/*--------------------------------------------------------------------*/ /*--- Platform-specific syscalls stuff. syswrap-arm-linux.c -----*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2000-2012 Nicholas Nethercote njn@valgrind.org Copyright (C) 2008-2012 Evan Geller gaze@bea.ms This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #if defined(VGP_arm_linux) #include "pub_core_basics.h" #include "pub_core_vki.h" #include "pub_core_vkiscnums.h" #include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy #include "pub_core_threadstate.h" #include "pub_core_aspacemgr.h" #include "pub_core_debuglog.h" #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_libcproc.h" #include "pub_core_libcsignal.h" #include "pub_core_options.h" #include "pub_core_scheduler.h" #include "pub_core_sigframe.h" // For VG_(sigframe_destroy)() #include "pub_core_signals.h" #include "pub_core_syscall.h" #include "pub_core_syswrap.h" #include "pub_core_tooliface.h" #include "pub_core_stacks.h" // VG_(register_stack) #include "pub_core_transtab.h" // VG_(discard_translations) #include "priv_types_n_macros.h" #include "priv_syswrap-generic.h" /* for decls of generic wrappers */ #include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */ #include "priv_syswrap-main.h" /* --------------------------------------------------------------------- clone() handling ------------------------------------------------------------------ */ /* Call f(arg1), but first switch stacks, using 'stack' as the new stack, and use 'retaddr' as f's return-to address. Also, clear all the integer registers before entering f.*/ __attribute__((noreturn)) void ML_(call_on_new_stack_0_1) ( Addr stack, Addr retaddr, void (*f)(Word), Word arg1 ); // r0 = stack // r1 = retaddr // r2 = f // r3 = arg1 asm( ".text\n" ".globl vgModuleLocal_call_on_new_stack_0_1\n" "vgModuleLocal_call_on_new_stack_0_1:\n" " mov sp,r0\n\t" /* Stack pointer */ " mov lr,r1\n\t" /* Return address */ " mov r0,r3\n\t" /* First argument */ " push {r2}\n\t" /* So we can ret to the new dest */ " mov r1, #0\n\t" /* Clear our GPRs */ " mov r2, #0\n\t" " mov r3, #0\n\t" " mov r4, #0\n\t" " mov r5, #0\n\t" " mov r6, #0\n\t" " mov r7, #0\n\t" " mov r8, #0\n\t" " mov r9, #0\n\t" " mov r10, #0\n\t" " mov r11, #0\n\t" " mov r12, #0\n\t" " pop {pc}\n\t" /* Herrre we go! */ ".previous\n" ); #define __NR_CLONE VG_STRINGIFY(__NR_clone) #define __NR_EXIT VG_STRINGIFY(__NR_exit) extern ULong do_syscall_clone_arm_linux ( Word (*fn)(void *), void* stack, Int flags, void* arg, Int* child_tid, Int* parent_tid, void* tls ); asm( ".text\n" ".globl do_syscall_clone_arm_linux\n" "do_syscall_clone_arm_linux:\n" /*Setup child stack */ " str r0, [r1, #-4]!\n" " str r3, [r1, #-4]!\n" " push {r4,r7}\n" " mov r0, r2\n" /* arg1: flags */ /* r1 (arg2) is already our child's stack */ " ldr r2, [sp, #12]\n" // parent tid " ldr r3, [sp, #16]\n" // tls " ldr r4, [sp, #8]\n" // Child tid " mov r7, #"__NR_CLONE"\n" " svc 0x00000000\n" " cmp r0, #0\n" " beq 1f\n" /* Parent */ " pop {r4,r7}\n" " bx lr\n" "1:\n" /*child*/ " mov lr, pc\n" " pop {r0,pc}\n" /* Retval from child is already in r0 */ " mov r7, #"__NR_EXIT"\n" " svc 0x00000000\n" /* Urh.. why did exit return? */ " .long 0\n" " .previous\n" ); #undef __NR_CLONE #undef __NR_EXIT // forward declarations static void setup_child ( ThreadArchState*, ThreadArchState* ); static void assign_guest_tls(ThreadId ctid, Addr tlsptr); static SysRes sys_set_tls ( ThreadId tid, Addr tlsptr ); /* When a client clones, we need to keep track of the new thread. This means: 1. allocate a ThreadId+ThreadState+stack for the the thread 2. initialize the thread's new VCPU state 3. create the thread using the same args as the client requested, but using the scheduler entrypoint for IP, and a separate stack for SP. */ static SysRes do_clone ( ThreadId ptid, UInt flags, Addr sp, Int *parent_tidptr, Int *child_tidptr, Addr child_tls) { const Bool debug = False; ThreadId ctid = VG_(alloc_ThreadState)(); ThreadState* ptst = VG_(get_ThreadState)(ptid); ThreadState* ctst = VG_(get_ThreadState)(ctid); UInt r0; UWord *stack; NSegment const* seg; SysRes res; vki_sigset_t blockall, savedmask; VG_(sigfillset)(&blockall); vg_assert(VG_(is_running_thread)(ptid)); vg_assert(VG_(is_valid_tid)(ctid)); stack = (UWord*)ML_(allocstack)(ctid); if(stack == NULL) { res = VG_(mk_SysRes_Error)( VKI_ENOMEM ); goto out; } setup_child( &ctst->arch, &ptst->arch ); ctst->arch.vex.guest_R0 = 0; if(sp != 0) ctst->arch.vex.guest_R13 = sp; ctst->os_state.parent = ptid; ctst->sig_mask = ptst->sig_mask; ctst->tmp_sig_mask = ptst->sig_mask; /* Start the child with its threadgroup being the same as the parent's. This is so that any exit_group calls that happen after the child is created but before it sets its os_state.threadgroup field for real (in thread_wrapper in syswrap-linux.c), really kill the new thread. a.k.a this avoids a race condition in which the thread is unkillable (via exit_group) because its threadgroup is not set. The race window is probably only a few hundred or a few thousand cycles long. See #226116. */ ctst->os_state.threadgroup = ptst->os_state.threadgroup; seg = VG_(am_find_nsegment)((Addr)sp); if (seg && seg->kind != SkResvn) { ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(sp); ctst->client_stack_szB = ctst->client_stack_highest_word - seg->start; VG_(register_stack)(seg->start, ctst->client_stack_highest_word); if (debug) VG_(printf)("tid %d: guessed client stack range %#lx-%#lx\n", ctid, seg->start, VG_PGROUNDUP(sp)); } else { VG_(message)(Vg_UserMsg, "!? New thread %d starts with sp+%#lx) unmapped\n", ctid, sp); ctst->client_stack_szB = 0; } vg_assert(VG_(owns_BigLock_LL)(ptid)); VG_TRACK ( pre_thread_ll_create, ptid, ctid ); if (flags & VKI_CLONE_SETTLS) { /* Just assign the tls pointer in the guest TPIDRURO. */ assign_guest_tls(ctid, child_tls); } flags &= ~VKI_CLONE_SETTLS; VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask); r0 = do_syscall_clone_arm_linux( ML_(start_thread_NORETURN), stack, flags, &VG_(threads)[ctid], child_tidptr, parent_tidptr, NULL ); //VG_(printf)("AFTER SYSCALL, %x and %x CHILD: %d PARENT: %d\n",child_tidptr, parent_tidptr,*child_tidptr,*parent_tidptr); res = VG_(mk_SysRes_arm_linux)( r0 ); VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL); out: if (sr_isError(res)) { VG_(cleanup_thread)(&ctst->arch); ctst->status = VgTs_Empty; VG_TRACK( pre_thread_ll_exit, ctid ); } return res; } /* --------------------------------------------------------------------- More thread stuff ------------------------------------------------------------------ */ // ARM doesn't have any architecture specific thread stuff that // needs to be cleaned up void VG_(cleanup_thread) ( ThreadArchState* arch ) { } void setup_child ( /*OUT*/ ThreadArchState *child, /*IN*/ ThreadArchState *parent ) { child->vex = parent->vex; child->vex_shadow1 = parent->vex_shadow1; child->vex_shadow2 = parent->vex_shadow2; } static void assign_guest_tls(ThreadId tid, Addr tlsptr) { VG_(threads)[tid].arch.vex.guest_TPIDRURO = tlsptr; } /* Assigns tlsptr to the guest TPIDRURO. If needed for the specific hardware, really executes the set_tls syscall. */ static SysRes sys_set_tls ( ThreadId tid, Addr tlsptr ) { assign_guest_tls(tid, tlsptr); #if defined(ANDROID_HARDWARE_emulator) /* Android emulator does not provide an hw tls register. So, the tls register is emulated by the kernel. This emulated value is set by the __NR_ARM_set_tls syscall. The emulated value must be read by the kernel helper function located at 0xffff0fe0. The emulated tlsptr is located at 0xffff0ff0 (so slightly after the kernel helper function). Note that applications are not supposed to read this directly. For compatibility : if there is a hw tls register, the kernel will put at 0xffff0fe0 the instructions to read it, so as to have old applications calling the kernel helper working properly. For having emulated guest TLS working correctly with Valgrind, it is needed to execute the syscall to set the emulated TLS value in addition to the assignment of TPIDRURO. Note: the below means that if we need thread local storage for Valgrind host, then there will be a conflict between the need of the guest tls and of the host tls. If all the guest code would cleanly call 0xffff0fe0, then we might maybe intercept this. However, at least __libc_preinit reads directly 0xffff0ff0. */ /* ??? might call the below if auxv->u.a_val & VKI_HWCAP_TLS ??? Unclear if real hardware having tls hw register sets VKI_HWCAP_TLS. */ return VG_(do_syscall1) (__NR_ARM_set_tls, tlsptr); #else return VG_(mk_SysRes_Success)( 0 ); #endif } /* --------------------------------------------------------------------- PRE/POST wrappers for arm/Linux-specific syscalls ------------------------------------------------------------------ */ #define PRE(name) DEFN_PRE_TEMPLATE(arm_linux, name) #define POST(name) DEFN_POST_TEMPLATE(arm_linux, name) /* Add prototypes for the wrappers declared here, so that gcc doesn't harass us for not having prototypes. Really this is a kludge -- the right thing to do is to make these wrappers 'static' since they aren't visible outside this file, but that requires even more macro magic. */ DECL_TEMPLATE(arm_linux, sys_socketcall); DECL_TEMPLATE(arm_linux, sys_socket); DECL_TEMPLATE(arm_linux, sys_setsockopt); DECL_TEMPLATE(arm_linux, sys_getsockopt); DECL_TEMPLATE(arm_linux, sys_connect); DECL_TEMPLATE(arm_linux, sys_accept); DECL_TEMPLATE(arm_linux, sys_accept4); DECL_TEMPLATE(arm_linux, sys_sendto); DECL_TEMPLATE(arm_linux, sys_recvfrom); //XXX: Semaphore code ripped from AMD64. DECL_TEMPLATE(arm_linux, sys_semget); DECL_TEMPLATE(arm_linux, sys_semop); DECL_TEMPLATE(arm_linux, sys_semctl); DECL_TEMPLATE(arm_linux, sys_semtimedop); //XXX: Shared memory code ripped from AMD64 // DECL_TEMPLATE(arm_linux, wrap_sys_shmat); DECL_TEMPLATE(arm_linux, sys_shmget); DECL_TEMPLATE(arm_linux, sys_shmdt); DECL_TEMPLATE(arm_linux, sys_shmctl); DECL_TEMPLATE(arm_linux, sys_sendmsg); DECL_TEMPLATE(arm_linux, sys_recvmsg); //msg* code from AMD64 DECL_TEMPLATE(arm_linux, sys_msgget); DECL_TEMPLATE(arm_linux, sys_msgrcv); DECL_TEMPLATE(arm_linux, sys_msgsnd); DECL_TEMPLATE(arm_linux, sys_msgctl); DECL_TEMPLATE(arm_linux, sys_shutdown); DECL_TEMPLATE(arm_linux, sys_bind); DECL_TEMPLATE(arm_linux, sys_listen); DECL_TEMPLATE(arm_linux, sys_getsockname); DECL_TEMPLATE(arm_linux, sys_getpeername); DECL_TEMPLATE(arm_linux, sys_socketpair); DECL_TEMPLATE(arm_linux, sys_send); DECL_TEMPLATE(arm_linux, sys_recv); DECL_TEMPLATE(arm_linux, sys_mmap2); DECL_TEMPLATE(arm_linux, sys_stat64); DECL_TEMPLATE(arm_linux, sys_lstat64); DECL_TEMPLATE(arm_linux, sys_fstatat64); DECL_TEMPLATE(arm_linux, sys_fstat64); DECL_TEMPLATE(arm_linux, sys_clone); DECL_TEMPLATE(arm_linux, sys_sigreturn); DECL_TEMPLATE(arm_linux, sys_rt_sigreturn); DECL_TEMPLATE(arm_linux, sys_sigsuspend); DECL_TEMPLATE(arm_linux, sys_set_tls); DECL_TEMPLATE(arm_linux, sys_cacheflush); DECL_TEMPLATE(arm_linux, sys_ptrace); PRE(sys_socketcall) { # define ARG2_0 (((UWord*)ARG2)[0]) # define ARG2_1 (((UWord*)ARG2)[1]) # define ARG2_2 (((UWord*)ARG2)[2]) # define ARG2_3 (((UWord*)ARG2)[3]) # define ARG2_4 (((UWord*)ARG2)[4]) # define ARG2_5 (((UWord*)ARG2)[5]) *flags |= SfMayBlock; PRINT("sys_socketcall ( %ld, %#lx )",ARG1,ARG2); PRE_REG_READ2(long, "socketcall", int, call, unsigned long *, args); switch (ARG1 /* request */) { case VKI_SYS_SOCKETPAIR: /* int socketpair(int d, int type, int protocol, int sv[2]); */ PRE_MEM_READ( "socketcall.socketpair(args)", ARG2, 4*sizeof(Addr) ); ML_(generic_PRE_sys_socketpair)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3 ); break; case VKI_SYS_SOCKET: /* int socket(int domain, int type, int protocol); */ PRE_MEM_READ( "socketcall.socket(args)", ARG2, 3*sizeof(Addr) ); break; case VKI_SYS_BIND: /* int bind(int sockfd, struct sockaddr *my_addr, int addrlen); */ PRE_MEM_READ( "socketcall.bind(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_bind)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_LISTEN: /* int listen(int s, int backlog); */ PRE_MEM_READ( "socketcall.listen(args)", ARG2, 2*sizeof(Addr) ); break; case VKI_SYS_ACCEPT: { /* int accept(int s, struct sockaddr *addr, int *addrlen); */ PRE_MEM_READ( "socketcall.accept(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_accept)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; } case VKI_SYS_ACCEPT4: { /*int accept(int s, struct sockaddr *add, int *addrlen, int flags)*/ PRE_MEM_READ( "socketcall.accept4(args)", ARG2, 4*sizeof(Addr) ); ML_(generic_PRE_sys_accept)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; } case VKI_SYS_SENDTO: /* int sendto(int s, const void *msg, int len, unsigned int flags, const struct sockaddr *to, int tolen); */ PRE_MEM_READ( "socketcall.sendto(args)", ARG2, 6*sizeof(Addr) ); ML_(generic_PRE_sys_sendto)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_SEND: /* int send(int s, const void *msg, size_t len, int flags); */ PRE_MEM_READ( "socketcall.send(args)", ARG2, 4*sizeof(Addr) ); ML_(generic_PRE_sys_send)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_RECVFROM: /* int recvfrom(int s, void *buf, int len, unsigned int flags, struct sockaddr *from, int *fromlen); */ PRE_MEM_READ( "socketcall.recvfrom(args)", ARG2, 6*sizeof(Addr) ); ML_(generic_PRE_sys_recvfrom)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_RECV: /* int recv(int s, void *buf, int len, unsigned int flags); */ /* man 2 recv says: The recv call is normally used only on a connected socket (see connect(2)) and is identical to recvfrom with a NULL from parameter. */ PRE_MEM_READ( "socketcall.recv(args)", ARG2, 4*sizeof(Addr) ); ML_(generic_PRE_sys_recv)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_CONNECT: /* int connect(int sockfd, struct sockaddr *serv_addr, int addrlen ); */ PRE_MEM_READ( "socketcall.connect(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_connect)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SETSOCKOPT: /* int setsockopt(int s, int level, int optname, const void *optval, int optlen); */ PRE_MEM_READ( "socketcall.setsockopt(args)", ARG2, 5*sizeof(Addr) ); ML_(generic_PRE_sys_setsockopt)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKOPT: /* int getsockopt(int s, int level, int optname, void *optval, socklen_t *optlen); */ PRE_MEM_READ( "socketcall.getsockopt(args)", ARG2, 5*sizeof(Addr) ); ML_(linux_PRE_sys_getsockopt)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKNAME: /* int getsockname(int s, struct sockaddr* name, int* namelen) */ PRE_MEM_READ( "socketcall.getsockname(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_getsockname)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_GETPEERNAME: /* int getpeername(int s, struct sockaddr* name, int* namelen) */ PRE_MEM_READ( "socketcall.getpeername(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_getpeername)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SHUTDOWN: /* int shutdown(int s, int how); */ PRE_MEM_READ( "socketcall.shutdown(args)", ARG2, 2*sizeof(Addr) ); break; case VKI_SYS_SENDMSG: { /* int sendmsg(int s, const struct msghdr *msg, int flags); */ /* this causes warnings, and I don't get why. glibc bug? * (after all it's glibc providing the arguments array) PRE_MEM_READ( "socketcall.sendmsg(args)", ARG2, 3*sizeof(Addr) ); */ ML_(generic_PRE_sys_sendmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1 ); break; } case VKI_SYS_RECVMSG: { /* int recvmsg(int s, struct msghdr *msg, int flags); */ /* this causes warnings, and I don't get why. glibc bug? * (after all it's glibc providing the arguments array) PRE_MEM_READ("socketcall.recvmsg(args)", ARG2, 3*sizeof(Addr) ); */ ML_(generic_PRE_sys_recvmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1 ); break; } default: VG_(message)(Vg_DebugMsg,"Warning: unhandled socketcall 0x%lx",ARG1); SET_STATUS_Failure( VKI_EINVAL ); break; } # undef ARG2_0 # undef ARG2_1 # undef ARG2_2 # undef ARG2_3 # undef ARG2_4 # undef ARG2_5 } POST(sys_socketcall) { # define ARG2_0 (((UWord*)ARG2)[0]) # define ARG2_1 (((UWord*)ARG2)[1]) # define ARG2_2 (((UWord*)ARG2)[2]) # define ARG2_3 (((UWord*)ARG2)[3]) # define ARG2_4 (((UWord*)ARG2)[4]) # define ARG2_5 (((UWord*)ARG2)[5]) SysRes r; vg_assert(SUCCESS); switch (ARG1 /* request */) { case VKI_SYS_SOCKETPAIR: r = ML_(generic_POST_sys_socketpair)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3 ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_SOCKET: r = ML_(generic_POST_sys_socket)( tid, VG_(mk_SysRes_Success)(RES) ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_BIND: /* int bind(int sockfd, struct sockaddr *my_addr, int addrlen); */ break; case VKI_SYS_LISTEN: /* int listen(int s, int backlog); */ break; case VKI_SYS_ACCEPT: case VKI_SYS_ACCEPT4: /* int accept(int s, struct sockaddr *addr, int *addrlen); */ /* int accept4(int s, struct sockaddr *addr, int *addrlen, int flags); */ r = ML_(generic_POST_sys_accept)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_SENDTO: break; case VKI_SYS_SEND: break; case VKI_SYS_RECVFROM: ML_(generic_POST_sys_recvfrom)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_RECV: ML_(generic_POST_sys_recv)( tid, RES, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_CONNECT: break; case VKI_SYS_SETSOCKOPT: break; case VKI_SYS_GETSOCKOPT: ML_(linux_POST_sys_getsockopt)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKNAME: ML_(generic_POST_sys_getsockname)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_GETPEERNAME: ML_(generic_POST_sys_getpeername)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SHUTDOWN: break; case VKI_SYS_SENDMSG: break; case VKI_SYS_RECVMSG: ML_(generic_POST_sys_recvmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1, RES ); break; default: VG_(message)(Vg_DebugMsg,"FATAL: unhandled socketcall 0x%lx",ARG1); VG_(core_panic)("... bye!\n"); break; /*NOTREACHED*/ } # undef ARG2_0 # undef ARG2_1 # undef ARG2_2 # undef ARG2_3 # undef ARG2_4 # undef ARG2_5 } PRE(sys_socket) { PRINT("sys_socket ( %ld, %ld, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol); } POST(sys_socket) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_socket)(tid, VG_(mk_SysRes_Success)(RES)); SET_STATUS_from_SysRes(r); } PRE(sys_setsockopt) { PRINT("sys_setsockopt ( %ld, %ld, %ld, %#lx, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "setsockopt", int, s, int, level, int, optname, const void *, optval, int, optlen); ML_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_getsockopt) { PRINT("sys_getsockopt ( %ld, %ld, %ld, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "getsockopt", int, s, int, level, int, optname, void *, optval, int, *optlen); ML_(linux_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); } POST(sys_getsockopt) { vg_assert(SUCCESS); ML_(linux_POST_sys_getsockopt)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_connect) { *flags |= SfMayBlock; PRINT("sys_connect ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "connect", int, sockfd, struct sockaddr *, serv_addr, int, addrlen); ML_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3); } PRE(sys_accept) { *flags |= SfMayBlock; PRINT("sys_accept ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "accept", int, s, struct sockaddr *, addr, int, *addrlen); ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3); } POST(sys_accept) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); SET_STATUS_from_SysRes(r); } PRE(sys_accept4) { *flags |= SfMayBlock; PRINT("sys_accept4 ( %ld, %#lx, %ld, %ld )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "accept4", int, s, struct sockaddr *, addr, int, *addrlen, int, flags); ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3); } POST(sys_accept4) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); SET_STATUS_from_SysRes(r); } PRE(sys_sendto) { *flags |= SfMayBlock; PRINT("sys_sendto ( %ld, %#lx, %ld, %lu, %#lx, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); PRE_REG_READ6(long, "sendto", int, s, const void *, msg, int, len, unsigned int, flags, const struct sockaddr *, to, int, tolen); ML_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } PRE(sys_recvfrom) { *flags |= SfMayBlock; PRINT("sys_recvfrom ( %ld, %#lx, %ld, %lu, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); PRE_REG_READ6(long, "recvfrom", int, s, void *, buf, int, len, unsigned int, flags, struct sockaddr *, from, int *, fromlen); ML_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } POST(sys_recvfrom) { vg_assert(SUCCESS); ML_(generic_POST_sys_recvfrom)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } PRE(sys_sendmsg) { *flags |= SfMayBlock; PRINT("sys_sendmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "sendmsg", int, s, const struct msghdr *, msg, int, flags); ML_(generic_PRE_sys_sendmsg)(tid, "msg", (struct vki_msghdr *)ARG2); } PRE(sys_recvmsg) { *flags |= SfMayBlock; PRINT("sys_recvmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags); ML_(generic_PRE_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2); } POST(sys_recvmsg) { ML_(generic_POST_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2, RES); } //XXX: Semaphore code ripped from AMD64. PRE(sys_semget) { PRINT("sys_semget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semget", vki_key_t, key, int, nsems, int, semflg); } PRE(sys_semop) { *flags |= SfMayBlock; PRINT("sys_semop ( %ld, %#lx, %lu )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semop", int, semid, struct sembuf *, sops, unsigned, nsoops); ML_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3); } PRE(sys_semctl) { switch (ARG3 & ~VKI_IPC_64) { case VKI_IPC_INFO: case VKI_SEM_INFO: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, struct seminfo *, arg); break; case VKI_IPC_STAT: case VKI_SEM_STAT: case VKI_IPC_SET: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, struct semid_ds *, arg); break; case VKI_GETALL: case VKI_SETALL: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, unsigned short *, arg); break; default: PRINT("sys_semctl ( %ld, %ld, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semctl", int, semid, int, semnum, int, cmd); break; } ML_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3,ARG4); } POST(sys_semctl) { ML_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3,ARG4); } PRE(sys_semtimedop) { *flags |= SfMayBlock; PRINT("sys_semtimedop ( %ld, %#lx, %lu, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semtimedop", int, semid, struct sembuf *, sops, unsigned, nsoops, struct timespec *, timeout); ML_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4); } //amd64 PRE(sys_msgget) { PRINT("sys_msgget ( %ld, %ld )",ARG1,ARG2); PRE_REG_READ2(long, "msgget", vki_key_t, key, int, msgflg); } PRE(sys_msgsnd) { PRINT("sys_msgsnd ( %ld, %#lx, %ld, %ld )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "msgsnd", int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz, int, msgflg); ML_(linux_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; } PRE(sys_msgrcv) { PRINT("sys_msgrcv ( %ld, %#lx, %ld, %ld, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "msgrcv", int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz, long, msgytp, int, msgflg); ML_(linux_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; } POST(sys_msgrcv) { ML_(linux_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_msgctl) { PRINT("sys_msgctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "msgctl", int, msqid, int, cmd, struct msqid_ds *, buf); ML_(linux_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3); } POST(sys_msgctl) { ML_(linux_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3); } //shared memory code from AMD64 PRE(sys_shmget) { PRINT("sys_shmget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmget", vki_key_t, key, vki_size_t, size, int, shmflg); } PRE(wrap_sys_shmat) { UWord arg2tmp; PRINT("wrap_sys_shmat ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmat", int, shmid, const void *, shmaddr, int, shmflg); /* Round the attach address down to an VKI_SHMLBA boundary if the client requested rounding. See #222545. This is necessary only on arm-linux because VKI_SHMLBA is 4 * VKI_PAGE size; on all other linux targets it is the same as the page size. */ if (ARG3 & VKI_SHM_RND) ARG2 = VG_ROUNDDN(ARG2, VKI_SHMLBA); arg2tmp = ML_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3); if (arg2tmp == 0) SET_STATUS_Failure( VKI_EINVAL ); else ARG2 = arg2tmp; } POST(wrap_sys_shmat) { ML_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_shmdt) { PRINT("sys_shmdt ( %#lx )",ARG1); PRE_REG_READ1(long, "shmdt", const void *, shmaddr); if (!ML_(generic_PRE_sys_shmdt)(tid, ARG1)) SET_STATUS_Failure( VKI_EINVAL ); } POST(sys_shmdt) { ML_(generic_POST_sys_shmdt)(tid, RES,ARG1); } PRE(sys_shmctl) { PRINT("sys_shmctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmctl", int, shmid, int, cmd, struct shmid_ds *, buf); ML_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2,ARG3); } POST(sys_shmctl) { ML_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_shutdown) { *flags |= SfMayBlock; PRINT("sys_shutdown ( %ld, %ld )",ARG1,ARG2); PRE_REG_READ2(int, "shutdown", int, s, int, how); } PRE(sys_bind) { PRINT("sys_bind ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "bind", int, sockfd, struct sockaddr *, my_addr, int, addrlen); ML_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3); } PRE(sys_listen) { PRINT("sys_listen ( %ld, %ld )",ARG1,ARG2); PRE_REG_READ2(long, "listen", int, s, int, backlog); } PRE(sys_getsockname) { PRINT("sys_getsockname ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "getsockname", int, s, struct sockaddr *, name, int *, namelen); ML_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3); } POST(sys_getsockname) { vg_assert(SUCCESS); ML_(generic_POST_sys_getsockname)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); } PRE(sys_getpeername) { PRINT("sys_getpeername ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "getpeername", int, s, struct sockaddr *, name, int *, namelen); ML_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3); } POST(sys_getpeername) { vg_assert(SUCCESS); ML_(generic_POST_sys_getpeername)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); } PRE(sys_socketpair) { PRINT("sys_socketpair ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "socketpair", int, d, int, type, int, protocol, int*, sv); ML_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4); } POST(sys_socketpair) { vg_assert(SUCCESS); ML_(generic_POST_sys_socketpair)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4); } PRE(sys_send) { *flags |= SfMayBlock; PRINT("sys_send ( %ld, %#lx, %ld, %lu )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "send", int, s, const void *, msg, int, len, unsigned int, flags); ML_(generic_PRE_sys_send)( tid, ARG1, ARG2, ARG3 ); } PRE(sys_recv) { *flags |= SfMayBlock; PRINT("sys_recv ( %ld, %#lx, %ld, %lu )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "recv", int, s, void *, buf, int, len, unsigned int, flags); ML_(generic_PRE_sys_recv)( tid, ARG1, ARG2, ARG3 ); } POST(sys_recv) { ML_(generic_POST_sys_recv)( tid, RES, ARG1, ARG2, ARG3 ); } PRE(sys_mmap2) { SysRes r; // Exactly like old_mmap() except: // - all 6 args are passed in regs, rather than in a memory-block. // - the file offset is specified in pagesize units rather than bytes, // so that it can be used for files bigger than 2^32 bytes. // pagesize or 4K-size units in offset? For ppc32/64-linux, this is // 4K-sized. Assert that the page size is 4K here for safety. vg_assert(VKI_PAGE_SIZE == 4096); PRINT("sys_mmap2 ( %#lx, %llu, %ld, %ld, %ld, %ld )", ARG1, (ULong)ARG2, ARG3, ARG4, ARG5, ARG6 ); PRE_REG_READ6(long, "mmap2", unsigned long, start, unsigned long, length, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, offset); r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, 4096 * (Off64T)ARG6 ); SET_STATUS_from_SysRes(r); } // XXX: lstat64/fstat64/stat64 are generic, but not necessarily // applicable to every architecture -- I think only to 32-bit archs. // We're going to need something like linux/core_os32.h for such // things, eventually, I think. --njn PRE(sys_lstat64) { PRINT("sys_lstat64 ( %#lx(%s), %#lx )",ARG1,(char*)ARG1,ARG2); PRE_REG_READ2(long, "lstat64", char *, file_name, struct stat64 *, buf); PRE_MEM_RASCIIZ( "lstat64(file_name)", ARG1 ); PRE_MEM_WRITE( "lstat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_lstat64) { vg_assert(SUCCESS); if (RES == 0) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } } PRE(sys_stat64) { PRINT("sys_stat64 ( %#lx(%s), %#lx )",ARG1,(char*)ARG1,ARG2); PRE_REG_READ2(long, "stat64", char *, file_name, struct stat64 *, buf); PRE_MEM_RASCIIZ( "stat64(file_name)", ARG1 ); PRE_MEM_WRITE( "stat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_stat64) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } PRE(sys_fstatat64) { PRINT("sys_fstatat64 ( %ld, %#lx(%s), %#lx )",ARG1,ARG2,(char*)ARG2,ARG3); PRE_REG_READ3(long, "fstatat64", int, dfd, char *, file_name, struct stat64 *, buf); PRE_MEM_RASCIIZ( "fstatat64(file_name)", ARG2 ); PRE_MEM_WRITE( "fstatat64(buf)", ARG3, sizeof(struct vki_stat64) ); } POST(sys_fstatat64) { POST_MEM_WRITE( ARG3, sizeof(struct vki_stat64) ); } PRE(sys_fstat64) { PRINT("sys_fstat64 ( %ld, %#lx )",ARG1,ARG2); PRE_REG_READ2(long, "fstat64", unsigned long, fd, struct stat64 *, buf); PRE_MEM_WRITE( "fstat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_fstat64) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } PRE(sys_clone) { UInt cloneflags; PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(int, "clone", unsigned long, flags, void *, child_stack, int *, parent_tidptr, void *, child_tls, int *, child_tidptr); if (ARG1 & VKI_CLONE_PARENT_SETTID) { PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) { PRE_MEM_WRITE("clone(child_tidptr)", ARG5, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG5, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } if (ARG1 & VKI_CLONE_SETTLS) { PRE_MEM_READ("clone(tls_user_desc)", ARG4, sizeof(vki_modify_ldt_t)); if (!VG_(am_is_valid_for_client)(ARG4, sizeof(vki_modify_ldt_t), VKI_PROT_READ)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } cloneflags = ARG1; if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) { SET_STATUS_Failure( VKI_EINVAL ); return; } /* Only look at the flags we really care about */ switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES | VKI_CLONE_VFORK)) { case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES: /* thread creation */ SET_STATUS_from_SysRes( do_clone(tid, ARG1, /* flags */ (Addr)ARG2, /* child ESP */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG5, /* child_tidptr */ (Addr)ARG4)); /* set_tls */ break; case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */ /* FALLTHROUGH - assume vfork == fork */ cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM); case 0: /* plain fork */ SET_STATUS_from_SysRes( ML_(do_fork_clone)(tid, cloneflags, /* flags */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG5)); /* child_tidptr */ break; default: /* should we just ENOSYS? */ VG_(message)(Vg_UserMsg, ""); VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%lx", ARG1); VG_(message)(Vg_UserMsg, ""); VG_(message)(Vg_UserMsg, "The only supported clone() uses are:"); VG_(message)(Vg_UserMsg, " - via a threads library (LinuxThreads or NPTL)"); VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork"); VG_(message)(Vg_UserMsg, " - for the Quadrics Elan3 user-space driver"); VG_(unimplemented) ("Valgrind does not support general clone()."); } if (SUCCESS) { if (ARG1 & VKI_CLONE_PARENT_SETTID) POST_MEM_WRITE(ARG3, sizeof(Int)); if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) POST_MEM_WRITE(ARG5, sizeof(Int)); /* Thread creation was successful; let the child have the chance to run */ *flags |= SfYieldAfter; } } PRE(sys_sigreturn) { /* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for an explanation of what follows. */ PRINT("sys_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); /* Restore register state from frame and remove it */ VG_(sigframe_destroy)(tid, False); /* Tell the driver not to update the guest state with the "result", and set a bogus result to keep it happy. */ *flags |= SfNoWriteResult; SET_STATUS_Success(0); /* Check to see if any signals arose as a result of this. */ *flags |= SfPollAfter; } PRE(sys_rt_sigreturn) { /* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for an explanation of what follows. */ PRINT("rt_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); /* Restore register state from frame and remove it */ VG_(sigframe_destroy)(tid, True); /* Tell the driver not to update the guest state with the "result", and set a bogus result to keep it happy. */ *flags |= SfNoWriteResult; SET_STATUS_Success(0); /* Check to see if any signals arose as a result of this. */ *flags |= SfPollAfter; } /* NB: clone of x86-linux version, and ppc32-linux has an almost identical one. */ PRE(sys_sigsuspend) { /* The C library interface to sigsuspend just takes a pointer to a signal mask but this system call has three arguments - the first two don't appear to be used by the kernel and are always passed as zero by glibc and the third is the first word of the signal mask so only 32 signals are supported. In fact glibc normally uses rt_sigsuspend if it is available as that takes a pointer to the signal mask so supports more signals. */ *flags |= SfMayBlock; PRINT("sys_sigsuspend ( %ld, %ld, %ld )", ARG1,ARG2,ARG3 ); PRE_REG_READ3(int, "sigsuspend", int, history0, int, history1, vki_old_sigset_t, mask); } /* Very much ARM specific */ PRE(sys_set_tls) { PRINT("set_tls (%lx)",ARG1); PRE_REG_READ1(long, "set_tls", unsigned long, addr); SET_STATUS_from_SysRes( sys_set_tls( tid, ARG1 ) ); } PRE(sys_cacheflush) { PRINT("cacheflush (%lx, %#lx, %#lx)",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "cacheflush", void*, addrlow,void*, addrhigh,int, flags); VG_(discard_translations)( (Addr64)ARG1, ((ULong)ARG2) - ((ULong)ARG1) + 1ULL/*paranoia*/, "PRE(sys_cacheflush)" ); SET_STATUS_Success(0); } // ARG3 is only used for pointers into the traced process's address // space and for offsets into the traced process's struct // user_regs_struct. It is never a pointer into this process's memory // space, and we should therefore not check anything it points to. PRE(sys_ptrace) { PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(int, "ptrace", long, request, long, pid, long, addr, long, data); switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: PRE_MEM_WRITE( "ptrace(peek)", ARG4, sizeof (long)); break; case VKI_PTRACE_GETREGS: PRE_MEM_WRITE( "ptrace(getregs)", ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_GETFPREGS: PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4, sizeof (struct vki_user_fp)); break; case VKI_PTRACE_GETWMMXREGS: PRE_MEM_WRITE( "ptrace(getwmmxregs)", ARG4, VKI_IWMMXT_SIZE); break; case VKI_PTRACE_GETCRUNCHREGS: PRE_MEM_WRITE( "ptrace(getcrunchregs)", ARG4, VKI_CRUNCH_SIZE); break; case VKI_PTRACE_GETVFPREGS: PRE_MEM_WRITE( "ptrace(getvfpregs)", ARG4, sizeof (struct vki_user_vfp) ); break; case VKI_PTRACE_GETHBPREGS: PRE_MEM_WRITE( "ptrace(gethbpregs)", ARG4, sizeof (unsigned long) ); break; case VKI_PTRACE_SETREGS: PRE_MEM_READ( "ptrace(setregs)", ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_SETFPREGS: PRE_MEM_READ( "ptrace(setfpregs)", ARG4, sizeof (struct vki_user_fp)); break; case VKI_PTRACE_SETWMMXREGS: PRE_MEM_READ( "ptrace(setwmmxregs)", ARG4, VKI_IWMMXT_SIZE); break; case VKI_PTRACE_SETCRUNCHREGS: PRE_MEM_READ( "ptrace(setcrunchregs)", ARG4, VKI_CRUNCH_SIZE); break; case VKI_PTRACE_SETVFPREGS: PRE_MEM_READ( "ptrace(setvfpregs)", ARG4, sizeof (struct vki_user_vfp)); break; case VKI_PTRACE_SETHBPREGS: PRE_MEM_READ( "ptrace(sethbpregs)", ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GET_THREAD_AREA: PRE_MEM_WRITE( "ptrace(get_thread_area)", ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETEVENTMSG: PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETSIGINFO: PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t)); break; case VKI_PTRACE_SETSIGINFO: PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t)); break; default: break; } } POST(sys_ptrace) { switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: POST_MEM_WRITE( ARG4, sizeof (long)); break; case VKI_PTRACE_GETREGS: POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_GETFPREGS: POST_MEM_WRITE( ARG4, sizeof (struct vki_user_fp)); break; case VKI_PTRACE_GETWMMXREGS: POST_MEM_WRITE( ARG4, VKI_IWMMXT_SIZE); break; case VKI_PTRACE_GETCRUNCHREGS: POST_MEM_WRITE( ARG4, VKI_CRUNCH_SIZE); break; case VKI_PTRACE_GETVFPREGS: POST_MEM_WRITE( ARG4, sizeof(struct vki_user_vfp)); break; case VKI_PTRACE_GET_THREAD_AREA: case VKI_PTRACE_GETHBPREGS: case VKI_PTRACE_GETEVENTMSG: POST_MEM_WRITE( ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETSIGINFO: /* XXX: This is a simplification. Different parts of the * siginfo_t are valid depending on the type of signal. */ POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t)); break; default: break; } } #undef PRE #undef POST /* --------------------------------------------------------------------- The arm/Linux syscall table ------------------------------------------------------------------ */ #if 0 #define __NR_OABI_SYSCALL_BASE 0x900000 #else #define __NR_OABI_SYSCALL_BASE 0x0 #endif #define PLAX_(sysno, name) WRAPPER_ENTRY_X_(arm_linux, sysno, name) #define PLAXY(sysno, name) WRAPPER_ENTRY_XY(arm_linux, sysno, name) // This table maps from __NR_xxx syscall numbers (from // linux/include/asm-arm/unistd.h) to the appropriate PRE/POST sys_foo() // wrappers on arm (as per sys_call_table in linux/arch/arm/kernel/entry.S). // // For those syscalls not handled by Valgrind, the annotation indicate its // arch/OS combination, eg. */* (generic), */Linux (Linux only), ?/? // (unknown). static SyscallTableEntry syscall_main_table[] = { //zz // (restart_syscall) // 0 GENX_(__NR_exit, sys_exit), // 1 GENX_(__NR_fork, sys_fork), // 2 GENXY(__NR_read, sys_read), // 3 GENX_(__NR_write, sys_write), // 4 GENXY(__NR_open, sys_open), // 5 GENXY(__NR_close, sys_close), // 6 // GENXY(__NR_waitpid, sys_waitpid), // 7 GENXY(__NR_creat, sys_creat), // 8 GENX_(__NR_link, sys_link), // 9 GENX_(__NR_unlink, sys_unlink), // 10 GENX_(__NR_execve, sys_execve), // 11 GENX_(__NR_chdir, sys_chdir), // 12 GENXY(__NR_time, sys_time), // 13 GENX_(__NR_mknod, sys_mknod), // 14 GENX_(__NR_chmod, sys_chmod), // 15 //zz LINX_(__NR_lchown, sys_lchown16), // 16 // GENX_(__NR_break, sys_ni_syscall), // 17 //zz // (__NR_oldstat, sys_stat), // 18 (obsolete) LINX_(__NR_lseek, sys_lseek), // 19 GENX_(__NR_getpid, sys_getpid), // 20 LINX_(__NR_mount, sys_mount), // 21 LINX_(__NR_umount, sys_oldumount), // 22 LINX_(__NR_setuid, sys_setuid16), // 23 ## P LINX_(__NR_getuid, sys_getuid16), // 24 ## P //zz //zz // (__NR_stime, sys_stime), // 25 * (SVr4,SVID,X/OPEN) PLAXY(__NR_ptrace, sys_ptrace), // 26 GENX_(__NR_alarm, sys_alarm), // 27 //zz // (__NR_oldfstat, sys_fstat), // 28 * L -- obsolete GENX_(__NR_pause, sys_pause), // 29 LINX_(__NR_utime, sys_utime), // 30 // GENX_(__NR_stty, sys_ni_syscall), // 31 // GENX_(__NR_gtty, sys_ni_syscall), // 32 GENX_(__NR_access, sys_access), // 33 GENX_(__NR_nice, sys_nice), // 34 // GENX_(__NR_ftime, sys_ni_syscall), // 35 GENX_(__NR_sync, sys_sync), // 36 GENX_(__NR_kill, sys_kill), // 37 GENX_(__NR_rename, sys_rename), // 38 GENX_(__NR_mkdir, sys_mkdir), // 39 GENX_(__NR_rmdir, sys_rmdir), // 40 GENXY(__NR_dup, sys_dup), // 41 LINXY(__NR_pipe, sys_pipe), // 42 GENXY(__NR_times, sys_times), // 43 // GENX_(__NR_prof, sys_ni_syscall), // 44 //zz GENX_(__NR_brk, sys_brk), // 45 LINX_(__NR_setgid, sys_setgid16), // 46 LINX_(__NR_getgid, sys_getgid16), // 47 //zz // (__NR_signal, sys_signal), // 48 */* (ANSI C) LINX_(__NR_geteuid, sys_geteuid16), // 49 LINX_(__NR_getegid, sys_getegid16), // 50 GENX_(__NR_acct, sys_acct), // 51 LINX_(__NR_umount2, sys_umount), // 52 // GENX_(__NR_lock, sys_ni_syscall), // 53 LINXY(__NR_ioctl, sys_ioctl), // 54 LINXY(__NR_fcntl, sys_fcntl), // 55 // GENX_(__NR_mpx, sys_ni_syscall), // 56 GENX_(__NR_setpgid, sys_setpgid), // 57 // GENX_(__NR_ulimit, sys_ni_syscall), // 58 //zz // (__NR_oldolduname, sys_olduname), // 59 Linux -- obsolete //zz GENX_(__NR_umask, sys_umask), // 60 GENX_(__NR_chroot, sys_chroot), // 61 //zz // (__NR_ustat, sys_ustat) // 62 SVr4 -- deprecated GENXY(__NR_dup2, sys_dup2), // 63 GENX_(__NR_getppid, sys_getppid), // 64 GENX_(__NR_getpgrp, sys_getpgrp), // 65 GENX_(__NR_setsid, sys_setsid), // 66 LINXY(__NR_sigaction, sys_sigaction), // 67 //zz // (__NR_sgetmask, sys_sgetmask), // 68 */* (ANSI C) //zz // (__NR_ssetmask, sys_ssetmask), // 69 */* (ANSI C) //zz LINX_(__NR_setreuid, sys_setreuid16), // 70 LINX_(__NR_setregid, sys_setregid16), // 71 PLAX_(__NR_sigsuspend, sys_sigsuspend), // 72 LINXY(__NR_sigpending, sys_sigpending), // 73 //zz // (__NR_sethostname, sys_sethostname), // 74 */* //zz GENX_(__NR_setrlimit, sys_setrlimit), // 75 GENXY(__NR_getrlimit, sys_old_getrlimit), // 76 GENXY(__NR_getrusage, sys_getrusage), // 77 GENXY(__NR_gettimeofday, sys_gettimeofday), // 78 GENX_(__NR_settimeofday, sys_settimeofday), // 79 LINXY(__NR_getgroups, sys_getgroups16), // 80 LINX_(__NR_setgroups, sys_setgroups16), // 81 // PLAX_(__NR_select, old_select), // 82 GENX_(__NR_symlink, sys_symlink), // 83 //zz // (__NR_oldlstat, sys_lstat), // 84 -- obsolete //zz GENX_(__NR_readlink, sys_readlink), // 85 //zz // (__NR_uselib, sys_uselib), // 86 */Linux //zz // (__NR_swapon, sys_swapon), // 87 */Linux //zz // (__NR_reboot, sys_reboot), // 88 */Linux //zz // (__NR_readdir, old_readdir), // 89 -- superseded //zz // _____(__NR_mmap, old_mmap), // 90 GENXY(__NR_munmap, sys_munmap), // 91 GENX_(__NR_truncate, sys_truncate), // 92 GENX_(__NR_ftruncate, sys_ftruncate), // 93 GENX_(__NR_fchmod, sys_fchmod), // 94 LINX_(__NR_fchown, sys_fchown16), // 95 GENX_(__NR_getpriority, sys_getpriority), // 96 GENX_(__NR_setpriority, sys_setpriority), // 97 // GENX_(__NR_profil, sys_ni_syscall), // 98 GENXY(__NR_statfs, sys_statfs), // 99 GENXY(__NR_fstatfs, sys_fstatfs), // 100 // LINX_(__NR_ioperm, sys_ioperm), // 101 PLAXY(__NR_socketcall, sys_socketcall), // 102 LINXY(__NR_syslog, sys_syslog), // 103 GENXY(__NR_setitimer, sys_setitimer), // 104 GENXY(__NR_getitimer, sys_getitimer), // 105 GENXY(__NR_stat, sys_newstat), // 106 GENXY(__NR_lstat, sys_newlstat), // 107 GENXY(__NR_fstat, sys_newfstat), // 108 //zz // (__NR_olduname, sys_uname), // 109 -- obsolete //zz // GENX_(__NR_iopl, sys_iopl), // 110 LINX_(__NR_vhangup, sys_vhangup), // 111 // GENX_(__NR_idle, sys_ni_syscall), // 112 // PLAXY(__NR_vm86old, sys_vm86old), // 113 __NR_syscall... weird GENXY(__NR_wait4, sys_wait4), // 114 //zz //zz // (__NR_swapoff, sys_swapoff), // 115 */Linux LINXY(__NR_sysinfo, sys_sysinfo), // 116 // _____(__NR_ipc, sys_ipc), // 117 GENX_(__NR_fsync, sys_fsync), // 118 PLAX_(__NR_sigreturn, sys_sigreturn), // 119 ?/Linux PLAX_(__NR_clone, sys_clone), // 120 //zz // (__NR_setdomainname, sys_setdomainname), // 121 */*(?) GENXY(__NR_uname, sys_newuname), // 122 // PLAX_(__NR_modify_ldt, sys_modify_ldt), // 123 //zz LINXY(__NR_adjtimex, sys_adjtimex), // 124 //zz GENXY(__NR_mprotect, sys_mprotect), // 125 LINXY(__NR_sigprocmask, sys_sigprocmask), // 126 //zz // Nb: create_module() was removed 2.4-->2.6 // GENX_(__NR_create_module, sys_ni_syscall), // 127 LINX_(__NR_init_module, sys_init_module), // 128 LINX_(__NR_delete_module, sys_delete_module), // 129 //zz //zz // Nb: get_kernel_syms() was removed 2.4-->2.6 // GENX_(__NR_get_kernel_syms, sys_ni_syscall), // 130 LINX_(__NR_quotactl, sys_quotactl), // 131 GENX_(__NR_getpgid, sys_getpgid), // 132 GENX_(__NR_fchdir, sys_fchdir), // 133 //zz // (__NR_bdflush, sys_bdflush), // 134 */Linux //zz //zz // (__NR_sysfs, sys_sysfs), // 135 SVr4 LINX_(__NR_personality, sys_personality), // 136 // GENX_(__NR_afs_syscall, sys_ni_syscall), // 137 LINX_(__NR_setfsuid, sys_setfsuid16), // 138 LINX_(__NR_setfsgid, sys_setfsgid16), // 139 LINXY(__NR__llseek, sys_llseek), // 140 GENXY(__NR_getdents, sys_getdents), // 141 GENX_(__NR__newselect, sys_select), // 142 GENX_(__NR_flock, sys_flock), // 143 GENX_(__NR_msync, sys_msync), // 144 GENXY(__NR_readv, sys_readv), // 145 GENX_(__NR_writev, sys_writev), // 146 GENX_(__NR_getsid, sys_getsid), // 147 GENX_(__NR_fdatasync, sys_fdatasync), // 148 LINXY(__NR__sysctl, sys_sysctl), // 149 GENX_(__NR_mlock, sys_mlock), // 150 GENX_(__NR_munlock, sys_munlock), // 151 GENX_(__NR_mlockall, sys_mlockall), // 152 LINX_(__NR_munlockall, sys_munlockall), // 153 LINXY(__NR_sched_setparam, sys_sched_setparam), // 154 LINXY(__NR_sched_getparam, sys_sched_getparam), // 155 LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 156 LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 157 LINX_(__NR_sched_yield, sys_sched_yield), // 158 LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max),// 159 LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min),// 160 //zz //LINX?(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 161 */* GENXY(__NR_nanosleep, sys_nanosleep), // 162 GENX_(__NR_mremap, sys_mremap), // 163 LINX_(__NR_setresuid, sys_setresuid16), // 164 LINXY(__NR_getresuid, sys_getresuid16), // 165 // PLAXY(__NR_vm86, sys_vm86), // 166 x86/Linux-only // GENX_(__NR_query_module, sys_ni_syscall), // 167 GENXY(__NR_poll, sys_poll), // 168 //zz // (__NR_nfsservctl, sys_nfsservctl), // 169 */Linux //zz LINX_(__NR_setresgid, sys_setresgid16), // 170 LINXY(__NR_getresgid, sys_getresgid16), // 171 LINXY(__NR_prctl, sys_prctl), // 172 PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 173 LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 174 LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 175 LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 176 LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 177 LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 178 LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 179 GENXY(__NR_pread64, sys_pread64), // 180 GENX_(__NR_pwrite64, sys_pwrite64), // 181 LINX_(__NR_chown, sys_chown16), // 182 GENXY(__NR_getcwd, sys_getcwd), // 183 LINXY(__NR_capget, sys_capget), // 184 LINX_(__NR_capset, sys_capset), // 185 GENXY(__NR_sigaltstack, sys_sigaltstack), // 186 LINXY(__NR_sendfile, sys_sendfile), // 187 // GENXY(__NR_getpmsg, sys_getpmsg), // 188 // GENX_(__NR_putpmsg, sys_putpmsg), // 189 // Nb: we treat vfork as fork GENX_(__NR_vfork, sys_fork), // 190 GENXY(__NR_ugetrlimit, sys_getrlimit), // 191 PLAX_(__NR_mmap2, sys_mmap2), // 192 GENX_(__NR_truncate64, sys_truncate64), // 193 GENX_(__NR_ftruncate64, sys_ftruncate64), // 194 PLAXY(__NR_stat64, sys_stat64), // 195 PLAXY(__NR_lstat64, sys_lstat64), // 196 PLAXY(__NR_fstat64, sys_fstat64), // 197 GENX_(__NR_lchown32, sys_lchown), // 198 GENX_(__NR_getuid32, sys_getuid), // 199 GENX_(__NR_getgid32, sys_getgid), // 200 GENX_(__NR_geteuid32, sys_geteuid), // 201 GENX_(__NR_getegid32, sys_getegid), // 202 GENX_(__NR_setreuid32, sys_setreuid), // 203 GENX_(__NR_setregid32, sys_setregid), // 204 GENXY(__NR_getgroups32, sys_getgroups), // 205 GENX_(__NR_setgroups32, sys_setgroups), // 206 GENX_(__NR_fchown32, sys_fchown), // 207 LINX_(__NR_setresuid32, sys_setresuid), // 208 LINXY(__NR_getresuid32, sys_getresuid), // 209 LINX_(__NR_setresgid32, sys_setresgid), // 210 LINXY(__NR_getresgid32, sys_getresgid), // 211 GENX_(__NR_chown32, sys_chown), // 212 GENX_(__NR_setuid32, sys_setuid), // 213 GENX_(__NR_setgid32, sys_setgid), // 214 LINX_(__NR_setfsuid32, sys_setfsuid), // 215 LINX_(__NR_setfsgid32, sys_setfsgid), // 216 //zz // (__NR_pivot_root, sys_pivot_root), // 217 */Linux GENXY(__NR_mincore, sys_mincore), // 218 GENX_(__NR_madvise, sys_madvise), // 219 GENXY(__NR_getdents64, sys_getdents64), // 220 LINXY(__NR_fcntl64, sys_fcntl64), // 221 // GENX_(222, sys_ni_syscall), // 222 // PLAXY(223, sys_syscall223), // 223 // sys_bproc? LINX_(__NR_gettid, sys_gettid), // 224 LINX_(__NR_readahead, sys_readahead), // 225 */Linux LINX_(__NR_setxattr, sys_setxattr), // 226 LINX_(__NR_lsetxattr, sys_lsetxattr), // 227 LINX_(__NR_fsetxattr, sys_fsetxattr), // 228 LINXY(__NR_getxattr, sys_getxattr), // 229 LINXY(__NR_lgetxattr, sys_lgetxattr), // 230 LINXY(__NR_fgetxattr, sys_fgetxattr), // 231 LINXY(__NR_listxattr, sys_listxattr), // 232 LINXY(__NR_llistxattr, sys_llistxattr), // 233 LINXY(__NR_flistxattr, sys_flistxattr), // 234 LINX_(__NR_removexattr, sys_removexattr), // 235 LINX_(__NR_lremovexattr, sys_lremovexattr), // 236 LINX_(__NR_fremovexattr, sys_fremovexattr), // 237 LINXY(__NR_tkill, sys_tkill), // 238 */Linux LINXY(__NR_sendfile64, sys_sendfile64), // 239 LINXY(__NR_futex, sys_futex), // 240 LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 241 LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 242 // PLAX_(__NR_set_thread_area, sys_set_thread_area), // 243 // PLAX_(__NR_get_thread_area, sys_get_thread_area), // 244 LINXY(__NR_io_setup, sys_io_setup), // 245 LINX_(__NR_io_destroy, sys_io_destroy), // 246 LINXY(__NR_io_getevents, sys_io_getevents), // 247 LINX_(__NR_io_submit, sys_io_submit), // 248 LINXY(__NR_io_cancel, sys_io_cancel), // 249 // LINX_(__NR_fadvise64, sys_fadvise64), // 250 */(Linux?) GENX_(251, sys_ni_syscall), // 251 LINX_(__NR_exit_group, sys_exit_group), // 252 // GENXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 253 LINXY(__NR_epoll_create, sys_epoll_create), // 254 LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 255 LINXY(__NR_epoll_wait, sys_epoll_wait), // 256 //zz // (__NR_remap_file_pages, sys_remap_file_pages), // 257 */Linux LINX_(__NR_set_tid_address, sys_set_tid_address), // 258 LINXY(__NR_timer_create, sys_timer_create), // 259 LINXY(__NR_timer_settime, sys_timer_settime), // (timer_create+1) LINXY(__NR_timer_gettime, sys_timer_gettime), // (timer_create+2) LINX_(__NR_timer_getoverrun, sys_timer_getoverrun),//(timer_create+3) LINX_(__NR_timer_delete, sys_timer_delete), // (timer_create+4) LINX_(__NR_clock_settime, sys_clock_settime), // (timer_create+5) LINXY(__NR_clock_gettime, sys_clock_gettime), // (timer_create+6) LINXY(__NR_clock_getres, sys_clock_getres), // (timer_create+7) LINXY(__NR_clock_nanosleep, sys_clock_nanosleep),// (timer_create+8) */* GENXY(__NR_statfs64, sys_statfs64), // 268 GENXY(__NR_fstatfs64, sys_fstatfs64), // 269 LINX_(__NR_tgkill, sys_tgkill), // 270 */Linux GENX_(__NR_utimes, sys_utimes), // 271 // LINX_(__NR_fadvise64_64, sys_fadvise64_64), // 272 */(Linux?) GENX_(__NR_vserver, sys_ni_syscall), // 273 LINX_(__NR_mbind, sys_mbind), // 274 ?/? LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 275 ?/? LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 276 ?/? LINXY(__NR_mq_open, sys_mq_open), // 277 LINX_(__NR_mq_unlink, sys_mq_unlink), // (mq_open+1) LINX_(__NR_mq_timedsend, sys_mq_timedsend), // (mq_open+2) LINXY(__NR_mq_timedreceive, sys_mq_timedreceive),// (mq_open+3) LINX_(__NR_mq_notify, sys_mq_notify), // (mq_open+4) LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // (mq_open+5) LINXY(__NR_waitid, sys_waitid), // 280 PLAXY(__NR_socket, sys_socket), // 281 PLAX_(__NR_bind, sys_bind), // 282 PLAX_(__NR_connect, sys_connect), // 283 PLAX_(__NR_listen, sys_listen), // 284 PLAXY(__NR_accept, sys_accept), // 285 PLAXY(__NR_getsockname, sys_getsockname), // 286 PLAXY(__NR_getpeername, sys_getpeername), // 287 PLAXY(__NR_socketpair, sys_socketpair), // 288 PLAX_(__NR_send, sys_send), PLAX_(__NR_sendto, sys_sendto), // 290 PLAXY(__NR_recv, sys_recv), PLAXY(__NR_recvfrom, sys_recvfrom), // 292 PLAX_(__NR_shutdown, sys_shutdown), // 293 PLAX_(__NR_setsockopt, sys_setsockopt), // 294 PLAXY(__NR_getsockopt, sys_getsockopt), // 295 PLAX_(__NR_sendmsg, sys_sendmsg), // 296 PLAXY(__NR_recvmsg, sys_recvmsg), // 297 PLAX_(__NR_semop, sys_semop), // 298 PLAX_(__NR_semget, sys_semget), // 299 PLAXY(__NR_semctl, sys_semctl), // 300 PLAX_(__NR_msgget, sys_msgget), PLAX_(__NR_msgsnd, sys_msgsnd), PLAXY(__NR_msgrcv, sys_msgrcv), PLAXY(__NR_msgctl, sys_msgctl), // 304 PLAX_(__NR_semtimedop, sys_semtimedop), // 312 LINX_(__NR_add_key, sys_add_key), // 286 LINX_(__NR_request_key, sys_request_key), // 287 LINXY(__NR_keyctl, sys_keyctl), // not 288... // LINX_(__NR_ioprio_set, sys_ioprio_set), // 289 // LINX_(__NR_ioprio_get, sys_ioprio_get), // 290 LINX_(__NR_inotify_init, sys_inotify_init), // 291 LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 292 LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 293 // LINX_(__NR_migrate_pages, sys_migrate_pages), // 294 LINXY(__NR_openat, sys_openat), // 295 LINX_(__NR_mkdirat, sys_mkdirat), // 296 LINX_(__NR_mknodat, sys_mknodat), // 297 LINX_(__NR_fchownat, sys_fchownat), // 298 LINX_(__NR_futimesat, sys_futimesat), // 326 on arm PLAXY(__NR_fstatat64, sys_fstatat64), // 300 LINX_(__NR_unlinkat, sys_unlinkat), // 301 LINX_(__NR_renameat, sys_renameat), // 302 LINX_(__NR_linkat, sys_linkat), // 303 LINX_(__NR_symlinkat, sys_symlinkat), // 304 LINX_(__NR_readlinkat, sys_readlinkat), // LINX_(__NR_fchmodat, sys_fchmodat), // LINX_(__NR_faccessat, sys_faccessat), // PLAXY(__NR_shmat, wrap_sys_shmat), //305 PLAXY(__NR_shmdt, sys_shmdt), //306 PLAX_(__NR_shmget, sys_shmget), //307 PLAXY(__NR_shmctl, sys_shmctl), // 308 // LINX_(__NR_pselect6, sys_pselect6), // // LINX_(__NR_unshare, sys_unshare), // 310 LINX_(__NR_set_robust_list, sys_set_robust_list), // 311 LINXY(__NR_get_robust_list, sys_get_robust_list), // 312 // LINX_(__NR_splice, sys_ni_syscall), // 313 // LINX_(__NR_sync_file_range, sys_sync_file_range), // 314 // LINX_(__NR_tee, sys_ni_syscall), // 315 // LINX_(__NR_vmsplice, sys_ni_syscall), // 316 LINXY(__NR_move_pages, sys_move_pages), // 317 // LINX_(__NR_getcpu, sys_ni_syscall), // 318 LINX_(__NR_utimensat, sys_utimensat), // 320 LINXY(__NR_signalfd, sys_signalfd), // 321 LINXY(__NR_timerfd_create, sys_timerfd_create), // 322 LINX_(__NR_eventfd, sys_eventfd), // 323 LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 325 LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 326 /////////////// // JRS 2010-Jan-03: I believe that all the numbers listed // in comments in the table prior to this point (eg "// 326", // etc) are bogus since it looks to me like they are copied // verbatim from syswrap-x86-linux.c and they certainly do not // correspond to what's in include/vki/vki-scnums-arm-linux.h. // From here onwards, please ensure the numbers are correct. LINX_(__NR_pselect6, sys_pselect6), // 335 LINXY(__NR_ppoll, sys_ppoll), // 336 LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 346 LINX_(__NR_fallocate, sys_fallocate), // 352 LINXY(__NR_signalfd4, sys_signalfd4), // 355 LINX_(__NR_eventfd2, sys_eventfd2), // 356 LINXY(__NR_epoll_create1, sys_epoll_create1), // 357 LINXY(__NR_dup3, sys_dup3), // 358 LINXY(__NR_pipe2, sys_pipe2), // 359 LINXY(__NR_inotify_init1, sys_inotify_init1), // 360 LINXY(__NR_preadv, sys_preadv), // 361 LINX_(__NR_pwritev, sys_pwritev), // 362 LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo),// 363 LINXY(__NR_perf_event_open, sys_perf_event_open), // 364 PLAXY(__NR_accept4, sys_accept4) // 366 }; /* These are not in the main table because there indexes are not small integers, but rather values close to one million. So their inclusion would force the main table to be huge (about 8 MB). */ static SyscallTableEntry ste___ARM_set_tls = { WRAPPER_PRE_NAME(arm_linux,sys_set_tls), NULL }; static SyscallTableEntry ste___ARM_cacheflush = { WRAPPER_PRE_NAME(arm_linux,sys_cacheflush), NULL }; SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno ) { const UInt syscall_main_table_size = sizeof(syscall_main_table) / sizeof(syscall_main_table[0]); /* Is it in the contiguous initial section of the table? */ if (sysno < syscall_main_table_size) { SyscallTableEntry* sys = &syscall_main_table[sysno]; if (sys->before == NULL) return NULL; /* no entry */ else return sys; } /* Check if it's one of the out-of-line entries. */ switch (sysno) { case __NR_ARM_set_tls: return &ste___ARM_set_tls; case __NR_ARM_cacheflush: return &ste___ARM_cacheflush; default: break; } /* Can't find a wrapper */ return NULL; } #endif // defined(VGP_arm_linux) /*--------------------------------------------------------------------*/ /*--- end syswrap-arm-linux.c ---*/ /*--------------------------------------------------------------------*/