX_(__NR_fchmodat, sys_fchmodat), // 268 LINX_(__NR_faccessat, sys_faccessat), // 269 LINX_(__NR_pselect6, sys_pselect6), // 270 LINXY(__NR_ppoll, sys_ppoll), // 271 // LINX_(__NR_unshare, sys_unshare), // 272 LINX_(__NR_set_robust_list, sys_set_robust_list), // 273 LINXY(__NR_get_robust_list, sys_get_robust_list), // 274 LINX_(__NR_splice, sys_splice), // 275 LINX_(__NR_tee, sys_tee), // 276 LINX_(__NR_sync_file_range, sys_sync_file_range), // 277 LINXY(__NR_vmsplice, sys_vmsplice), // 278 LINXY(__NR_move_pages, sys_move_pages), // 279 LINX_(__NR_utimensat, sys_utimensat), // 280 LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 281 LINXY(__NR_signalfd, sys_signalfd), // 282 LINXY(__NR_timerfd_create, sys_timerfd_create), // 283 LINX_(__NR_eventfd, sys_eventfd), // 284 LINX_(__NR_fallocate, sys_fallocate), // 285 LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 286 LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 287 PLAXY(__NR_accept4, sys_accept4), // 288 LINXY(__NR_signalfd4, sys_signalfd4), // 289 LINX_(__NR_eventfd2, sys_eventfd2), // 290 LINXY(__NR_epoll_create1, sys_epoll_create1), // 291 LINXY(__NR_dup3, sys_dup3), // 292 LINXY(__NR_pipe2, sys_pipe2), // 293 LINXY(__NR_inotify_init1, sys_inotify_init1), // 294 LINXY(__NR_preadv, sys_preadv), // 295 LINX_(__NR_pwritev, sys_pwritev), // 296 LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo),// 297 LINXY(__NR_perf_event_open, sys_perf_event_open), // 298 LINXY(__NR_recvmmsg, sys_recvmmsg), // 299 // LINX_(__NR_fanotify_init, sys_ni_syscall), // 300 // LINX_(__NR_fanotify_mark, sys_ni_syscall), // 301 LINXY(__NR_prlimit64, sys_prlimit64), // 302 // LINX_(__NR_name_to_handle_at, sys_ni_syscall), // 303 // LINX_(__NR_open_by_handle_at, sys_ni_syscall), // 304 // LINX_(__NR_clock_adjtime, sys_ni_syscall), // 305 // LINX_(__NR_syncfs, sys_ni_syscall), // 306 LINXY(__NR_sendmmsg, sys_sendmmsg), // 307 // LINX_(__NR_setns, sys_ni_syscall), // 308 LINXY(__NR_getcpu, sys_getcpu), // 309 LINXY(__NR_process_vm_readv, sys_process_vm_readv), // 310 LINX_(__NR_process_vm_writev, sys_process_vm_writev) // 311 }; SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno ) { const UInt syscall_table_size = sizeof(syscall_table) / sizeof(syscall_table[0]); /* Is it in the contiguous initial section of the table? */ if (sysno < syscall_table_size) { SyscallTableEntry* sys = &syscall_table[sysno]; if (sys->before == NULL) return NULL; /* no entry */ else return sys; } /* Can't find a wrapper */ return NULL; } #endif // defined(VGP_amd64_linux) /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/